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Abstract: As additive manufacturing (AM) processes become integrated with artificial intelligence
systems, the time and cost of the fabrication process decrease. In this study, the raster angle, an
important parameter in the manufacturing process, was examined using fused deposition modeling
(FDM), an AM method. The optimal value of this parameter varies depending on the designed
product geometry. By changing the raster angle, the distribution of stresses and strains within the
printed object can be modified, potentially influencing the mechanical behavior of the object. Thus,
the correct estimation of the raster angle is essential for obtaining parts with high mechanical proper-
ties. The focus of this study is to reduce the fabrication time and cost of products by intertwining
machine learning (ML) systems with mechanical systems. Its novelty is that ML has never been
applied for FDM raster angle estimation. The estimation and modeling of the raster angle were
performed using five different ML algorithms. These algorithms include a support vector machine
(SVM), Gaussian process regression (GPR), an artificial neural network (ANN), decision tree regres-
sion (DTR), and random forest regression (RFR). Data for training were generated using various
shapes and geometries, then trained in the MATLAB software, and a prediction model between the
input parameters and the raster angle was created. The predicted model was evaluated using five
performance criteria. The RFR model predicts the raster angle in the FDM test data with R-squared
(R2) = 0.92, an explained variance score (EVS) = 0.92, a mean absolute error (MAE) = 0.012, a root
mean square error (RMSE) = 0.056, and a mean squared error (MSE) = 0.0032. These values are
R2 = 0.93, EVS = 0.93, MAE = 0.010, RMSE = 0.051, and MSE0.0025 for the training data. RFR is
significantly superior to the other prediction algorithms. The proposed model predicts the optimum
raster angle for any geometry.

Keywords: additive manufacturing; machine learning; FDM; raster angle; prediction

1. Introduction

In additive manufacturing (AM), manufacturing processes necessitate the optimal
use of raw materials and time factors, as well as physical and operational processes. The
performance of the fabrication stages in this manufacturing method can be developed
by estimating the optimum printing parameters, which results in less material consump-
tion, a shorter fabrication time, and lower fabrication costs [1,2]. Machine learning (ML)
technology is a verification and prediction method that includes systems that learn from
data. The verification and prediction capabilities of this technology can be employed in
AM to determine optimal printing parameters that will ultimately provide low costs while
improving the quality of the final product. The prediction and optimization of printing pa-
rameters using software will help in the development of modern fabrication methods [3,4].
In parameter optimization, instead of searching for an optimum continuous function, the
optimum values of the design variables for a specific problem are obtained [5]. Thus, by
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determining the optimum priming parameters in the AM process, better quality products
with higher mechanical properties can be obtained.

AM is a manufacturing method that allows for flexibility in design, resource efficiency,
and the production of parts made of multiple materials [6]. The advantages of AM include
design freedom, rapid prototyping, reduced material waste, and custom manufacturing
capability. This method can be particularly effective in the fabrication of parts with a
complex geometry, the creation of special designs, or the fabrication of small batches [7].
AM allows for the direct the integration of sensors into the fabrication process, enabling
the creation of complex and customized components with embedded sensing capabilities.
Sensor-integrated parts fabricated by AM have several applications [8]. In particular, with
its AM applications, it can constitute key elements by being applied in the biomedical,
electronics, and aviation industries within the framework of Industry 4.0 [9,10].

Fused deposition modeling (FDM) is a popular method in 3D printing [11], especially
for fabricating metal parts with complex geometries [12]. It offers flexibility over tradi-
tional machining methods, making it suitable for various industries like drones, medicine,
robotics, and defense [13,14]. The FDM printers use thermoplastic materials melted in a
print head, which applies the material layer by layer onto the surface following a specific
pattern [15]. Objects can be created from physical ones through 3D scanning and digital
modeling, typically exported in an STL format [16]. The model is then converted into
code containing print head movements and filament heating parameters to produce
the final part by extruding the material at a specific speed and location, initiating the
manufacturing process.

