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Abstract: Additive manufacturing has been widely used in various industries, including the health-
care sector. Over the last few decades, AM has been playing an important role in the medical field
in different areas, including surgical planning, implants, and educational activities. For surgical
applications, AM can help surgeons practice and plan an operation until they are confident with the
process. This can help to reduce operational risk and time. In addition, it can help to demonstrate the
problem to other colleagues. AM has also been used to produce 3D models to teach students and
doctors about human anatomy. This paper aims to comprehensively review the diverse applications
of additive manufacturing within the domains of surgical planning and medical education. By
focusing on the multifaceted roles played by AM in these critical areas, a contribution to the growing
body of knowledge that underscores the transformative potential of this technology in shaping the
future of healthcare practices is sought to be made.

Keywords: additive manufacturing; 3D printing; FDM; SLA; medical devices; healthcare; surgical
planning

1. Introduction

Additive manufacturing (AM), also known as 3D printing, is an advancing technology
that is revolutionizing the manufacturing sector and is progressively unveiling its potential
within healthcare [1]. The process involves the creation of three-dimensional (3D) objects
through successive material deposition in 2D layers. Originating in 1986 through the
pioneering work of Charles Hull [2], 3D printers were initially embraced by the automobile
and aerospace industries for prototyping purposes before mass production. Presently,
the 3D-printing market, inclusive of both printers and services, constitutes an industry
valued at around 18 billion dollars [3]. Apart from prototyping, 3D printing has diversified
its applications to produce finalized items such as jewelry, heat exchangers, and medical
implants. Its advantages over traditional manufacturing encompass the ability to fabricate
objects with intricate internal structures, heightened versatility, customization, and reduced
spatial demands.

More specifically, in the field of electronic equipment manufacturing, 3D printing
has found its niche in the production of intricate components and circuitry. The ability to
create complex shapes with precision has enabled faster prototyping and customization,
reducing time to market for cutting-edge electronic devices. Recent reports from the
literature such as the ones from Shi et.al. [4,5], indicate the use of 3D-printing applications
in electromagnetic shielding. This flexibility has proven invaluable in the fast-paced world
of consumer electronics, facilitating rapid design iterations and improvements. On the
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other hand, communication systems have also witnessed significant advancements through
3D printing. Antenna components, connectors, and other intricate parts can now be
manufactured with greater precision at a reduced cost. The streamlined production process
contributes to the development of more efficient and compact communication devices,
fostering innovation in the telecommunications industry [6].

Aerospace represents another sector where 3D printing has left an indelible mark. The
technology allows for the creation of lightweight and complex geometries, a crucial factor
in designing components for aircraft and spacecraft. From turbine blades to structural
components, 3D printing enhances the performance and fuel efficiency of aerospace systems
while enabling a more sustainable approach to manufacturing [7].

When integrated with medical imaging, 3D printing can bring forth novel prospects in
medical progress. Ongoing research in various medical domains actively explores clinical
applications of this emerging technology. The capability to generate 3D models from patient
data empowers physicians to craft bespoke prosthetics and implants, enhance visualization
of intricate pathologies, and revolutionize medical training methodologies [8].

In recent decades, 3D printing has gained significant prominence, enabling the trans-
formation of three-dimensional digital designs into tangible objects using 3D printers.
Within the medical field, this technology finds applications in diverse areas such as orthope-
dics, spinal surgery, maxillofacial surgery, neurosurgery, and cardiac surgery [9]. Typically,
doctors rely on 2D X-ray or computed tomography (CT) and magnetic resonance (MR)
scans, requiring advanced visualization skills. While introducing renderings from various
imaging techniques has enhanced the understanding of intricate pathologies, it lacks tactile
feedback. Utilizing 3D printing, complex medical cases can be studied, surgical procedures
practiced, and both students and patients can be effectively educated.

Moreover, certain surgical procedures are intricate, demanding precise guidance to
prevent harm to vital body parts or ensure desirable aesthetic results. Achieving this
guidance often involves significant exposure to ionizing radiation and can considerably ex-
tend the duration of surgeries [10]. Furthermore, anatomical irregularities may necessitate
customized prosthetics for precise and effective repairs [10]. The imperative for enhanced
visualization and superior surgical results has led to the development of 3D-printed anatom-
ical models, personalized guides for patients, and prosthetics crafted through 3D printing.
The expanding utilization of 3D printing in surgery has sparked interest in evaluating the
current integration of this innovative technology.

