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Abstract: The mechanical LiDAR sensor is crucial in autonomous vehicles. After projecting a 3D point
cloud onto a 2D plane and employing a deep learning model for computation, accurate environmental
perception information can be supplied to autonomous vehicles. Nevertheless, the vertical angular
resolution of inexpensive multi-beam LiDAR is limited, constraining the perceptual and mobility
range of mobile entities. To address this problem, we propose a point cloud super-resolution
model in this paper. This model enhances the density of sparse point clouds acquired by LiDAR,
consequently offering more precise environmental information for autonomous vehicles. Firstly,
we collect two datasets for point cloud super-resolution, encompassing CARLA32-128in simulated
environments and Ruby32-128 in real-world scenarios. Secondly, we propose a novel temporal and
spatial feature-enhanced point cloud super-resolution model. This model leverages temporal feature
attention aggregation modules and spatial feature enhancement modules to fully exploit point cloud
features from adjacent timestamps, enhancing super-resolution accuracy. Ultimately, we validate
the effectiveness of the proposed method through comparison experiments, ablation studies, and
qualitative visualization experiments conducted on the CARLA32-128 and Ruby32-128 datasets.
Notably, our method achieves a PSNR of 27.52 on CARLA32-128 and a PSNR of 24.82 on Ruby32-128,
both of which are better than previous methods.

Keywords: autonomous vehicles; deep learning; computer vision; mechanical LiDAR; point cloud
super-resolution

1. Introduction

LiDAR (light detection and ranging) plays a pivotal role in intelligent robots, au-
tonomous vehicles, and unmanned aerial vehicles (UAVs), as it provides precise distance
measurements of the surrounding environments, making it one of the most essential sensors.
It is fundamental to the operation of these advanced technologies, enabling them to navi-
gate safely, avoid obstacles, and make informed decisions about their movements. Without
LiDAR, these machines would lack the necessary data to function properly, severely lim-
iting their capabilities and reliability. Therefore, LiDAR’s role in fields such as robotics,
autonomous driving, and unmanned aerial vehicles is crucial, making it a vital component
for the development of advanced and safe technologies [1,2].

Currently, LiDAR sensors available off-the-shelf can be classified into two main cat-
egories: mechanical LiDAR and solid-state LiDAR [3]. Over the past few decades, me-
chanical LiDAR has been extensively utilized in various applications and environments
because of its design, which incorporates a 360-degree horizontal field of view (FOV). This
broad FOV allows mechanical LiDAR to capture comprehensive information about the
surrounding environment within a single scan. The vertical FOV is determined by the
number of included laser beams and the angle between adjacent laser beams, which is also
referred to as angular resolution. Mechanical LiDAR offers numerous advantages, such as
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its ability to obtain all surrounding information within a single scan. This design enables
it to acquire data quickly and efficiently, making it suitable for a range of applications,
including autonomous vehicles, robotics, and surveying. However, the predefined angular
resolutions in both the horizontal and vertical directions can limit the resolution of percep-
tion, particularly in the horizontal angular resolution. As the distance increases, the spacing
between each laser beam also increases, resulting in sparse features in the final 3D point
cloud. To address these limitations, solid-state LiDAR was developed using non-repetitive
scanning technology. This technology concentrates all the laser beams within a limited
field of view, enabling dense scanning over a specific time interval. By focusing the laser
beams in a limited FOV, solid-state LiDAR can achieve dense scanning without sacrificing
the overall field of view range. This approach offers improved resolution compared to
mechanical LiDAR, as it utilizes non-repetitive scanning patterns. Despite its advantages,
solid-state LiDAR also has certain trade-offs. To achieve non-repetitive scanning, complex
mechanical structures are required, which can reduce the final ranging accuracy of the sen-
sor. Additionally, the limited field of view can be a constraint in some applications where a
wide FOV is essential. To achieve a full 360-degree horizontal sensing capability, multiple
LiDAR sensors, sophisticated installation structures, and synchronization algorithms are
often required [4].

