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Abstract: Water distribution networks are complex systems that aid in the delivery of water to
residential and non-residential areas. However, the networks can be affected by different types of
faults, which could lead to the wastage of treated water. As such, there is a need to develop a reliable
leakage detection and localization system that can detect leak occurrences in the network. This study,
using a simulated dataset from EPANET, presents the application of supervised machine learning
classifiers for leak detection and localization in the water distribution network of the University
of Port Harcourt Choba campus. The study compared three machine learning classification tools
that are used in pattern recognition analysis: the support vector machine, k-nearest neighbor, and
artificial neural network. The robustness and effectiveness of the proposed approach are compared
with those of the performance of the classifiers for leakage detection in the network of the case study.
The results show that the support vector machine performs the best, with 79% accuracy, while the
respective accuracies for the remaining classifiers are 70% for the k-nearest neighbor and 61% for the
artificial neural networks. The high accuracy demonstrated by the models shows that they are able
to detect and address issues relating to fault detection in a water distribution network. This model
could provide a leakage detection system to be applied to buildings for the efficient management of
water in their networks.

Keywords: leak detection; machine learning; water distribution network; localization; EPANET

1. Introduction

One of the problems facing humanity in the twenty-first century is that of the scarcity
of water. This problem can be linked to the increased pressure from demographic, so-
cioeconomic, and environmental causes, such as accelerated population growth, rapid
urbanization, unsustainable consumption patterns, and the depletion and contamination
of aquifers as well as the increasingly dramatic environmental variations due to the cli-
matic effects of global warming that are a result of demand for freshwater supplies [1].
Construction activities have also led to the gradual depletion of water resources in certain
countries, whereas certain areas are facing issues of quantity and quality in relation to the
accessibility of underground water, which is also affected by the extent of underground
water extraction [2].

The literature shows that water utility companies lose an estimated amount of USD
9.6 billion annually as a result of excessive leakage in water distribution networks despite
the fact that over USD 184 billion is spent on the provision of clean water worldwide [3].
The literature demonstrates that many fault detection techniques have been explored
and developed in the literature, especially in the area of leakage detection. A variety of
fault-finding techniques, such as leak noise correlators, the acoustic detection of the water
balance, and pressure controls have been presented in [4–7]. The use of sonic detection
techniques has been explored in the literature; the techniques make use of geophones,
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valves, and hydrants that allow for direct ground-level listening and also make use of a
listening device that makes contact with the structure [8]. Yang et al. [9] explored the use of
acoustic signals for buried water distribution pipelines based on the correlation technique.
Abdulshaheed et al. [10] studied the use of the hydraulic technique for leak detection and
localization in a water distribution network. Studies of the techniques have mainly focused
on the comparison of data with predictions produced through hydraulic models [3,11–14].

The use of time series and pattern recognition algorithms to predict leaks and for the
localization of zones where leaks are detected has been explored in the literature [15]. Lee
and Yoo [16] created a data-driven leak detection model using the deep learning technique;
the model was used to simulate a real leaking accident, and its performance was assessed.
Guo et al. [17] proposed the use of deep learning for predicting water demand, and the
results showed that the method improves the performance of water demand predictions.
The application of the support vector machine has increased in comparison with other
modeling methods, and this can be attributed to the high efficiency of the method and the
effectiveness of the method when working with a low dataset, as reported in [18].

There are examples in the literature that support the use of support vector machine
learning in modeling the relationships between the inputs and outputs in classification and
regression problems that are encountered across many engineering processing fields [19–24].
Kang et al. [25] explored the use of convolution neural networks, the support vector ma-
chine, and graph-based models for leakage localization and detection in a water distribution
network. The method involved taking features from convocation neural networks (CNNs)
and feeding them into multi-layer perceptrons and supporting the vector machines as
inputs. The use of multi-level artificial neural networks (ANNs) to detect burst events in
a water distribution network was explored in [26]. The technique consist of two levels,
where the first level is used for the identification of leak occurrences in the network and the
second level is used for the location and magnitude of leaks in the network.