This review provides a comprehensive exploration of the numerous advantages that
3D printing, or additive manufacturing (AM), brings to the medical field. The widespread
use of AM in healthcare is highlighted while its pivotal role in surgical planning implants
and medical education is emphasized. Notably, the article describes how AM enables
surgeons to meticulously practice and plan surgeries, reducing operational risks and time.
The technology’s capacity to produce detailed 3D models proves invaluable for teaching,
enhancing the understanding of human anatomy among students and medical profession-
als. By thoroughly reviewing the diverse applications of AM in surgical planning and
medical education, this article contributes valuable insights and practical guidance. This
analysis underscores the transformative potential of 3D-printing technology in revolution-
izing healthcare practices, offering new perspectives that are poised to shape the future of
the medical field.

2. Workflow

The overall workflow of generating a 3D model from imaging processes follows these
stages (Figure 1):

• Medical imaging data acquisition
• Data processing and segmentation
• Meshing and conversion to 3D-printable file format,
• Printing the final part.

Each step is discussed in detail in the following section.
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Figure 1. A schematic of the workflow for a medical part.

2.1. Imaging

In many hospitals, the pioneers in adopting 3D-printing technology are closely linked
to medical imaging. Utilizable data from MRI, CT, and certain ultrasounds serve as a foun-
dation for 3D printing [11]. However, not all scanning data is equal; low-resolution images
can lead to disparities between the generated model and actual anatomy. Precision is crucial,
as 3D models derived from scan data aid healthcare providers in comprehending a patient’s
condition. Accurate data enhance the potential of 3D-printed models for personalized
clinical education and patient-specific planning, significantly impacting healthcare [5].

Radiologists, with their expertise in various imaging modalities, play a pivotal role in
ensuring the highest-quality models are produced from the scans. Their skills are integral
to the development and seamless integration of this transformative technology in medicine.
These specialists need to ensure that the imaging is done with the specific intent of creating
an accurate 3D model, with closely spaced scan slices. Figure 2 represents a single MRI
image of a spine with a cancer tumor that has been detected next to it.
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An additional level of difficulty can be introduced when using scan data from multiple
systems. In many cases, bone data, for example, are easier to obtain from CT scans,
whereas soft-tissue data are easier to obtain from MRI scans. If both are needed, and
if the scanning facility produces the scans on different machines, so with the patient in
slightly different positions, data-fusion techniques need to be developed in order to fuse
the two different data into a cohesive model.

2.2. Data Segmentation and Mesh Generation

Most medical imaging systems produce data as a series of 2D images, most commonly
in DICOM file format. Special software is needed to transform this medical data into 3D
files that are suitable for 3D-printing machines to construct the objects [11].
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To convert medical-imaging data into 3D-printable data, there exist, today, numerous
software options, ranging from open-source licensing, such as PostDICOM, Horos, RadiAnt,
Navegatium, Pro Surgical 3D, MicroDicom, 3Dimviewer, Mango, Escape EMV, RTpotter,
InVesalius, DICOM4QUI, and many more [https://www.postdicom.com/en/blog/top-
25-free-dicom-viewers] (18 February 2024) to relatively expensive specialized medical
CAD software such as Materials Mimics, 3-matic, 3D Slicer, Simpleware, Virtual Surgical
Planning, D2P, and others, each offering unique features and applications [12].

The overall workflow of converting DICOM files into 3D-printable files consists of,
in a slice of the model, identifying the areas of interest such as bone and/or soft tissue by
selecting different color ranges, or manually drawing around regions of interest, and then
extrapolating the selected data through subsequent slices to create the 3D model. This can
sometimes require manually selecting data in multiple regions of the model. Once the 3D
model has been produced, it often requires digital post-processing to clean it up, smooth
it or sharpen it, adjust colors and textures, etc. [12]. Figure 3 presents the final stage of
preparation of a 3D model for printing in Magics.
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2.3. 3D Printing and Post-Processing

For 3D printing the models, different technologies can be used. For instance, vat pho-
topolymerization (VPP), also known as Stereolithography (SLA), the pioneering 3D-printer
technology for medical purposes, constructs 3D models by layering photoreactive resin
material, subsequently solidified by ultraviolet light [10]. This method yields highly precise
models but is confined to photopolymers, which can be costly. It also requires the use of
sacrificial support material to support overhanging features, and this must be removed in a
post-processing operation. Figure 4 depicts heart models manufactured via 3D-printing
SLA method [13].