To overcome the shortcomings of mechanical liDAR in practical applications, we delve
into recent advances in point cloud [5–7], image-based super-resolution technology [8,9],
and deep-learning-based modeling [10,11], which can provide new ideas and methods to
solve the limitations of mechanical LiDAR. First of all, as the main data form of LiDAR
environment perception, the point cloud has accurate 3D information. However, because
of the scanning method of mechanical LiDAR, the obtained point clouds are usually very
sparse, which poses challenges for subsequent algorithms. Therefore, we consider using
point cloud super-resolution technology. By using multi-frame continuous LiDAR scanning
data combined with image processing and machine learning methods, the point cloud is
interpolated and upsampled. This can improve the density of the point cloud to a certain
extent and provide more accurate environmental information for the subsequent perception
algorithm. The traditional point cloud super-resolution technology has the problems of
heavy computation and poor real-time performance. By building a deep neural network
model to learn and predict the point cloud data, a denser point cloud can be restored to a
certain extent. In order to better adapt to the scanning line characteristics of mechanical
LiDAR, we propose a new mechanical LiDAR point cloud super-resolution model, TSE-
UNet. The model combines the U-Net structure and the characteristics of temporal and
spatial feature-enhanced modules to optimize the scanning line characteristics of mechan-
ical LiDAR. TSE-UNet can capture the time dynamics of the point cloud effectively and
recover the high-density point cloud with spatial feature-enhanced skip connection and
upsampling operations. In addition, TSE-UNet uses a lightweight network structure and
efficient convolution algorithm to achieve efficient point cloud super-resolution in real time
with lightweight edge computing devices. With our model, sparse point clouds captured
by low-cost liDAR (i.e., Robosense-32) can be enhanced in real time with lightweight edge
computing devices. In addition, upsampled point clouds can achieve similar results com-
pared to point clouds of high-cost LiDAR (i.e., Robosense-128). Our TSE-UNet model can
easily scale sparse point clouds from low-cost LiDAR sensors to dense point clouds with
dense laser beams, thereby improving the performance of subsequent point cloud-based
perception modules.

The contributions of this paper are as follows:

• To address the shortage of available open-source datasets in the field, we construct
and release a simulation dataset, CARLA32-128, for a laser beam LiDAR point cloud
super-resolution task. Additionally, a real-world dataset, Ruby32-128, is provided for
the 32-to-128 laser beam LiDAR point cloud super-resolution task.

• Based on the semantic segmentation model UNet, we propose a temporal and spatial
feature-enhanced point cloud super-resolution model called TSE-UNet. It utilizes a
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temporal feature attention aggregation module and a spatial feature enhancement
module to fully leverage point cloud features from neighboring timestamps, improv-
ing super-resolution accuracy.

• We validate the effectiveness of the proposed method through extensive comparative
experiments, ablation experiments, and visual qualitative experiments.

The rest of this paper is organized as follows. Section 2 reviews the related works on
image super-resolution and point cloud super-resolution. Section 3 presents the detailed
design of the TSE-UNet model, and Section 4 evaluates the model on both synthetic
data captured in the CARLA simulator and real-world data collected from a local vehicle
platform. Section 5 summarizes this work.

2. Related Works
2.1. Image Super-Resolution

Image super-resolution is a traditional task in computer vision involving the use
of algorithms to enhance low-resolution images to high-resolution ones. This technique
finds applications in various fields, such as surveillance, medical imaging, and media. Its
advantage lies in the ability to effectively improve the outcomes of subsequent tasks, such
as face recognition and semantic segmentation, without increasing sensor hardware costs.
In past research, various techniques have been developed, encompassing regularization
techniques [12], neighborhood embedding-based algorithms [13], and the utilization of
similar patches that exhibit redundancy in low-resolution images when compared to their
higher-resolution counterparts. Nonetheless, these methods are not optimal and encounter
challenges when applied to tasks involving higher-scale images.

Simultaneously, with the continuous development of deep learning technology, [14]
were the first to apply convolutional neural networks (CNNs) to this task. They employed
a lightweight deep CNN for end-to-end learning on the data, achieving state-of-the-art re-
sults in both quality and speed. The observation that deeper networks for super-resolution
(SR) are challenging to train, coupled with the underutilization of abundant information
in feature maps across various layers, led to the proposition of residual channel attention
networks (RCANs) [15]. The residual-in-residual (RIR) structure facilitates the bypassing
of copious low-frequency information through multiple skip connections, enabling the
primary network to concentrate on learning high-frequency information. Moreover, atten-
tion mechanisms [16,17] targeting spatial or channel dimensions have been incorporated to
enhance the model’s capacity for improved representation. Recently, the Transformer [18]
has shown remarkable performance in high-level vision tasks. It reveals that both spa-
tial and channel information are important for performance. Pre-trained Transformer
models [19,20] have also been proposed, and their effectiveness has been validated in the
context of SR tasks. ESSAformer [21] was proposed as a Transformer network embedded
with ESSA attention for single hyperspectral image super-resolution, featuring an iterative
refining structure. Remarkably, ESSA achieved significant improvements in both visual
quality and quantitative results in experiments, all without the necessity of pretraining on
large datasets.