Aksela et al. [27] explored the use of clustering models for leak detection in a water
distribution network. The method involved the segmentation of the network into various
clusters as this process can be used to locate any potential leak points in the water distri-
bution network. Wu et al. [28] investigated the application of the unsupervised clustering
burst detection approach to a district metered area with numerous inlets and outputs. The
use of the multiclass support vector machine model for the leakage detection in a large
scale network has been explored in [24]. This method involves the subdivision of the water
networks into leakage zones, and data were generated using the Monte Carlo method
together with the hydraulic model. The result shows that the model could identify the
leakage zones using the flow and pressure data. The drawback of this method is that of
determining the number of clusters and the impact of the randomization of the first cluster
on the clustering process. The use of the Bayesian system identification method for leakage
detection in a water distribution network was proposed in [12,29].

Soldevila et al. [30] proposed a mixed model based on a data-driven approach to leak
localization in a water distribution network; EPANET software 2.21 version was adopted
to model the water networks after the calibration. The data used in training the models
were obtained from the EPANET software for each possible fault, as well as different
operating and uncertain conditions. The literature shows that much research has been
conducted on the deployment of machine learning models for the detection and localization
of leak events in a water distribution network. However, much of the literature is still
lacking in comparisons between different machine learning classifiers for leak detection and
localization in a water distribution network. The present study, however, proposes to fill
this gap in the knowledge by comparing the ability and robustness of various supervised
machine learning models to detect and localize leak events in a water distribution system
that is based on the water network of the University of Port Harcourt, Nigeria.
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2. Materials and Methods
2.1. Research Methodology

The study aimed to develop a leak detection and localization machine learning model
for a water distribution networks using pressure residuals [31]. EPANET software simu-
lated different leakage scenarios in the water distribution system. The software emitter
coefficient was created to simulate fire hydrants and sprinklers but may also be modified to
simulate leak occurrence in a water distribution network. The nodal pressures from the two
hydraulic areas were used as training and testing datasets. The data generated from the
leakage scenarios with various emitter coefficients were then used to train and test the three
classifiers. The models’ comparative performance was exhaustively evaluated using the pa-
rameter accuracy, receiver operating curve (ROC), confusion matrix table, precision, recall,
and F1-score. These machine learning performance evaluation metrics were deployed in
assessing the overall performance of each model in leak detection and localization.

2.2. Data Generation

Choba Park at the University of Port Harcourt serves as the study location. The
university comprises of three campuses, Choba Park, Abuja Park, and Delta Park, all
within 1.2 km of one another, and each has its separate water supply system. Choba Park,
on the other hand, has a 2500 m perimeter, 121 acres of land, four huge hostel blocks,
engineering, educational, and agricultural scientific institutions, and business centers with
banks, canteens, and photocopying facilities. Choba Park is a five-sided polygon because of
the five coordinates that define its perimeter. It suffices to enter any one of the five locations,
such as 40◦53′44′′ N, 60◦54′24.65′′ E, to access the study area’s map on Google. The existing
water distribution network of Choba Park can be found in [32]. In contrast, the EPANET
hydraulic model of the University of Port Harcourt Choba campus is shown in Figure 1.
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The water distribution network was split into two zones: Zone 1 (LZ1), which contains
eight candidate nodes, and Zone 2 (LZ2), which contains seven candidate nodes [15]. The
emitter coefficient used in the simulation of leak occurrence in the nodes is based on the
classical Torricelli equation for flow through an orifice.

q = C ∗ A ∗ ppexp
(1)

where C represents a coefficient, A represents the orifice aperture area, p is the fluid pressure,
and pexp is the pressure exponent. In the Epanet software, the pressure exponent, by default,
is set to 0.5. The Epanet software applies a simple definition for the emitter function:

eC = q/ppexp
(2)

Data were generated by modeling the leak occurrence in the water network according
to the number of candidate leak nodes, and 15 leaks are summarized in Table 1. Zone 1
contains 8 candidate leak nodes, while Zone 2 has 7 candidate leak nodes. The dataset
generated comprised 8 features of the network, such as pipe roughness, estimated demand,
cinematic viscosity, fluid density, piezometric head, gravity acceleration, and valve coeffi-
cient and pipe length. The dataset sample used in the training and testing of the model were
480 samples on hourly average. The uncertainty conditions in the dataset used in training
and testing the model were affected by a noise level of an amplitude within the range of
[−4, 5%]. The WDN simulation results are directly impacted by the model’s pipe roughness
parameter uncertainty. Since pipe deterioration causes the roughness to diminish with
time, it is difficult to accurately identify in WDNs, since it cannot be measured directly. It is
unnecessary and can be removed. Therefore, the coefficient of Hazen–Williams (CHW) is
simulated, such that CHW ∈ [125, 130]. Water demand uncertainty is considered for each
node in the water distribution network ˜d ∈ [−10%, 10%].