DIW, a type of extrusion-based 3D printing, involves the controlled deposition of
materials in a layer-by-layer fashion. In the medical context, DIW 3D printing has shown
promise in fabricating complex, patient-specific scaffolds for tissue engineering and re-
generative medicine. The ability to precisely control the deposition of bioinks or other
materials allows for the creation of intricate structures that mimic the natural environment
of tissues. Additionally, DIW has been explored in the production of drug-delivery systems
and custom implants tailored to individual patient needs [14].

https://www.postdicom.com/en/blog/top-25-free-dicom-viewers
https://www.postdicom.com/en/blog/top-25-free-dicom-viewers
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Direct Ink Writing (DIW) 3D printing holds significant promise in the subsectors of
surgical planning and education within the medical field. In the context of surgical plan-
ning, DIW technology allows for the fabrication of patient-specific models that replicate
anatomical structures with high precision. Surgeons can use these 3D-printed models to
enhance their preoperative planning, providing a tangible and accurate representation of
the patient’s unique anatomy. This aids in better understanding complex cases, practicing
procedures, and refining surgical approaches before entering the operating room. Addi-
tionally, DIW can be employed to create customized surgical guides and tools, improving
intraoperative precision [15].

In the sector of medical education, DIW 3D printing contributes by producing detailed
and realistic anatomical models for teaching purposes. These models serve as invaluable
educational tools for students and practicing healthcare professionals, offering hands-on
experiences that enhance their understanding of intricate anatomical structures. DIW facilitates
the creation of complex anatomical features, allowing for a more comprehensive and realistic
representation of human anatomy. This technology supports the development of educational
resources, such as anatomical models and simulation tools, fostering a more immersive and
effective learning environment for medical students and professionals alike. Thus, DIW 3D
printing stands as a transformative technology with applications in surgical planning and
education, ultimately improving patient outcomes and advancing medical training [16].

Powder bed fusion (PBF) employs a powder substrate fused by a powerful laser.
Powder layers are successively applied and sintered into the desired 3D shape [14]. Unlike
other 3D-printing techniques, PBF for polymers doesn’t necessitate support structures
during printing, as objects are supported by the unfused powder in the bed. PBF technology
is capable of producing metal, plastic, and ceramic items. However, its surface finish is
often coarse, and can require post-processing. Figure 5 depicts a 3D-printed prosthetic
socket and arm produced using PBF method.

Material Extrusion (MEX) stands out as an economical 3D-printing method widely
favored by consumers. These printers operate by heating a polymer filament in a printer
head and depositing it at specified locations matching the model’s shape. The polymer
solidifies as it cools, repeating this process layer by layer. Common materials include
polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), and other thermoplastics.
However, the level of intricate detail achieved with MEX is usually lower than that of
other techniques. Unlike PBF and inkjet methods, MEX-produced parts require additional
support structures. Post printing, models often undergo surface smoothing and excess
material removal through post-processing. The extent of post-processing depends on the
printer type, quality, and materials used [16].
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Material jetting (MJT) involves an inkjet print head forming small droplets from a
liquid resin. This method uses a soluble support material that is relatively easy to dissolve
or a waterjet blast-off. The biggest advantage of this technology is that it can print in
multiple materials, including full-color and clear models or models with both soft and hard
materials [15]. Figure 6 depicts such a case of a colored 3D-printed model of a tumor next
to the spine printed with material jetting.
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As this review looks into the diverse landscape of 3D-printing technologies in the medical
field, it is imperative to explore potential future trends that could shape the trajectory of these
innovations. In the sector of vat photopolymerization (VPP) and particularly Stereolithogra-
phy (SLA), advancements in material science are anticipated, leading to the development of
cost effective and versatile photopolymers. The ongoing research aims to overcome limitations
related to material costs and post-processing steps, potentially expanding the range of appli-
cable materials and minimizing the need for sacrificial support structures. Additionally, the
integration of real-time imaging and diagnostic data into SLA processes may further enhance
the precision and customization of 3D-printed medical models.
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On the other hand, Direct Ink Writing (DIW) 3D printing is believed to be witnessing
an evolution towards more sophisticated bioinks and materials suitable for intricate tissue-
engineering applications. Predictions include the emergence of bioinks with enhanced
biocompatibility and biomimicry, allowing for the fabrication of patient-specific scaffolds
that closely mimic the natural tissue environment. As the understanding of regenerative
medicine advances, DIW is likely to play a pivotal role in producing functional tissues and
organs for transplantation, pushing the boundaries of personalized medicine.