2.2. Point Cloud Super-Resolution

Point cloud super-resolution is similar to image super-resolution, employing super-
resolution techniques to increase the density of points in a low-density point cloud.
T-UNet [22] was designed as a point cloud super-resolution network utilizing an encoder–
decoder framework that integrates temporal features. However, it simply incorporates
temporal information directly without fully exploiting its potential. Therefore, there is
room for improvement by introducing advanced feature processing methods [23,24] into
the encoder to enhance feature extraction capabilities. Consequently, there is still potential
for improvement in fully utilizing temporal and spatial features. Pu-net [25] explores multi-
level features for each point by implicitly expanding the point set through a multi-branch
convolution unit in feature space. The augmented feature is subsequently partitioned
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into numerous features, which are later reconstructed to form a super-resolution point
set. PUGeo-Net [26] is a deep learning method based on geometric transformations that
learns local parameters and normals for each point. Through sampling in the 2D param-
eter domain and utilizing the learned 3D transformations, the point cloud is upsampled,
achieving precise and efficient results at super-resolution rates ranging from 4 to 16 times.
Sspu-net [27] for self-supervised point cloud upsampling leverages the coherence between
the initial sparse point cloud and the resultant dense point cloud in terms of shapes and
rendered images. Meta-PU [28] is the first implementation supporting arbitrary-scale point
cloud upsampling using a single model. This model integrates residual graph convolution
blocks, a meta-subnetwork, and the farthest sampling block. Notably, Meta-PU surpasses
the performance of existing methods, which are typically trained for specific scale factors.
While these approaches do offer qualitative results for LiDAR point clouds, their emphasis
is on augmenting the overall 3D point density of point clouds pertaining to individual
objects rather than addressing larger scenes. LiDAR super-resolution aims to replicate a
realistic point cloud resembling that of a high-beams LiDAR, given the point cloud from a
low-beams LiDAR. As a result, its objective differs from the aforementioned approaches.

Given the challenges and substantial computational requirements associated with
upsampling LiDAR point clouds in 3D space, the majority of studies opt to represent
the point cloud as a range image. Consequently, the LiDAR super-resolutions task is
conducted within the confines of 2D image space. Ref. [29] employed a CNN with a U-Net
architecture. Furthermore, it incorporates a Monte-Carlo dropout post-processing step
to mitigate the presence of noisy points in the predictions. Local implicit image function
(LIIF) [30] treats an image as a continuous function, positing that the RGB values of discrete
pixel points are calculated by a function taking pixel position and depth as inputs. This
function is approximated using a multi-layer perceptron. The model proposed in ref. [31]
takes a range image from a point cloud as input and undergoes operations, including
encoding, to predict parameters. The model also incorporates a self-attention mechanism.
In comparison to directly using LIIF for image prediction, it exhibits fewer noise artifacts.
HALS [32] also takes a range image as input after several rounds of dilated residual blocks
(DRBs) for feature extraction and diverges into two paths. One path directly undergoes
upsampling to generate the final result, while the other path continues with DRBs to
generate deeper features before further upsampling. These two paths represent shadow
and deep information, and they are finally combined through point-wise addition.

3. Method

The cost of multi-beam LiDAR has always been a significant obstacle to the widespread
adoption of autonomous driving and mobile intelligent robots. The point clouds captured
by low-cost LiDAR are typically sparse and have low resolution, which limits the perfor-
mance of deep learning models and makes data annotation more challenging. Furthermore,
we consider that the collection of point clouds comes from moving autonomous vehicles or
mobile intelligent robots, which means that the point cloud data with spatial information
also possesses temporal information. Our objective is to generate stable and accurate dense
point clouds of road scenes from consecutive sparse point clouds with temporal features.
To achieve this, we propose a TSE-UNet model designed for upsampling the point cloud
from low-cost LiDAR, specifically for the task of point cloud super-resolution.