The FDM processing parameters include wall thickness, build orientation, printing
speed, infill density, raster angle, and layer thickness [17,18]. Depending on the application
for which the part is manufactured, the careful selection of these process parameters is
required. Despite the simplicity and flexibility of FDM, it has some mechanical limitations,
such as material usage depending on the raster angle. The raster angle holds significant
importance in the printing of materials, particularly in AM processes, such as FDM. This
angle dictates the orientation of successive layers of material as they are deposited during
the printing process. The choice of raster angle directly influences various aspects of the
final part, including its mechanical properties, surface finish, and dimensional accuracy.
Researchers have extensively studied the effects of the raster angle on material printing,
recognizing its pivotal role in determining the overall quality and performance of printed
parts. For instance, studies by Birch et al. [19] and Ahn et al. [20] have demonstrated
that the selection of an appropriate raster angle can significantly impact the mechanical
integrity and surface quality of FDM-produced parts, emphasizing the critical need for
careful consideration during the design and fabrication stages. Furthermore, the raster
angle plays a crucial role in optimizing the strength and durability of printed components.
Consequently, understanding and effectively managing the raster angle is essential for
achieving the desired part characteristics and ensuring the successful implementation
of AM technologies. Current FDM-based 3D printers cannot detect the optimal raster
angle [21]. Traditional optimization and estimation methods can estimate the raster angle
for limited design processes. Thus, in this study, ML-based algorithms are proposed to
verify and estimate the optimum raster angle of different geometric parts. The input param-
eters required for training the algorithms were obtained from different model geometries.
The proposed prediction model reduces fabrication costs without affecting product quality.
An estimation of the raster angle parameter with different ML algorithms will be performed
for the first time in this study. This feature makes this study unique.

There are many studies that estimate the mechanical properties of products fabricated
with FDM using ML methods [22–25]. Sharma et al. studied the impact of important pa-
rameters on the dimensional accuracy of various geometries such as holes and rectangular
slots [26]. They used a decision tree algorithm to predict the dimensional change. As
a result, this algorithm makes accurate predictions. In addition, the effectiveness of the
developed model was confirmed with an R2 score of 0.67. Ramiah and Pandian investigated
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the effects of 3D printing parameters and determined the optimal combination of these
parameters [27]. The abovementioned process parameters were found to have a good
effect on the strength of the constructed models. Ulkir and Akgun aimed to determine the
optimal combination of input parameters to predict and minimize the surface roughness
of samples fabricated by FDM on a 3D printer using a cascaded forward neural network
and genetic algorithm [28]. Li et al. developed an ensemble ML approach for predicting
the surface roughness of FDM parts [29]. In this study, raw data were processed according
to feature importance using RF-based methods before training the ML models. Azahara
et al. used machine learning algorithms for classification to create different models that can
predict the surface roughness of parts produced from polyvinyl butyral through FDM [30].
Five input variables were defined (layer height, printing speed, number of perimeters, wall
angle, and extruder temperature) and 16 parts were produced, each with three different
surfaces. The average value of the surface roughness Ra on each surface was obtained.
From these experimental values, 40 models were trained and validated. The model with the
best prediction results was the model generated by the Bagging and Multilayer Perceptron
(BMLP) with a Kappa statistic of 0.9143.

The use of ML algorithms is expanding day by day in the AM process. These algo-
rithms will significantly contribute to improving the fabrication process [31,32]. In this
study, we used ML algorithms to estimate the raster angle to ensure the minimum mate-
rial usage and fabrication time in the FDM, regardless of the model. The prediction and
modeling processes were performed using five different ML algorithms. These algorithms
include a support vector machine (SVM), Gaussian process regression (GPR), an artificial
neural network (ANN), decision tree regression (DTR), and random forest regression (RFR).
The implementation of advanced ML algorithms for the prediction of the best raster angle
for different geometries conclusively reduces a product’s cost without manipulating its
quality. The training data created using different shapes and geometries was trained in
the software, and a prediction model between the input parameters and the raster angle
was created. A total of 50 model designs were made, and as a result, a dataset of 1050 lines
was created. According to the performance criteria applied to the prediction models, the
accuracy of RFR was determined to be higher than that of the other ML algorithms. The
novelty of this study is that the implementation of ML for FDM raster angle prediction has
never been implemented. The findings of the study will contribute to the growth of the
AM industry by reducing the product lead time and cost without compromising accuracy.
The proposed model can predict the optimum raster angle for any geometry, which will
further increase the applicability of digitally fabricated parts.