Regarding Powder Bed Fusion (PBF, ongoing research seeks to refine the surface finish
of printed objects, potentially reducing the need for extensive post-processing. Future trends
may also involve the development of new materials for PBF, expanding its capabilities beyond
metals, plastics, and ceramics. The medical field could witness increased adoption of PBF for
the production of patient-specific implants with improved surface quality.

Also, Material Extrusion (MEX) is expected to undergo advancements in filament
materials, potentially introducing new biocompatible polymers with improved structural
properties. Future trends may focus on enhancing the precision and intricacy achievable
with MEX, making it a more viable option for certain medical applications. Research
efforts may also target the development of more efficient support structures, reducing
post-processing requirements.

What is more, Material Jetting (MJT) is likely to witness increased integration of multi-
material capabilities, enabling the creation of highly complex and customizable medical
models. Future trends may involve the refinement of soluble support materials, stream-
lining post-processing steps and making MJT even more user-friendly. The expansion
of color capabilities in 3D-printing models, as demonstrated in Figure 6, could become
more widespread, enhancing the visual representation and educational value of printed
medical models.

Thus, the future of 3D-printing technologies in the medical field looks promising.
Advancements in materials, precision, and customization, along with a continuous focus
on reducing post-processing steps, will contribute to the ongoing transformation of medical
practices through innovative 3D-printing applications.

3. Educational Applications
3.1. Models of Human Organs

Medical professionals are in constant need of better tools that help them to save lives.
3D printing can be used to improve patient care, reduce costs, and increase the speed of
every step in the medical value chain. Positive medical outcomes are usually decided by
several factors: Well-briefed and prepared surgeons, efficient completion of the surgical
procedure within the shortest possible timeframe, and an understanding of patient-specific
risks to avoid complications during surgery.

All of these factors benefit greatly from using high-fidelity anatomical models made
with 3D-printing technologies. As surgeons work in a real 3D world, it makes sense for
them to analyze patient-specific 3D-printed models, particularly when complex pathologies
are involved. This allows procedures to be refined during pre-surgery, meaning fewer
complications, shorter procedures, and faster patient recovery times.

Anatomical models have found extensive applications in various surgical specialties,
including maxillofacial surgery, cardiovascular surgery, vascular neurosurgery, dental
surgery, general surgery, cranial/orbital surgery, orthopedics, and spinal surgery, as indi-
cated by other studies [8,10,17–45]. In maxillofacial surgery specifically, some studies [18]
have highlighted the utility of anatomical models for implant shaping. Among these studies,
some papers emphasized time reduction as a significant advantage. Furthermore, some
studies confirmed that printed models offered accurate anatomical representations, leading to
improved surgical outcomes, while some studies pointed out potential exposure to ionizing
radiation and increased costs [18]. One study found the anatomical model to be an effective
representation of the actual pathology without discussing associated costs, while another
study acknowledged increased costs due to utilizing an anatomical model [19].
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In our research, de-identified MRI data representing five common ventricular septal
defect (VSD) subtypes (infundibular, membranous, inlet, muscular, and atrioventricular
types) were retrieved from a radiology archive. Following the isolation of the heart in each
image set, 3D volume rendering was applied to generate a digital heart model (Figure 7).
After standard post-processing, synthetic models representing each VSD subtype were
successfully produced.
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Figure 7. 3D-printed heart model with VSDs.

These 3D heart models were used to develop a simulation-based educational curricu-
lum focusing on the anatomy and clinical management of VSDs for pediatric residents.
Furthermore, we successfully adapted the printing material to produce a heart model with
a soft texture, facilitating the creation of surgical incisions and the placement of sutures
within the models.

3.2. Human Body and Anatomy

Another case of educational purposes regarding 3D printing can be with the printing
of full-body anatomy models. In other cases, the anatomical model can be used to teach
students and doctors about the anatomy. Figure 8 illustrates a 3D-printed full-body anatomy
for the purpose of education.

The application and deeper understanding of full-color 3D printing, and how to apply
it in ways that add true value, benefits all of engineering. But this example of using it
to produce high-fidelity anatomical models can be of enormous benefit to the medical
profession. It allows surgeons to use augmented 3D models to determine, and even practice
performing, specific surgeries.

These 3D-printed models can display physical, spatial, and tactile information that
computer models simply can’t provide. These can then also be used to help with the
planning of patient-specific molds and surgical guides to allow for more accurate cuts,
while implants can also be shaped to an exact replica of the anatomy prior to the surgical
procedures. And these models can be used to aid more effective communication between
the surgeon, their colleagues, and the patient.