The entire pipeline of the proposed method is illustrated in Figure 1. Firstly, datasets
for training and evaluating the model performance are collected on both the CARLA
simulator and our real-world platform, including CARLA32-128 (with 128 laser beams,
RS-128) and Ruby32-128 (with 128 laser beams, RS-128). Subsequently, we transform the
point cloud super-resolution task from a 3D spatial interpolation problem to a 2D image
super-resolution problem, reducing the computational complexity of the deep learning
model and enabling real-time application. Specifically, based on coordinate mapping, we
project 3D sparse point clouds onto 2D projection sequential images and then encode
the 2D images into feature maps using transposed convolution layers. Following this,
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we process the feature maps using the proposed TSE-UNet model. This model, built
upon the encoder–decoder structure of UNet, takes multiple consecutive frames as input,
representing multiple consecutive feature maps. We combine feature maps from two
adjacent frames, enhance important features temporally using channel attention modules,
and reinforce spatial correlations between adjacent frames using spatial attention modules,
providing more accurate object localization and semantic information. The encoder further
increases spatial receptive fields and downsamples features through dilated convolution
layers, progressively extracting high-level semantic features. The decoder starts from the
highest-level semantic feature map of the encoder to restore low-level semantics, ultimately
outputting the super-resolution prediction for the current frame. Finally, the obtained
prediction results are mapped back to 3D space through reverse projection. Subsequent
sections provide detailed explanations of each part of the pipeline.

Simulator

Real world

RS-128

RS-32

Sparse 3D point 
cloud sequence

Dense 3D point 
cloud sequence

Sparse 2D projection sequence

Dense 2D projection sequence

Training

Last frame 
(ground truth)

Sequential 16 
frames (inputs)

Project

Project

TSE-UNet

Figure 1. The overall pipeline of our method. RS is the LiDAR brand (RoboSense) used in this study.

3.1. Data Collection

We introduce the two datasets we constructed for the point cloud super-resolution task.
One dataset was collected from the CARLA [33] driving simulator, named CARLA32-128,
and the other was collected from real scenes, called Ruby32-128. The detailed information
of the datasets is shown in Table 1.

Table 1. Detailed information for the CARLA32-128 and Ruby32-128 datasets. Note that
CARLA32-128 comprises CARLA32 and CARLA128; Ruby32-128 is composed of Ruby32 and
Ruby128.

Names Number of Frames Laser Beams FOV (Vertical)

CARLA32 7025 32 (−25◦, 15◦)
CARLA128 7025 128 (−25◦, 15◦)

Ruby-32 2402 32 (−25◦, 15◦)
Ruby-128 2402 128 (−25◦, 15◦)

3.1.1. Simulation Scenario

CARLA (Car Learning to Act) is an open-source simulator used for the development
and testing of autonomous driving systems. It provides a highly configurable virtual
urban environment with real road networks, diverse traffic participants, various weather
conditions, and rich urban scenes and is shown in Figure 2a. The CARLA simulator
simulates the working principle of LiDAR accurately, including the process of laser beam
emission and reception, as well as the vertically defined sensor field of view (FOV) and
360-degree horizontal FOV. We used the LiDAR in the simulator to collect 7025 frames of
128-line point cloud data. The bird’s eye view of the point cloud is shown in Figure 2b.
Then, we downsampled the 128-line point cloud data 4 times to obtain 32-line point cloud
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data, thus creating 32-line and 128-line point cloud data pairs. Each pair of data is a data
sample of the point cloud super-resolution task. The collected dataset is named CARLA32-
128. Detailed information about the number of frames, laser beams, and vertical perspective
is shown in Table 1.

(a) (b)

Figure 2. The images related to the CARLA32-128 dataset. (a) The scene of the CARLA simulator;
(b) a bird’s-eye view of the 128-line point cloud data in CARLA32-128.

3.1.2. Real Scenario

In addition to collecting data in simulation scenarios, we also built a LiDAR point
cloud acquisition platform based on real scenes with a RoboSense Ruby (with 128 laser
beams, RS-128). According to different azimuth and vertical angle settings, the non-uniform
laser beam LiDAR used in our platform makes the projection point cloud acquisition very
flexible. Figure 3a shows the experimental vehicle platform with RS-32/RS-128 and other
equipment. We used this platform to collect synchronized 128-line data and downsampled
the 128-line point cloud data 4 times to obtain 32-line point cloud data, constructing
a dataset called Ruby32-128 for the 2402 pairs of 32-line to 128-line point cloud super-
resolution task. Detailed information about the number of frames, laser beams, and vertical
perspective is shown in Table 1, and the bird-view images of the collected point cloud are
shown in Figure 3b.