2. Materials and Methods
2.1. Data Collection

It is necessary to use the slice program to calculate material consumption and fab-
rication time according to different raster angles of 3D models created in the computer
environment. In this study, the Zaxe XDesktop commercial slicing program was used, and
the training data required for ML was created. Pieces with different geometries (rectangle,
cylinder, and sphere, etc.) were used as models (Figure 1). Data were created by changing
seven different raster angles (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦) and three infill densities
(30%, 60%, and 90%) for the Zaxe Z1 Plus open-source 3D printer.

Process time (min), weight of the material (g), and length of the material wire (m)
were calculated for each model according to the change in these two parameters. While
process time refers to the time required to produce the model, the weight of the material
defines the amount of material used during fabrication. Finally, the length of the material
wire refers to the length of the filament consumed relative to the amount of material used.
Other printing parameters were kept constant in the slicing program. These parameters
are layer thickness 200 µm, nozzle temperature 220 ◦C, wall thickness 5 mm, and printing
speed 60 mm/s.
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total of 50 model designs were made, and as a result, a dataset of 1050 lines was created. 
The material weight, length of wire, and process time values were recorded for all da-
tasets. Ten sample datasets are given in Table 1. When the data are collected, ML algo-
rithms are trained to estimate the best raster angle. 

Table 1. Analysis of variance for a one-factor experiment. 

Process Time 
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Figure 1. Data specimen employed to train the ML model.

2.2. Experimental Procedure

In this study, five different ML algorithms were applied using the MATLAB software
in the prediction process. The aim of this study is to determine the model’s estimation
efficiency for suggesting the appropriate raster angle of a new part. Five performance
criteria, including mean squared error, mean absolute error, root mean squared error,
R-squared, and explained variance score, were employed to test the performance of the
proposed model using the cross-validation technique. Algorithms must be trained using
experimental data to develop the ML-based process shown in Figure 2.
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Figure 2. Proposed structure for estimation of the raster angle.

Models with different structures, some of which are shown in Figure 1, were used to
generate experimental data. Twenty-one data points were calculated for each model. A
total of 50 model designs were made, and as a result, a dataset of 1050 lines was created.
The material weight, length of wire, and process time values were recorded for all datasets.
Ten sample datasets are given in Table 1. When the data are collected, ML algorithms are
trained to estimate the best raster angle.

Table 1. Analysis of variance for a one-factor experiment.

Process Time
(min)

Weight Material
(g)

Length of Material
Wire (m)

Infill Density
(%)

Raster Angle
(◦)

95 25 8.25 30 45
112 38 12.54 60 60
150 52 17.16 90 15
189 41 13.53 30 45
147 55 13.53 30 90
130 28 9.24 60 0
133 32 10.56 90 30
106 23 7.59 30 75
175 45 14.85 60 15
121 24 7.92 30 90
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3. Machine Learning Algorithms
3.1. Support Vector Machine

A support vector machine (SVM) is a learning method introduced by Vapnik to solve
classification and curve fitting problems [33,34]. This learning method falls under the
supervised learning method. In supervised learning, during the training phase, the class
labels of the data, i.e., to which class they belong, are clear [35]. The operation of the SVM
estimator (y) is expressed as follows:

y =
(

Kxi ∗ Wjk

)
+ b (1)