3.3. Bone-Drilling Practice

As cadavers are becoming both expensive and harder to obtain, substitutes are needed
to allow students to practice and learn the various skills they need. One such application is
in bone-drilling practice, where nylon-printed bones, including their trabecular structures
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can be printed for medical students to practice honing their skills. This allows students
easy access to an endless source of practice samples at relatively low costs.

The bone in Figure 9 is printed from a micro-CT scan of a real human bone and
captures all the internal cavities and trabecular structures of the bone.
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4. Applications of 3D Printing in the Medical Field

3D printing continues to find new and innovative applications in healthcare, trans-
forming and enhancing lives in previously unimaginable ways. Its impact has been evi-
dent across a spectrum of medical disciplines, including but not limited to cardiothoracic
surgery [46], cardiology [47], gastroenterology [48], neurosurgery [49], oral and max-
illofacial surgery [14], ophthalmology [50], otolaryngology [51], orthopedic surgery [52],
plastic surgery [53], podiatry [54], pulmonology [55], radiation oncology [56], transplant
surgery [57], urology [58], and vascular surgery [59]. The diverse benefits of this technology
have paved the way for various direct applications in the medical and clinical domain [60]:

• Utilized for personalized presurgical and treatment planning. Numerous studies
have showcased the potential benefits of patient-specific presurgical planning [61–66].
Additionally, it allows the customization of prosthetics or surgical tools based on
individual patient anatomy, enhancing the understanding of unique and complex
anatomical structures in each case [64–67]. Moreover, 3D printing permits the accurate
selection of prosthetic component sizes before implantation [68–70].

• Tailored surgical instruments and implants: This customization not only ensures
precision but also reduces costs, attributed to the efficiency of additive-manufacturing
techniques [71].

• Researching osteoporotic conditions enables a precise assessment of the patient’s bone
condition, leading to informed decisions regarding surgical interventions [72].

• 3D printing facilitates the rapid prototyping of new design concepts or enhancements
for existing medical devices, allowing for swift development and testing.

• 3D-printed patient-specific models have proven to enhance performance and acceler-
ate learning, leading to improved knowledge, management, and confidence among
trainees across various specialties [8,73]. The advantages of 3D printing in education
include the reproducibility and safety of the 3D-printed models compared to cadaver
dissection, the ability to model diverse physiological and pathological anatomy from
extensive image datasets, and the potential to share 3D models among institutions,
especially those with limited resources [74–76].

• Patient education is a crucial aspect of patient-centered care, and healthcare providers
prioritize effective communication. Presenting imaging reports verbally or displaying
CT and MRI scans to patients often falls short, as these 2D representations may not fully
convey the complexities of 3D anatomy. In contrast, 3D printing offers a promising
solution, enhancing doctor-patient communication by directly showcasing anatomical
models [77,78].

• Enhancing Forensic Practices: Within legal proceedings, 3D models serve as invaluable
tools to explain complex anatomical irregularities, bridging comprehension gaps that
often arise with conventional cross-sectional imaging, especially for jury members [79].

• Bioprinting, an innovative application of 3D printing, facilitates the creation of im-
plantable tissues. For instance, synthetic skin can be 3D printed and transplanted onto
burn-injury patients, offering a groundbreaking solution for skin grafts [80]. Addition-
ally, bioprinting finds utility in evaluating cosmetic, chemical, and pharmaceutical
products through tissue testing [81].

• Personalized drug 3D printing involves layering powdered drugs to enhance their
dissolution rate compared to conventional pills, ensuring faster absorption in the
body [82]. This innovative approach not only accelerates drug delivery but also
enables the customization of the required quantity according to individual patient
needs, marking a significant advancement in pharmaceutical manufacturing [83]. We
examine will further examine some case studies of these areas related to surgical
planning in more detail below.

4.1. Surgical Practice and Implants

Anatomical models serve as molds for crafting prosthetics, exemplified in specific cra-
nial and ear surgery cases. Additionally, personalized 3D-printed molds for prosthetics [84]
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have streamlined procedures like chin-augmentation surgery, reducing surgical duration
and enhancing aesthetic outcomes due to precise profile matching. Additional research
indicates that 3D-printing methods can directly produce final implants, notably preva-
lent in cranial surgery [85]. Custom cranial implants prove highly accurate, reducing
operating-room time and correlating with improved clinical results across various studies.