(a) (b)

Figure 3. The images related to the Ruby32-128 dataset. (a) The equipment we built for data
acquisition; (b) a bird’s-eye view of the 128-line point cloud data in Ruby32-128.

3.2. Point Cloud Projection and Back-Projection

The density of point clouds varies with different laser beams and rotating speeds of
LiDAR, resulting in different vertical angular resolution and horizontal angular resolution.
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Based on the 3D coordinates (x, y, z) of point clouds and the vertical angle (ω), azimuth
angle (α), and offset (δ), we project the point clouds in 3D space onto a two-dimensional
plane according to Equation (1), making it easier to process these data using deep learning
methods based on two-dimensional images. Subsequently, we use Equation (2) to back-
project the processed prediction results from the model into 3D space.

r =
√

x2 + y2 + z2,

α + δ = arctan(y/x),

ω = arcsin(z/r).

(1)

x = rcos(ω)sin(α + δ),

y = rcos(ω)cos(α + δ),

z = rsin(ω).

(2)

Figure 4 illustrates the results of projecting 3D point cloud data from CARLA32-128
and Ruby32-128 onto 2D images. It can be observed that the widths of the corresponding
2D images are the same for CARLA-32 and CARLA-128 because of their identical horizontal
FOV and angular resolution during data acquisition. However, the difference lies in the
heights of the 2D images, with the image for CARLA-128 being four times taller than that
for CARLA-32, as shown in the first and second rows of Figure 4. Similarly, Ruby-32 and
Ruby-128, shown in the third and fourth rows of Figure 4, share the same characteristics.
Therefore, our TSE-UNet model aims to recover dense point clouds from sparse ones.

C
A
R
L
A
32

C
A
R
L
A
12
8

R
ub
y3
2

R
ub
y1
28

Figure 4. The 2D projections of 3D point clouds. From top to bottom: CARLA32, CARLA128,
Ruby32, Ruby128.

3.3. TSE-UNet Model

To reconstruct a dense point cloud from a sparse point cloud, the model needs to
have the ability to extract features and high-level semantic understanding from the sparse
point cloud, as well as the ability to reconstruct high-level semantics into fine-grained
low-level information, to achieve point cloud super-resolution. This process coincides with
the design idea of the semantic segmentation model UNet. In addition, because the point
cloud is dynamically collected by an autonomous vehicle, the semantic information of a
certain frame of point cloud has a strong correlation with the semantic information of the
previous frames of point cloud; at the same time, a certain point on the current frame of
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point cloud has a strong spatial correlation with the surrounding point cloud. Therefore,
we propose a method combining the TSE module with UNet, namely TSE-UNet, to achieve
the task of point cloud super-resolution. Figure 5 shows the architecture of the TSE-UNet.

T-15 T-14 T-13 T-12 T-11 T-10 T-9 T-8 T-7 T-6 T-5 T-4 T-3 T-2 T-1 T-0 Output

En
co
de
r D

ecoder

Basic 
Conv2D Concat TSE

Module
Transposed

Conv
1×1
Conv Input/Output Conv/Trans

Conv Layer TSE Layer Concat 
Layer

st
ag
e1

st
ag
e2

st
ag
e3

st
ag
e4

pr
e-
pr
oc
es
si
ng

stage1
stage2

stage3
stage4

prediction

Figure 5. The architecture of TSE-UNet.

TSE-UNet incorporates the encoder–decoder structure and skip connections of UNet
while introducing temporal feature attention aggregation modules and spatial feature
enhancement modules.

The encoder is responsible for extracting high-level semantic features from point cloud
data. The encoder consists of a pre-processing layer and four stages.

The input to the pre-processing layer includes the current frame and the projected
images of the previous 15 frames, denoted as T = {Ti | i ∈ {0, 1, . . . , 15}}, where the
dimension of Ti is H × W × C. The pre-processing layer applies the following formula to
each input image:

T′
i = TConv(TConv(Ti)), (3)

where TConv represents the transposed convolution operation with a stride of 2 in the
height dimension. The dimension of T′

i is D × W × C, where D = 4 × H. The purpose of
the pre-processing is to increase the height of the sparse point cloud image to four times its
original size, aligning it with the height of the dense point cloud for pixel-level predictions.