If the kernel function is Kxi, b is the bias term of the SVM network. The Wjk is called
the weight vector [36]. The Kx and W denote Lagrange multipliers. The Kxi is a nonlinear
function that maps input vectors to a high-dimensional feature space. The equation of the
nonlinear function method can be expressed as follows:

Kxi = e−γ∥Pi−yi∥2
(2)

γ > 0 and i = 1, 2, 3, · · · , n (3)

3.2. Gaussian Process Regression

Gaussian process regression (GPR) is a successful and flexible ML method generally
employed to solve nonlinear multivariate regression and classification problems [37]. The
most important advantage of GPR is that uncertainty measurements can be made on its re-
sults; thus, it can produce successful predictions even in small non-parametric datasets [38].
It assumes that the underlying function generating the results is a Gaussian process, which
is a completely stochastic process. The mean function of the GPR can be any function
that maps input variables to output variables, while the covariance function encodes the
smoothness and similarity of the function [39].

Given a set of input–output pairs (x1,y1,), (x2,y2,), · · · , (xn,yn,), the probability of the
data is:

p(YIX, θ) = N
(

yI0, K + σ2n
)

(4)

The purpose of GPR is to find the function f (x) given below. This function is the
distribution of y over x. Here, x refers to the input parameters in the Gaussian process. The
y represents a finite number of outputs connected to x [40].

p( f IX, y, θ) = N( f Im(x), K) (5)

By choosing different mean and covariance functions, different types of datasets can
be modeled. The exponential kernel function, a commonly used covariance functions, was
used for the GPR model developed in this study. The main disadvantage of GPR is that
it can be computationally slow and costly, especially for large datasets. However, several
approximation methods can be used to speed up the calculation [41].

3.3. Artificial Neural Network

Artificial neural networks (ANN) are methods developed to automatically realize
the abilities of the human brain, such as acquiring and discovering new information
by learning, without any help [42]. ANNs have advantages, such as not requiring a
mathematical definition for the relevant event and being able to make predictions using a
limited number of experiments. The layers that make up the ANNs are as follows [43].

The artificial nerve cell structure is shown in Figure 3. The xn signal at the input of
the n synapse is multiplied by the synaptic weight wnj and connected to the n neuron. The
summation function adds the input signals and the corresponding synapses of the neuron
via a linear combiner [44]. Threshold, piecewise linear, sigmoid, and Gaussian functions
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are used as activation functions in the literature. The relationships in an artificial neural
network can be expressed mathematically as follows:

uk =
m

∑
j=1

wkjxj (6)

yk = f (uk + bk) (7)
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Here, uk is the linear combiner output, wk1,· · · , wkm are the synaptic weights of neuron
k, x1,· · · , xm are input signals, yk is the output signal of the neuron, f (. . .) is the activation
function, and bk is the bias value. If artificial neurons are represented by nodes and neuron
inputs and outputs are connected by directed arrows, ANNs become weighted directed
graphs. ANNs can be divided into two classes according to the structure of the graph. The
first is feedforward networks without loops, and the second is recurrent networks with
loops due to feedback connections. In feed forward ANNs, the information transferred
only moves forward, i.e., there is a movement from input to output [45].

3.4. Decision Tree Regression

Decision tree regression (DTR) is among the important data mining techniques used in
classification and prediction. A decision tree is a directed tree consisting of a root node that
has no input and internal nodes that each receive one input [46]. Nodes whose outputs are
taken as input by another node are called internal or test nodes, and nodes whose outputs
are not an input to another node are called leaf nodes. In the decision tree, each internal
node divides the sample space into two or more parts on the basis of the input attribute
values being subjected to a certain function [47].

SDR = sd(T)− ∑ I
T
T

IsdITiI (8)

A DTR is a flowchart-like tree structure in which each internal node represents a
feature (or attribute), each branch represents a decision rule, and each leaf node represents
the outcome. The decision tree algorithm starts from the root node and progresses along
the tree, making a decision based on the input feature values until it reaches a leaf node.
The value at the leaf node represents the predicted output value [48].