Similarly, 3D-printed trays and fixation plates enhance medical outcomes and trim oper-
ation room time in maxillofacial surgery. A study [7] highlighted enhanced bone formation
and angiogenesis with custom implants. Furthermore, complete dentures are also attain-
able through additive manufacturing, with results varying; some studies note slightly lower
aesthetics for 3D-printed dentures, while others report aesthetics comparable to standard
dentures, emphasizing the benefits of facial simulation before final prosthetic printing.

As a case study [86], a 43-year-old woman with a significant mandible defect initially
underwent mandible reconstruction using an intraoperatively modeled reconstruction
plate. However, this initial attempt failed due to asymmetrical mandibular contour, causing
difficulties in jaw movement. The patient faced challenges in opening and closing her
mouth, leading to saliva overflow, impaired oral food intake, and speech problems. To
address these issues, a second surgical procedure was planned to involve a custom-designed
implant. CT data were transferred to a CAD environment for implant design (Figure 10).
Given the extent of the defect, reaching from the right condyle to the midline of the chin, a
combination of mirror-imaging technique and another mandible was utilized as a template.
The undamaged mandible was mirrored to the affected side, but due to the defect’s size
exceeding the midline of the chin, additional scaling and templating from another mandible
image was necessary to complete the implant contour design.
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Figure 10. Skull with 3D-printed embedded implants [86].

The designed implant was fabricated using stereolithography, creating an SLA model
that served as a pattern for the titanium implant. The finalized implant was then forwarded
to the maxillofacial department for the surgical procedure, as depicted in Figure 10.

4.2. Surgical Planning

Surgical procedures necessitate a deep understanding of human anatomy and the
intricate relationships between various anatomical structures. Traditionally, this knowledge
is imparted through the study of human cadavers in medical school’s preclinical studies
and is further honed through practical experience during real surgeries [87]. Visualizations
presented on 2D or 3D computer screens may not provide an intuitive grasp of complex
anatomical intricacies [88,89] (see Figure 11). Moreover, the ability to practice both general
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surgical procedures and patient-specific techniques, especially in highly complex cases,
enhances surgeons’ skills and outcomes [90].

Utilizing patient-specific scans to generate 3D models holds significant utility in vari-
ous surgical and training contexts. Presently, PBF technologies for polymer and metal are
considered the gold standard for surgical applications [91]. A study involving 158 students
explored the pros and cons of 3D printing in surgery. Benefits highlighted encompass
improved preoperative planning, model accuracy compared to the patient, and reduced
surgery time [92]. Drawbacks include disparities between the 3D model and the patient’s
physical condition, extended preoperative planning duration, and expenses related to
printing machines and CAD software.

Across surgical specialties, 3D printing is revolutionizing the surgical process [93].
Surgeons employ 3D models to familiarize themselves with intricate structural abnormali-
ties, enabling optimal surgical planning through rehearsal of complex procedures. This
meticulous planning allows surgeons to anticipate and address potential issues in advance,
potentially reducing surgery duration and errors. Despite the increased time invested
in preoperative planning, it enhances surgeons’ skills and confidence before the actual
procedure. In some instances, sterilized 3D models are brought into operating rooms to
provide surgeons with enhanced visibility in challenging areas [92].
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Figure 11. Pre-surgical planning for neurosurgeons using a 3D-printed model [94].

In interdisciplinary approaches, 3D-printed models facilitate shared understanding
among medical teams, enabling patient absence during collaborative planning sessions.
While the adoption of 3D printing in surgery is growing, the systematic review indicates
limited efforts in in-house fabrication of customized implants or prostheses using 3D
printing. This approach necessitates proficiency in CAD software, demanding additional
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skills, expertise, and time from the surgical team. Currently, radiological scans remain the
most commonly used data for 3D-model printing.

Having a physical representation of a patient’s anatomy allows physicians to study
and simulate surgeries more effectively compared to relying solely on 2D MRI or CT scans
displayed on flat screens [95]. These models provide a tangible advantage over cadavers,
which are often limited in availability and pose challenges in terms of cost [96]. Cadavers
lack specific pathologies, offering more of an anatomy lesson than a realistic representation
of a surgical case. Additionally, 3D models prove invaluable in studying complex spinal
deformities. For training doctors in colonoscopies, high-quality 3D anatomical models, ac-
curately representing specific pathologies, are essential, given the significance of colorectal
cancer as the second leading cause of cancer-related deaths [73,96].