The structure is consistent across the four stages, comprising adjacent temporal feature
aggregation, temporal and spatial feature-enhanced modules, and a down-sampling large-
scale dilated convolution. Taking the operations on T0 and T1 in stage 1 as an example,
the computation for the adjacent temporal feature aggregation operation is given by the
following formula:

F01 = Concat(T′
0, T′

1), (4)
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where Concat denotes the concatenation operation along the depth dimension, resulting in
F01 with dimensions D × W × 2C.

Subsequently, through the temporal and spatial feature-enhanced (TSE) module,

X01 = Conv(F01),

X̄01 = σ(favg(X01))⊙ X01,

X̂01 = σ(PConv(X01))⊙ X̄01,

(5)

where Conv represents a 2D convolution with a kernel size of 3 and a stride of 1, utilized to
further integrate features between adjacent frames. σ denotes the sigmoid function. favg
represents channel-wise average pooling, which calculates the importance of temporal
features in the channel dimension and injects it into the original features through element-
wise multiplication (⊙), thereby achieving temporal feature enhancement. Pconv is a
point-wise convolution with a kernel size of 1, a stride of 1, and an output dimension of 1,
used to assess the importance of spatial dimensions and inject it into the original features
through element-wise multiplication, completing spatial feature enhancement. The TSE
module maintains the feature dimensions at D ×W × 2C. Then, the computation continues
with the following formula:

O01 = DConv(X̂01), (6)

where DConv denotes a dilated convolution with a kernel size of 3, a stride of 2, and a
dilation rate of 2, employed to enlarge the receptive field while accomplishing feature down-
sampling. The resulting feature O01 has dimensions D/2 × W/2 × 2C. At this point, the
calculation of adjacent frame features in a single stage is complete. The computation in other
stages within the encoder and between other adjacent frames follows a similar procedure.

The decoder also consists of four stages, each including a feature upsampling layer,
producing features with the same dimensions as the corresponding encoder level. This
allows the features to be concatenated and continue participating in the computation. The
encoder ultimately outputs a prediction output (denoted as P) with dimensions D ×W × C.
This output, along with the dense point cloud projection image corresponding to the input
T0 (current frame) through the SSIM (structural similarity index measure) calculation, is
denoted as G. The calculation formula for the value of SSIM is as follows:

SSIM(G, P) =
(2µGµP + C1)(2σGP + C2)

(µ2
G + µ2

P + C1)(σ
2
G + σ2

P + C2)
, (7)

where GµG and µP represent the mean values of the images G and P, respectively; σ2
G and

σ2
P are their variances; and σGP is the covariance. C1 and C2 are constants used to prevent

division by zero in the denominator. In practical applications, the loss value is computed as
1 − SSIM, where a smaller value indicates greater similarity between images. Subsequently,
all model parameters are optimized through backpropagation.

4. Experiments
4.1. Datasets and Evaluation Metrics

We used CARLA32-128 and Ruby32-128, which are described in Section 3.1, to verify
the effectiveness of our methods. We randomly split both datasets into training sets and
testing sets, with the specific sample numbers shown in Table 2.

Table 2. The number of frames in the training and testing sets for CARLA32-128 and Ruby32-128.

Names Number of Training Frames Number of Testing Frames

CARLA32-128 5162 1863
Ruby32-128 1456 946
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We chose the PSNR (peak signal-to-noise ratio) and SSIM (structural similarity index
measure) loss as the evaluation metrics. The PSNR is extended from MSE (mean square
error) and describes the ratio between the maximum possible power of a signal and the
power of corrupting noise, which affects the fidelity of its representation. The higher the
PSNR, the better the consistency between the generated data and ground truth. It is defined
as follows:

PSNR = 10 · log10(
MAX2

I
MSE

),

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I1(i, j)− I2(i, j)]2,
(8)

where MAXI represents the maximum pixel value of the whole image and I1(i, j) and
I2(i, j) are two images of the same shape. m and n are the width and height of the projected
image. The SSIM loss is the value of the average loss for the testing images. A lower SSIM
loss implies a closer resemblance between the model’s predictions and the ground truth.

4.2. Implementation Details

In all experiments, we upsampled the projected point cloud image four times (32 to
128) as the input of the TSE-UNet model. Because of memory constraints, we set the batch
size to one during the training phase. To regularize the model and prevent overfitting, we
used L2 as the regularization term. We used the Adam optimizer with a learning rate of
0.0001 to train the model for 60 epochs and selected the model with the best performance
on the test set.