3.5. Random Forest Regression

The random forest regression (RFR) algorithm produces various models and creates
classification by training each decision tree on a different observation sample through
multiple decision trees [49]. The most appreciated point about the algorithm is that it
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provides the opportunity to re-explore your dataset more deeply by creating various
models of your dataset. RFR attracts attention because of its features, such as being applied
to both regression and classification problems, being trained faster than other methods, and
having a higher prediction speed, having fewer regulation parameters, and being directly
applicable to multidimensional problems. Figure 4 presents the steps of the RFR [50].
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RFR is a solution to the problem of overlearning the training data, which is seen as
the most important disadvantage of decision trees. Independent decision trees are based
on sampling both observations and variables in the training data. When RFR is used for
classification problems, it classifies according to the majority vote by taking a class vote
from each tree. In regression problems, the average of the estimates is taken. RFR has two
editing parameters [51]. These are the parameters of the number of randomly selected
predictors at each node (m). In classification, the default m value is m = p, where p indicates
the total number of predictors. On the other hand, in RFR, this value is taken as p/3.

3.6. Proposed Machine Learning Algorithms

In this research, we suggest a model to estimate the raster angle, which is one of the
printing parameters in FDM technology, from data obtained from models with different
geometric structures. A block diagram of the proposed system is shown in Figure 5. In the
first stage, normalization between 0 and 1 was applied to the data to make the classification
process more efficient. The min–max method given in Equation (9) below was used as the
normalization method.

x′ =
xi − xmin

xmax − xmin
(9)
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Figure 5. Proposed machine learning flowchart.

In this equation, x′ represents the normalized data, xi is the input value, xmin is the
smallest number in the input set, and xmax refers to the largest number in the input set.
After the normalization phase, the data selection phase was initiated. During the data
selection phase, training-test data were selected. At this stage, the cross-validation method
was used 10 times. In this study, 80% of all data were used for training and 20% for testing.
In the next stage, the ML algorithms were applied. Five different regression algorithms
were used. These algorithms are SVM, GPR, ANN, DTR, and RFR. Finally, the performance
analysis of the predictive models was conducted.

4. Results and Discussion
4.1. Machine Learning Algorithm Results

Values corresponding to the actual raster angle were written to evaluate the results
of the analyzed data in the range of 0–1 during normalization. The minimum raster angle
corresponds to 0◦, while the maximum value corresponds to 90◦. The model results, which
were developed on the basis of the process parameters in Table 1 and an estimate connecting
the raster angle to the process parameters, are shown in Figure 6.

A graphical comparison process is shown between the actual and estimated raster
angle values for each part using different ML algorithms. The model based on the RFR
method predicted the raster angle very well with little deviation.
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Various performance metrics have been used to measure the prediction performance
of the proposed ML algorithms. The statistic we use with the abbreviation root mean square
error (RMSE) is the square root of the difference between the estimated parameter value
and the actual parameter value divided by the sample size. This method is expressed by
the following equation:

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (10)
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R-squared (R2) is a statistical measure used to evaluate the performance of the model.
A value close to 1 for this metric is a measure of success for the model.

R2 = 1 − ∑(yi − ŷi)
2

∑(yi − y)2 (11)

The mean absolute error (MAE) is obtained by dividing the result by the number of
samples as the sum of the absolute values of the differences between the actual and predicted
values in the dataset. The lower the MAE value, the better the performance achieved.

MAE =
1
N ∑N

i=1|yi − ŷi| (12)

The mean squared error (MSE) is the difference between the model prediction and the
target value. If the magnitudes of the error values are similar, MSE can be used. However,
if one or more of the predicted values (large errors above the average) are obtained, this
measurement may not be appropriate. As the MSE statistic takes the squares of the errors,
it gives exaggerated results in the case of large deviations.