Neurosurgeons find 3D-printed neuroanatomical models particularly beneficial
(Figure 12) [87,97,98], as they illuminate the complicated relationships among cranial
nerves, vessels, cerebral structures, and skull architecture. These complexities are
challenging to interpret using only 2D radiographic images, and even a small error in
understanding this intricate anatomy could have severe consequences. Realistic 3D models
depicting the relationship between a lesion and normal brain structures aid neurosurgeons
in determining the safest surgical approach and allow for rehearsal of challenging cases.
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In another case study, 3D printing allowed surgeons to simulate procedures like
endovascular stent implantation under conditions mimicking real tissues, eliminating any
risk of patient complications [99–102].

4.3. Surgical Plates and Pins

AM technology is also suitable for unilateral displaced intra-articular calcaneal frac-
tures involving the posterior facet that require precise anatomic restoration. The con-
tralateral unaffected calcaneus, devoid of any fractures, deformities, or surgical history,
serves as a template for pre-shaping the plate before the surgery. It also acts as a guide for
achieving anatomic reduction during the operation. It is important to note that Sanders
type 4 calcaneal fractures may not be suitable for this minimally invasive approach. Ad-
ditionally, fractures older than 3 weeks might pose challenges for reduction using this
method [103]. Patients with a unilateral calcaneal fracture undergo a CT scan of both
calcanei, with a slice thickness of 1 mm (see Figure 13).
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Figure 13. The Sanders system of fracture classification on the calcaneus [1,2,49]: (a) Normal calcaneus
in transverse and coronal images; (b) Type II; (c) Type III; and (d) Type IV [103].

Utilizing the mirror-imaging technique, the normal side calcaneus is transformed
into a model resembling the injured side’s calcaneus, likely similar to its pre-injury state
(Figure 14). It takes approximately 3 h to print a 3D model using PBF polymer method.

The shape and size of the locking plate are chosen by attaching the plate to the real-size
calcaneus model. Careful examination of plain radiographs and CT scans of the fractured
calcaneus helps determine the correct position for the plate and which holes to use. For an
AO Locking Calcaneal Plate, three proximal holes are cut—one each on the anterior, middle,
and posterior portions—to allow the plate to smoothly advance through the small incision.
The plate is bent to fit the model, securing the fracture fragments effectively (Figure 14).

Fluoroscopic images are taken with the plate attached to the model to aid in deciding
the plate’s proper position during its insertion through the incision (Figure 15-left). This
can be done either before the operation or intraoperatively, just before inserting the plate
through the incision. Both the pre-shaped locking plate and the 3D-printed model are
sterilized before the surgery. The 3D-printed model serves as a reference for anatomical
reduction of the fracture during the surgery.

During the procedure, the patient is positioned in the lateral decubitus position with a
thigh tourniquet. Figure 15 shows such a procedure.
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Figure 14. The design, fabrication, and application of 3D-printed cast. (A,B) The reconstruction and
design of 3D model based on CT data. (C–E) The 3D-printed cast with five cannulas for insertion of
1.5 mm K-wires. (F,G) CT images of a patient (male, 42 years of age) with displaced intra-articular
calcaneal fracture, showing sustentaculum tali nondisplaced. (H,I) A fractured calcaneus treated
with percutaneous reduction and 3D-printed cast assisted screw fixation [104].
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Figure 15. Evaluation for anatomical mismatch of the pre-contoured plate. (a) Clinical photograph
of the pre-contoured pelvic brim plate taped on the 3DP model. (b) Corresponding postopera-
tive 3D-reconstructed view. (c) Superimposed photograph of (a,b) demonstrates no evidence of a
mismatch [105].

4.4. Drilling and Cutting Guides and Jigs

Another application of AM in medical field is using the 3D-printed guides for the
drilling of bone. Thoracic pedicles, unlike those in the lumbar spine, have smaller diameters
and show greater variability in size among individuals and between segments. Additionally,
the thoracic spine is closely related to vital organs like the lungs, esophagus, aorta, and
large blood vessels, making surgeries in this area delicate. Therefore, inserting thoracic
pedicle screws demands extreme precision, as any deviation from the optimal position
can lead to poor patient outcomes. Proper insertion within the pedicle, ensuring accurate
positioning and orientation, is crucial before advancing to the vertebral body to guarantee
safety and secure anchoring. Particularly, placing screws in the mid- and upper-thoracic
region remains technically challenging [106,107]. Figure 16 illustrates the design of the
navigational jig for the operation.

To enhance the precision and safety of thoracic pedicle screw placement, several
techniques have been devised and tested in both cadaveric and clinical studies. In this case,
the application of templates designed for cervical spine anatomy had not been assessed
for the more complex thoracic spine. To address this gap, a straightforward, secure, and
efficient method was developed to assist in the insertion of thoracic pedicle screws. This
technique leveraged the concepts of reverse engineering and rapid prototyping. The
experimental results show that the operational accuracy increases from 75% to 95% by
using drilling jigs [108].