4.3. Comparison Experiments

We chose four methods for comparison. The first one was the classic semantic seg-
mentation method UNet [34]; the second one was the point cloud super-resolution model
T-UNet [22] with the ability to process point cloud temporal features; the third one was the
LKA-T-UNet [23], which introduces the capability of long-distance spatial feature modeling
based on T-UNet; the fourth one was the SMT-T-UNet [24], which introduces multi-scale
spatial attention based on T-UNet. The experimental results on the two datasets we pro-
posed are shown in Table 3. As can be seen, the method we proposed achieved the best
PSNR and the lowest SSIM loss value on both simulated scene and real scene datasets. The
results indicate the proposed temporal feature attention aggregation module and spatial
feature enhancement module in this paper are designed to fully exploit the temporal and
spatial information between consecutive point clouds, leading to improved point cloud
super-resolution performance.

Table 3. The PSNR and SSIM loss of different models on the CARLA32-128 and Ruby32-128 datasets.
Bold indicates the best result.

Datasets Methods PSNR SSIM Loss

CARLA32-128

UNet 25.11 30.99 ×10−5

T-UNet 26.97 11.89 ×10−5

LKA-T-UNet 27.01 9.61 ×10−5

SMT-T-UNet 27.24 12.40 ×10−5

TSE-UNet (ours) 27.52 8.38 × 10−5

Ruby32-128

UNet 23.96 24.26 ×10−5

T-UNet 24.78 14.68 ×10−5

LKA-T-UNet 24.75 14.49 ×10−5

SMT-T-UNet 24.80 14.45 ×10−5

TSE-UNet (ours) 24.82 14.32 × 10−5
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4.4. Ablation Study

We conducted ablation experiments on various components of the CARLA32-128
dataset. Since TSE-UNet is based on UNet, we gradually added the key components used
in this method to the original UNet network, ultimately forming the TSE-UNet model. The
experimental results are shown in Table 4. The original UNet achieved a PSNR of 25.11 and
an SSIM of 30.99 × 10−5; when combined with temporal information (Variant 1 model in
the table), PSNR improved to 26.97, while SSIM decreased to 11.89 × 10−5. Furthermore,
after applying the temporal feature attention module (Variant 2 model in the table), PSNR
improved to 27.38, while SSIM decreased to 9.16 × 10−5; when applying the spatial feature
attention module, the model expanded to TSE-UNet, with a PSNR of 27.52 and an SSIM
of 8.38 × 10−5, which are improved by 2.41 and reduced by 22.61 × 10−5, respectively,
compared to the original UNet.

Table 4. Ablation experiments on key components of TSE-UNet using the CARLA32-12 dataset.
“T” represents the utilization of temporal information, specifically, the 16 sequential frames used
in TSE-UNet; “TE” represents the temporal information enhancement module, and “SE” signifies
the spatial information enhancement module. “×” and “✓” indicate non-usage and usage of the
respective modules. Higher PSNR values are preferable, while lower SSIM losses indicate improved
performance. Optimal values are in bold.

Methods Components PSNR SSIM LossT TE SE

UNet × × × 25.11 30.99 ×10−5

Variant 1 ✓ × × 26.97 11.89 ×10−5

Variant 2 ✓ ✓ × 27.38 9.16 ×10−5

TSE-UNet ✓ ✓ ✓ 27.52 8.38 × 10−5

4.5. Visualization

We present the point cloud super-resolution visualization results of TSE-UNet. As
shown in Figure 6, the first column is the visualization of sparse point clouds as input,
the second column is the corresponding dense point clouds ground truth, and the third
column is the point cloud super-resolution prediction result of TSE-UNet. As can be seen
from the figure, compared with the ground truth of dense point clouds, the upsampled
point cloud had some noise points, but it still generated more effective points than the
original sparse point cloud. This could provide more abundant environmental information
for autonomous vehicles or intelligent robots.