Table 1. Candidate leak zones used for the generation of the dataset for model training.

Zone Candidate Leak Nodes in the Network for Each Zone

Zone 1
(8 candidate leak nodes) Nd4, Nd5, Nd3, Nd7, Nd9, Nd8, Nd11, Nd13

Zone 2
(7 candidate leak nodes) Nd14, Nd17, Nd12, Nd15, Nd16, Nd10, Nd6

2.3. Methods

Three supervised machine learning classifiers (support vector machine, artificial neural
network, and K-nearest neighbor) were evaluated for the research analysis. Artificial neural
networks are used as machine learning classifiers modeled after how the nervous system
and brain work. This classifier was chosen because it offers a method of simulating non-
linear connections between systems. According to [33], the multi-layered feed-forward
neural network is commonly adopted to analyze pattern recognition tasks. The layers are
three stages that receive information; the output is where the processing results are given
and hidden, and the layers are between input and output. Each layer comprises a central
unit called the perceptron unit, modeled by the McCulloch–Pitts [33] equation, given below.

φk(r) = ∅k
(
∑p

i=1 ωik ri + bk

)
(3)

where r corresponds to the input vector, bk is a bias, ωik is a weight coefficient, and ∅k is a
non-linear activation function.

The hyperparameter settings for this classifier comprise four hidden layers with a
corresponding number of 192, 32, 24, and 1 neurons per layer, chosen to increase the
model’s performance. The batch size of the neural network, in addition to the layers of the
neurons, is 512, with an optimal learning rate of 0.01 and an epoch of 20.
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The support vector machine is a supervised learning technique widely used for clas-
sification and regression based on structural risk minimization. This technique creates a
decision boundary between classes by mapping the training data onto a higher-dimensional
space and then obtaining the maximum margin hyperplane within that space [34]. The
objective of the techniques is achieved by locating the optimal separating hyper plane that
maximizes the margin between the closest sample points in the training dataset, which are
called support vectors [33].

X ∈ [ki, yi]
n represents a dataset with two classes, and k ∈ Rp denotes the measured

variables. In order to determine the hyper plane g(r), n is the number of the training samples,
while the label vector is Y ∈ [1,−1] where the classes are separated by g(r) = Wtr + b. The
position of a separating hyperplane is determined by W and b (bias). The geometric
separation of the mapped data in the high-dimensional space is defined by the term γ in
this context.

Discriminant techniques are used to extend two-class classification problems to multi-
class classification problems. In the present study, the hyperparameter for the support
vector machine model is given Equation (4), which represents the radial basis function
kernel that was selected because of its generality and successful results in fault diagnosis
applications.

K
(
ri, rj

)
= exp

(
−γ

∣∣∣∣ri − rj
∣∣∣∣2) (4)

The k-NN algorithm is based on the principle that the most similar samples belonging
to the same class have a high probability [35]. Using the the K-NN algorithm, the Euclidean
distance function is applied to calculate the similarity or difference between classes. The
features of the system consist of measurement, which represents the class. Furthermore, if
the classification algorithm is trained with a set of points such as,

ζ = ζ1, ζ2, ζ3, . . . . . . ζn (5)

and ψ = ψ1,ψ2,ψ3 . . . . . .ψn, then this values represents the new system values and the
algorithm defines the class using the distance equation for a two-dimensional space.

D(ζ,ψ) =
√

∑n
i=1(ζi,ψi)

2 (6)

The algorithm’s output is usually the class with the highest frequency among the
k-nearest neighbors. In the analysis of the work described in this paper, the K-neighbors
classifier hyperparameter was used to obtain the best performance of the model, and the
Euclidean distance with 5 neighbors was sufficient to obtain the required separability, as
this corresponds with the University of Port Harcourt Network.