In another scenario, the use of a drilling jig is paramount to prevent potential damages.
Drilling into the spine is inherently challenging, with significant risks of complications,
including neurological and vascular issues due to improperly placed pedicle screws. Such
misplacements could compromise the implants’ pull-out strength and escalate the risk of
implant failure [109,110]. Therefore, ensuring accurate and safe screw placement within
the pedicle is vital, especially in scoliosis surgery.
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5. Discussion

The review presented herein underscores the transformative impact of AM in the
fields of surgical planning and medical education within the healthcare sector. The
widespread adoption of AM technologies has not only revolutionized the creation and cus-
tomization of medical devices but has also significantly augmented the efficacy of clinical
products [17–19]. The capacity of AM to facilitate intricate surgical planning and enhance
educational practices is evident in its multifaceted applications.

One of the primary contributions of AM in healthcare is its pivotal role in surgical
planning [20]. The ability of surgeons to practice and refine operative techniques using 3D-
printed models contributes to a substantial reduction in operational risk and time [21,22].
The tangible and three-dimensional representation of anatomical structures allows surgeons
to gain confidence in their procedures before entering the operating room [23]. Additionally,
and the capacity to create patient-specific implants through AM ensures a higher degree of
precision and compatibility, leading to improved surgical outcomes [24,25].

The educational arena has also witnessed a paradigm shift with the integration of
AM [26–28]. The creation of detailed and accurate 3D models of human anatomy has
become an invaluable tool for teaching both students and experienced medical profession-
als. AM facilitates a hands-on learning experience and enables a deeper understanding of
complex anatomical structures [29]. These 3D models serve as effective visual aids, enhanc-
ing the comprehension of medical concepts and promoting better retention of knowledge
among learners [30–32].

Despite the remarkable advancements, challenges persist in the field of AM in
healthcare [33]. Issues such as insufficient mechanical properties in 3D printing, the
imperative to scale up production for mass manufacturing, the development of intelligent
printable biomaterials, and the intricate task of vascularization in 3D bioprinting pose
ongoing hurdles [34–38]. Addressing these challenges will require innovative solutions
and collaborative efforts between researchers and clinicians and industry stakeholders.

Looking ahead, it is evident that the healthcare sector is on the cusp of witnessing
novel paradigms in AM technologies [39,40]. The continued exploration of specialized
biomaterials, coupled with advancements in design adaptability and functional integration,
is poised to redefine the landscape of clinical products [41,42]. Intelligent solutions to
overcome current limitations will likely pave the way for a more widespread and impactful
integration of AM in healthcare [43–45].
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Finally, the transformative influence of AM in surgical planning and medical education
is signaling a promising trajectory for the future of healthcare. As the field continues to
evolve, addressing current challenges and embracing innovative solutions will be imper-
ative for unlocking the full potential of AM technologies in enhancing patient care and
medical education.

6. Conclusions

In conclusion, this comprehensive review illuminates the profound impact of additive
manufacturing (AM) on the landscape of healthcare, portraying it as a cornerstone technol-
ogy shaping the future of medical device production. The examination of AM technologies
reveals a significant leap forward in the creation and customization of medical devices,
amplifying their efficacy within clinical settings. The strategic integration of specialized
biomaterials through AM emerges as a pivotal aspect, not only fostering superior func-
tional integration but also affording an unprecedented degree of design adaptability. This
adaptability, in turn, optimizes the development of clinical products, tailoring them to meet
specific patient needs with precision. However, as the review depicts these advancements,
it also sheds light on persistent challenges that demand innovative solutions. The limita-
tions, posed by insufficient mechanical properties in 3D printing, the imperative need to
scale up AM production for mass manufacturing, the ongoing quest for intelligent printable
biomaterials, and the intricate task of vascularization in 3D bioprinting, form a complex
tapestry of obstacles. It is in navigating these challenges that the true potential of AM in
healthcare lies.

The analysis presented in this review serves not only as a comprehensive snapshot of
the current state of AM technologies in healthcare but also as a roadmap for future trends
in the sector. It underscores the critical importance of addressing these challenges head on,
sparking innovation to overcome existing limitations. As the healthcare sector navigates
these hurdles, this article foresees the emergence of novel paradigms in AM technologies,
unlocking unprecedented possibilities for the future of healthcare manufacturing.
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