CARLA32-128: Input (left), Ground Truth (middle) and Model Prediction (right)

Ruby32-128: Input (left), Ground Truth (middle) and Model Prediction (right)

Figure 6. The visualizations of super-resolution. The top pictures are from the CARLA32-128 dataset.
The bottom pictures are from the Ruby32-128 dataset. From left to right, they are the input 32-line
sparse point cloud, the ground truth of the 128-line dense point cloud, and the model’s predicted
super-resolution result.
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4.6. Speed Performance

Computational latency and real-time performance are among the key factors to con-
sider when deploying point cloud processing algorithms on the computing platform of
autonomous vehicles. This subsection tests the processing efficiency of the TSE-UNet
model, including latency and frequency. We used a single NVIDIA RTX A5000 (Nvidia
Corporation, Santa Clara, CA, USA) as the running platform, performing this experiment
on 1000 images on the two datasets proposed in this paper, and the results were averaged.
The results are summarized in Table 5. It can be seen from the table that the proposed
TSE-UNet achieved real-time performance on different datasets with different laser beams
and scales. In particular, on the real-scene Ruby32-128 dataset, the average computational
experiment of TSE-UNet was 23.85 ms, and the average frequency was 41.92 Hz. This
indicates that the proposed method has practical application potential.

Table 5. Average computational latency and frequency of TSE-UNet model on point cloud super-
resolution for different datasets.

Datasets CARLA32-128 Ruby32-128

Latency 21.22 ms 23.85 ms

Frequency 47.12 Hz 41.92 Hz

4.7. The Number of Frames

We continue to explore the impact of the number of consecutive frames in the input
on the results, including the 16 frames adopted in this paper, fewer frames of 8, and more
frames of 32. Note that when using 8 and 32 frames as input, the adaptation of the feature
dimension in the last stage of the model’s encoder was required.

The results are shown in Table 6, where we compare the model’s performance (PSNR
and SSIM loss) and efficiency (latency and frequency). When the input was eight frames,
optimal computational efficiency could be achieved, but the model’s performance was
not optimal. With 32 frames as input, computational efficiency was the poorest, and the
model’s performance was slightly lower than that with 16 frames as input. One possible
reason is that the preceding 15 frames already provided sufficient temporal and spatial
information to assist the current frame in completing the point cloud super-resolution task.
Further input did not contribute effectively to predicting the current frame and might even
introduce certain conflicts. Therefore, considering both model performance and efficiency,
16 frames as input are optimal.

Table 6. Experimental results on the number of frames. The used dataset is CARLA32-128.

Number of
Frames PSNR SSIM Loss Latency Frequency

8 27.19 9.49 × 10−5 14.44 ms 69.26 Hz
16 27.52 8.38 × 10−5 21.22 ms 47.12 Hz
32 27.31 9.52 × 10−5 33.64 ms 29.72 Hz

4.8. The Training Process

We trained the TSE-UNet model for a total of 60 epochs, and the curves illustrating
the variations in loss and PSNR throughout the entire training procedure are shown in
Figure 7. From the figure, it is evident that the convergence process of our method was
stable, reaching convergence around approximately 45 epochs.
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(a) (b)
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Figure 7. (a) The depicted curve illustrates the variation in loss during the training of TSE-UNet,
with the horizontal axis representing iterations and the vertical axis denoting loss values. (b) The
presented curve showcases the changes in the PSNR metric during the training of TSE-UNet, with the
horizontal axis indicating iterations and the vertical axis indicating PSNR values. The used dataset
is Ruby32-128.

5. Conclusions

Low-cost LiDARs have lower point cloud density compared to high-cost LiDARs,
which limits their perception effectiveness. To achieve better environmental perception
results on low-cost LiDARs, we propose the use of TSE-UNet for sparse point cloud
super-resolution. First, we project the 3D point cloud onto a 2D plane. Then, we process
consecutive frames using dilated convolutional layers. We use a temporal feature aggre-
gation convolution and a spatial attention module to extract point cloud features from
consecutive frames. Using the proposed TSE-UNet model, we generate super-resolution
point feature maps. Finally, by reprojecting the feature maps back into 3D space, we achieve
point cloud super-resolution. Through comparative experiments, ablation experiments,
visualizations, and performance testing, we demonstrate that the proposed method ef-
fectively completes the task of point cloud super-resolution. Remarkably, our approach
not only achieves a PSNR of 27.52 on CARLA32-128 and 24.82 on Ruby32-128, surpass-
ing the performance of prior methods, but also is capable of real-time operation. In the
future, we plan to combine TSE-UNet with point cloud segmentation and point cloud
detection tasks to promote lower-cost environmental perception for autonomous vehicles
and intelligent robots.
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