3. Results and Discussion

The training phase of the machine learning classifiers was conducted with 80% of the
data, while 20% were used to test model testing. Different machine learning classifiers’
performance metrics were used to assess the performance of each model in detecting and
localizing leakage in the water distribution of the campus, and they are discussed and
compared in the following subsections.

3.1. K-Nearest Neighbor

Table 2 summarizes the results obtained with the pressure residuals of the water
distribution network. The model’s performance was assessed by the model’s confusion
matrix, accuracy report, receiver operating curve, precision, recall, and F1-score. The table
shows that the K-NN classifier performed well with leakage localization and detection
accuracy of 0.70%, recall = 0.70, F1-score = 0.70, and precision = 0.70%.
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Table 2. Classification report for the K-nearest neighbor model.

Method Accuracy Precision Recall F1-Score

K-nearest neighbor 0.70 0.70 0.70 0.70

Additionally, Figure 2 shows the model’s performance in leak detection and localiza-
tion across each zone. The figure indicates the model’s performance in zone 1 and zone 2.
The zone, recall, precision, and F1-score results were 0.74, 0.71, and 0.73, respectively.
At the same time, zone 2 recall, precision, and F1-score results were 0.66, 0.69, and 0.68.
Furthermore, the receiver operating curve ROC (Figure 3) indicates that the model has an
area under the curve AUC of 0.775, which indicates the model’s good performance in leak
detection and localization using the simulated dataset.
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The use of the K-NN classifier in leak localization across the two zones in order to
provide the possible locations of leak events within the water distribution network can
be identified in several possible locations, and the magnitudes of such leaks are 30, 35, 40,
and 45 L/s for each node. Uncertainty conditions, such as noise and demand uncertainty,
influenced the overall performance of the model; the uncertainty metrics were factored into
the quality of data used in the training and testing of the model.

3.2. Artificial Neural Network

Table 3 summarizes the results obtained with the pressure residuals of the water
distribution network. The model’s performance was awarded by the model’s confusion
matrix, accuracy report, receiver operating curve, precision, recall, and F1-score. The table
shows that the ANN classifier performed well, with a leakage localization and detection
accuracy of 0.61, recall = 0.61, F1-score = 0.61, and precision = 0.61%.

Table 3. Classification report for the artificial neural network model.

Method Accuracy Precision Recall F1-Score

Artificial neural network 0.61 0.61 0.61 0.61

Additionally, Figure 4 shows the model’s performance in leak detection and localiza-
tion across each zone. The figure indicates the model’s performance in zone 1 and zone 2.
For zone 1, the recall, precision, and F1-score results were 1.0, 0.61, and 0.76, respectively,
while the zone 2 recall, precision, and F1-score results were 0.0, 0.0, and 0.0. When the
artificial neural model is applied in the analysis of the data simulated from EPANET, the
effect of uncertainty conditions corresponds to [−4,5] of the network, meaning that the
demand uncertainty and noise level uncertainty also contributed in the overall perfor-
mance of the classifier. The use of this classifier in leak localization across the zones is to
provide possible leak locations within the water distribution network, which can be in
several possible locations, and the magnitudes of such leaks are 30, 35, 40, 45 L/s for each
node. Furthermore, the receiver operating curve (ROC) indicates the model’s performance
regarding leak detection and localization. Figure 5 shows the model’s training history for
accuracy, validation loss, model loss, validation accuracy, and training loss.
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3.3. Support Vector Machine

In Table 4, the results of the validation of the model with the pressure residuals of
the water distribution network for 20 epochs have been presented. Furthermore, the
model performance was assessed and evaluated using its confusion matrix, accuracy report,
receiver operating curve, precision, recall, and F1-score. This result is shown in Table 5,
which reports the results of the SVM classifier, which gave an excellent performance, with
a leakage localization and detection accuracy of 0.79, recall = 0.79, F1-score = 0.79, and
precision = 0.79%.

Table 4. Shows the validation loss and accuracy history of the data being analyzed by the neural network.