MSE =
1
n∑N

i=1(yi − ŷi)
2 (13)

The explained variance score (EVS) is a statistical measurement that shows how the
sub-dimensions affect the variables in the dataset because of factor analysis. As the score
values approach one, the success of the algorithm increases.

EVS(y, ŷ) = 1 − Var(y − ŷ)
var(y)

(14)

The performance analysis results of the ML algorithms are presented in Table 2.
Although 80% of the total data were used for training and 20% for testing, the lowest R2

values were calculated in the SVM method as 0.692 and 0.685 in the training and test sets,
respectively. Among the ML models examined, the SVM model performed worse than
all other models on both the training and testing sets, as suggested by the performance
metrics in Table 2. For a prediction model to be successful, the MSE, MAE, and RMSE
criteria must be low, and the R2 and EVS criteria must be close to one. The best-performing
method in all sets is the RFR model. This model has the highest R2 and EVS values and the
lowest MSE, MAE, and RMSE values. In other ML algorithms, although the error rates are
within the acceptable range, the success ranking according to the performance criteria is
GPR, ANN, DTR, and SVM. The statistical metrics for the RFR model are 0.00324 (MSE),
0.0125 (MAE), 0.0569 (RMSE), 0.922 (R2), and 0.920 (EVS) on the test set, as listed in Table 2.
The value of the R2 for the DTR, SVM, GPR, and ANN models was 0.711, 0.685, 0.843, and
0.789, respectively, compared to the R2 value of 0.922 for the RFR model on the test set, as
presented in Table 2.

Table 2. Performance comparison of the proposed machine learning models.

Training Dataset Test Dataset

RFR DTR SVM GPR ANN RFR DTR SVM GPR ANN

MSE 0.002589 0.010384 0.014762 0.003698 0.006395 0.003248 0.012935 0.016287 0.005723 0.009137
MAE 0.010358 0.030198 0.413681 0.018356 0.183697 0.012569 0.032589 0.485263 0.019365 0.213894
RMSE 0.051368 0.103872 0.113689 0.069852 0.083687 0.056991 0.113732 0.127621 0.075651 0.095587
R2 0.938251 0.721358 0.692869 0.862381 0.790368 0.922486 0.711896 0.685783 0.843965 0.789693
EVS 0.939368 0.736813 0.703672 0.873672 0.813672 0.920358 0.721025 0.692584 0.850362 0.792598

Figure 7a–e shows the scatter plots for the predicted versus experimental raster angle
using ML models. Generally, all developed ML models showed a good correlation between
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the experimental and predicted raster angle. Among the models, SVM demonstrated
the least predictive performance on both test sets, while RFR demonstrated the highest
predictive performance, as can be seen in Figure 7. The predicted raster angles are well con-
centrated around the diagonal line, representing an excellent match between the predicted
raster angle and the corresponding experimental values (Figure 7e).
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4.2. Hyperparameter Optmization and Cross Validation

The predictive performance and generalization capability of a model is determined by
the values assigned to its hyperparameters [52]. The optimal values of the hyperparameters
are chosen with the help of hyperparameter optimization. Bayesian is a widely used
hyperparameter optimization technique. Bayesian optimization is a probabilistic model-
based optimization technique that efficiently searches for the optimal hyperparameters by
constructing a probabilistic surrogate model of the objective function. It iteratively selects
hyperparameter configurations to evaluate based on an acquisition function, which balances
exploration and exploitation. To prevent over-fitting problems, a K-fold cross-validation
method is adopted during the optimization. Firstly, the dataset is split into training and
testing datasets comprised of 80% and 20% of the completed dataset, respectively.

Notice that the performance of the RFR model is superior to the available methods
when tested using the K-fold cross-validation technique (K = 10) with different predictive
performance evaluation metrics like MSE, MAE, RMSE, and R2. In this study, a 10-fold
cross-validation is combined with a Bayesian algorithm to optimize the hyperparameters.

