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Abstract: This study investigates the application of regression neural networks, particularly the fitrnet
model, in predicting the hardness of steels. The experiments involve extensive tuning of hyperpa-
rameters using Bayesian optimization and employ 5-fold and 10-fold cross-validation schemes. The
trained models are rigorously evaluated, and their performances are compared using various metrics,
such as mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and
coefficient of determination (R2). The results provide valuable insights into the models’ effectiveness
and their ability to generalize to unseen data. In particular, Model 4208 (8-85-141-1) emerges as the
top performer with an impressive RMSE of 1.0790 and an R2 of 0.9900. The model, which was trained
with different datasets for nearly 40 steel grades, enables the prediction of hardenability curves, but
is limited to the range of the training dataset. The research paper contains an illustrative example
that demonstrates the practical application of the developed model in determining the hardenability
band for a specific steel grade and shows the effectiveness of the model in predicting and optimizing
heat treatment results.

Keywords: steel hardenability; Bayesian optimization; k-fold cross-validation; hyperparameter
tuning; neural network regression; steel alloy; predictive model; heat treatment; hardenability band;
Jominy end-quench

1. Introduction

Remarkable progress has been made in the development of methods and tools for
modeling and simulating the production, processing, and structural properties of steels
and metal alloys. Computational modeling, a cost-effective approach to optimize certain
factors, such as chemical composition and process conditions, is widely used in scientific
and industrial research and helps to achieve the desired properties in metal materials [1–4].

A more cost-effective approach for evaluating the hardness of continuously cooled
steel from the austenitizing temperature is the Jominy end-quench test. Integrating the
results of this test into models used for heat treatment simulations requires the computation
of cooling rates at specific locations on the cooled object, associating them with respective
distances from the quenched end of the sample [5]. The techniques for computing Jominy
hardenability curves are described in detail in various studies, including [6–11].

Modern steelmaking techniques allow precise regulation of the chemical composition
and hardenability, with some manufacturers advocating strict limitations on hardenabil-
ity. The widely used Jominy end-quench hardenability test is an important tool in the
production, specification, procurement, and application of heat-treatable structural steels,
which are critical to modern transportation, construction, and agricultural machinery. The
delineation of hardenability bands and the associated metallurgical methods, which link

Appl. Sci. 2024, 14, 2554. https://doi.org/10.3390/app14062554 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14062554
https://doi.org/10.3390/app14062554
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0602-3727
https://orcid.org/0000-0002-6564-7177
https://doi.org/10.3390/app14062554
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14062554?type=check_update&version=1


Appl. Sci. 2024, 14, 2554 2 of 21

hardenability to heat treatment response, microstructure evolution, and eventual mechani-
cal properties, form the basis for the economically viable selection of steels and the design
of components [12].

The hardenability of steel depends on its composition, subject to specific limits defined
for each steel grade. Despite compliance with the compositional specifications, a typical
variation in hardenability can occur for each steel grade. In some instances, tighter com-
positional control is essential for the applications for which the steel is used. Therefore,
several steels are offered in H-grade variants with tighter compositional control. The extent
of control is precisely defined by the maximum and minimum hardenability limits [13].

In the field of materials engineering, there is a growing interest in using artificial and
computational intelligence [4,14,15]. The increasing accessibility of material databases and
advances in machine learning open up new possibilities for the prediction of material prop-
erties and the development of next-generation materials [16–19]. One of the best-known
methods of computational intelligence is the use of artificial neural networks (ANN) [20–22].
Artificial neural networks (ANNs) are invaluable for practical applications as they overcome
the hurdles associated with formulating mathematical models. Their ability to establish con-
nections between studied variables without the need for explicit mathematical descriptions
is a distinctive feature that enables ANNs to learn solutions to problems based on identified
patterns from the given experimentally collected data [1,23–25].