Epoch Number Step Loss Accuracy Validation
Loss

Validation
Accuracy

1 2 s 2 s/step 5.1078 0.6389 1.4409 0.6173

2 0 s 48 ms/step 3.7668 0.5741 3.3202 0.6173

3 0 s 53 ms/step 4.8101 0.5988 5.2638 0.6173

4 0 s 52 ms/step 3.1866 0.5926 5.1319 0.6173

5 0 s 52 ms/step 3.1895 0.5093 5.1157 0.6173

6 0 s 48 ms/step 2.4911 05617 5.1088 0.6173

7 0 s 49 ms/step 2.0902 0.6204 5.1010 0.6173

8 0 s 49 ms/step 2.0902 0.6574 4.8567 0.6173

9 0 s 49 ms/step 2.1385 0.6605 4.8571 0.6173

10 0 s 51 ms/step 1.8521 0.6451 4.8761 0.6173

11 0 s 59 ms/step 1.6877 0.6481 4.8481 0.6173

12 0 s 51 ms/step 1.7486 0.6049 4.8359 0.6173

13 0 s 52 ms/step 1.6839 0.6080 4.3522 0.6173

14 0 s 60 ms/step 1.6497 0.6173 3.3823 0.6173

15 0 s 51 ms/step 1.5407 0.6235 2.7901 0.6173

16 0 s 48 ms/step 1.4871 0.6636 2.3502 0.6i73

17 0 s 43 ms/step 1.4336 0.6698 2.0801 0.6173

18 0 s 47 ms/step 1.3182 0.7006 1.8280 0.6173

19 0 s 45 ms/step 1.2544 0.6914 1.6076 0.6173

20 0 s 49 ms/step 1.1836 0.6728 1.4999 0.6173
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Table 5. Classification report of the support vector machine.

Method Accuracy Precision Recall F1-Score

Support vector machine 0.79 0.79 0.79 0.79

Additionally, Figure 6 shows the model’s performance in leak detection and localiza-
tion across each zone. The figure indicates the model’s performance in zone 1 and zone 2.
For zone 1, the recall, precision, and F1-score results were 1.0, 0.70, and 0.82, respectively.
In zone 2, the recall, precision, and F1-score results were 1.0, 0.61, and 0.76.
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The application of the SVM classifier in the leak location process for the zones was
adapted to provide possible leak locations within the water distribution pipeline. This can
occur in several locations, and the magnitudes of such leaks are 30, 35, 40, and 45 L/s for
each node. The effect of uncertainty conditions when modeling the network on EPANET
was also considered; these uncertainty conditions, which correspond to [−4, 5] of the net-
work, such as the demand and noise level uncertainty, also contributed to the overall perfor-
mance of the classifier. Furthermore, the receiver operating curve (ROC) (Figure 7) indicates
that the model has an area under the curve (AUC) of 0.821, which indicates the model’s
excellent performance in leak detection and localization using the simulated dataset.
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4. Conclusions

This paper presents a comparative study on using supervised machine learning classi-
fiers to detect and localize leaks in a water distribution network; the network was divided
into two hydraulic zones with leak scenarios in each zone. The capacity of three supervised
machine learning classifier tools has been studied for leak detection and localization in
the water distribution network of the University of Port Harcourt Choba campus. For the
development of the three machine learning models, as well as for the training and testing
of the model, the study employed the sklearn library, which is a machine learning analysis
tool written in the Python programming language.

The literature shows that the studies applying machine learning models to water
distribution network problems are still in the research stage. The research indicates that the
combination of support vector machine, K-nearest neighbor, and artificial neural network
machine learning techniques for leak detection have yet to be explored. This study con-
tributed to closing this knowledge gap by advancing the deployment of a machine-learning
model for detecting and localizing leaks in the water distribution system.

The data used in the training and testing of the models were generated using EPANET
software, where uncertainty conditions for the water distribution network were also fac-
tored into simulating the network model on EPANET. The uncertainty conditions in the
model development correspond to uncertainty of demand and leak noise [−4, 5]. The study
showed the excellent performance of the support vector machine over K-nearest neigh-
bor and the artificial neural network in leakage detection and localization when pressure
residuals data were used. The results obtained from each model are based on a dataset
generated from the EPANET software across the network nodes. The study did not cover
the use of the selected machine learning models to determine the magnitude of the detected
and localized leaks in the water distribution network. Future research should focus on
adding fault warnings when a leak is discovered in the network, enhancing the study’s
applicability. Also, in the future, researchers should consider evaluating the influence of
sensor placement in a network, because the topology of the water distribution network
was not considered in this analysis.
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