The results of MSE, MAE, RMSE, and R2 using K-fold cross-validation in every fold
on the 3D training and testing sets are presented in Figure 8. Figure 8a presents the mean
squared error of RFR in a ten-fold cross-validation while Figure 8b shows the mean absolute
error performance on every ten-fold K cross-validation test. Similarly, Figure 8c shows
the root mean square error, and Figure 8d shows the R-squared. The results show that the
prediction model predicts the raster angle with high accuracy.

The raster angle prediction study may face several limitations that could impact the
accuracy and generalizability of its findings. Firstly, the complexity of the FDM process and
its dependence on various factors, such as the material properties, printing parameters, and
geometric characteristics of printed objects, can pose challenges in accurately predicting
raster angles. This complexity may result in difficulties in capturing all relevant variables
and their interactions within the predictive models, potentially leading to suboptimal
performance or limited predictive power.

Secondly, the study’s reliance on specific predictive models, such as RFR, may intro-
duce limitations in terms of model assumptions and flexibility. These models typically
require the careful tuning of hyperparameters and feature selection, and their performance
may vary depending on the characteristics of the dataset and the underlying relationships
between variables. Consequently, the predictive models developed in the study may not
fully capture the nuances of raster angle prediction across different printing scenarios,
thus restricting the applicability of the findings in real-world settings. Addressing these
limitations would require the thorough validation of the models on diverse datasets and the
consideration of alternative modeling approaches to enhance the robustness and reliability
of raster angle prediction studies.

For future raster angle prediction research, it is recommended to focus on several key
areas to overcome current limitations and advance the field. Firstly, researchers should
prioritize the collection of high-quality and diverse datasets that encompass a wide range
of printing conditions, materials, and geometric complexities. This will enable more com-
prehensive model training and validation, leading to improved prediction accuracy and
generalizability across different FDM systems. Additionally, exploring advanced machine
learning techniques, such as deep learning architectures or ensemble methods, could offer
new avenues for capturing intricate patterns and dependencies within the data, thereby en-
hancing the predictive capabilities of the models. Moreover, conducting systematic studies
to investigate the impact of various factors, such as the printing speed, temperature, and
layer thickness, on raster angle formation would provide valuable insights into the under-
lying mechanisms and facilitate the development of more sophisticated predictive models.
Finally, fostering collaboration between researchers, industry stakeholders, and end-users
can facilitate the translation of research findings into practical applications, ultimately
driving innovation and advancements in raster angle prediction for AM processes.
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5. Conclusions

Nowadays, the application of machine learning (ML) in fabrication technologies is
increasing. In this study, the raster angle, an important parameter in the fabrication process,
was examined using fused deposition modeling (FDM), an additive manufacturing (AM)
method. The estimation process for this parameter was performed using ML algorithms.
Training data were collected on the basis of material and time consumption values on 3D
models with different geometries using 3D printer’s slicing software. Performance analysis
was conducted to evaluate the performance of the ML algorithms. Among these algorithms,
the RFR model predicted the raster angle in the FDM process with high accuracy: R2 = 0.92,
EVS = 0.92, MAE = 0.012, RMSE = 0.056, and MSE = 0.0032. The other methods provided
controllable responses within the requirements of the error. The ML method successfully
verified and predicted raster angles in the FDM process. This suggests the potential
application of similar prediction models to different printing parameters in future research.
The method shows promise, outperforming existing techniques according to state-of-the-art
classifiers. This indicates the classifiers’ capability to predict raster angles effectively in
FDM. Implementing advanced ML tools to predict the optimal raster angle for various
geometries conclusively decreases fabrication costs without compromising quality. The
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novelty of this study is that the implementation of ML for FDM raster angle prediction has
never been implemented before. This study’s findings contribute to the growth of the AM
industry by reducing product lead times and costs without sacrificing accuracy. Future
studies could focus on developing a web application utilizing deep neural networks to
predict the optimal raster angle for any given 3D image, offering a promising avenue for
further exploration.
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