Artificial neural networks (ANNs), especially multilayer perceptron networks (MLPs),
are widely used in modeling steel and metal alloy problems due to their efficiency in handling
classification and regression tasks. ANNs are characterized by their ability to learn from
labeled dataset and are, therefore, well suited for supervised learning applications [26–28].
The critical requirement for the development of an effective neural model is the creation
of a representative dataset. This requires quantifying various requirements, such as data
availability, labelling accuracy, and clustering adequacy. For example, the dataset must
cover a comprehensive range of variables, and their statistical distribution must be thor-
oughly evaluated. In addition, the dataset must be standardized (centering and scaling to
have zero mean and unit standard deviation) before training the neural network to ensure
consistent scales for all variables [29,30]. Proper training of the neural network requires
the representation of patterns that evenly cover the entire range of variables. To ensure
this, the value range of the variables must be determined, and their statistical distribution
must be evaluated. The analysis emphasizes the importance of precisely defining the range
of independent variables for neural models to avoid errors when extrapolating beyond
the range of the training data, especially in multidimensional input domains. Selecting
the optimal number of neurons in the hidden layer of an MLP network is about finding a
balance between approximation and generalization, with overfitting being a well-studied
problem. There are different approaches to determine the optimal number of neurons,
often favoring the lowest error value, although the arbitrary application of this criterion
may increase the risk of overfitting. The evaluation of neural models relies heavily on a
comprehensive test set that adequately represents the full range of the model. Statistical
values for the test set, such as the mean absolute error and the correlation coefficient, should
match those of the training set and, thus, provide a crucial insight into the quality of the
model [1,31].

Splitting a dataset into different subsets for training and validation is a fundamental
aspect of machine learning. It plays a crucial role in various tasks, such as model evaluation,
model comparison, and hyperparameter tuning. Common methods, such as holdout,
bootstrap, and cross-validation (CV), are often used [32]. In this method, the available
dataset is divided into two different subsets: a training set, which is used to determine
the model parameters, and a separate validation set (test set), also known as the hold-out
set or development set. The training set is crucial for model parameterization, while the
validation set serves as an independent dataset for evaluating the model’s performance.
The selection criterion for the final model is to select the one with the fewest errors in
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the validation set. This approach ensures that the selected model generalizes well to new,
unseen data [24].

Cross-validation (CV) is a well-known resampling method that is widely used in statis-
tical learning methods. It serves as an essential tool for estimating the test error associated
with a particular statistical learning method and makes an important contribution to model
evaluation and selection. Evaluating the overall performance of a model and selecting an
appropriate degree of flexibility are integral aspects of cross-validation that are essential
for refining and optimizing statistical learning models [33].

The selection of k in k-fold cross-validation involves a trade-off between bias and
variance. The parameter k determines the number of folds into which the dataset is divided
and influences the estimation of the model’s test error. It is expected to use k = 5 or
k = 10, as empirical evidence suggests that these values lead to a balance yielding test error
rate estimates with moderate bias and variance. This choice helps to reduce the risk of
underfitting (high bias) or overfitting (high variance) in the model evaluation process [33].
Furthermore, a comparison between 5-fold cross-validation and 10-fold cross-validation
shows that 10-fold cross-validation generally performs better in regression scenarios [34].

Bayesian optimization (BO), known for its efficiency in optimizing expensive black-box
functions, has attracted considerable attention, especially in the field of hyperparameter
optimization. The basic concept involves approximating the unknown function, typically
using Gaussian processes, with initial random estimates and iterative updates with each
new observation. Success in navigating a multidimensional space with numerous hy-
perparameters depends on an appropriate number of iterations and careful selection of
hyperparameter ranges, which are influenced by such factors as the size of the dataset,
expert judgment, intuition, and computational resources. Since most machine learning
algorithms require the configuration of a range of hyperparameters, the careful selection of
their values has a significant impact on performance. To streamline the time-consuming and
non-reproducible manual trial-and-error process of determining the optimal hyperparame-
ter configurations, automatic hyperparameter optimization through Bayesian optimization
can be used [35,36].

With limited datasets, BO proves to be more advantageous than a grid search for tun-
ing hyperparameters. The effectiveness of BO results from the use of a probabilistic model,
which enables a more efficient search for optimal hyperparameters at a lower computational
cost. Bayesian tuning of hyperparameters is excellent for exploring the hyperparameter
space and strengthening the robustness of machine learning models, especially in scenarios
with small datasets. Initially, the BO approach searches for the initial set of hyperparam-
eters through various combinations, guided by considerations of the problem space and
presumptions about the potential impact of the model hyperparameters. After determining
the initial hyperparameters, BO employs a probabilistic model to construct a surrogate
model that facilitates the estimation of model performance in a large hyperparameter space.
The model is then trained with the initial set of hyperparameters. This iterative process of
model training and evaluation with different hyperparameters allows BO to accumulate
more data points and, thus, improves the performance and accuracy of the surrogate model.
As the surrogate model evolves, the algorithm becomes more adept at making informed
decisions about where to look for the best hyperparameters. This iterative refinement
process proves invaluable in identifying optimal hyperparameters within limited datasets,
leading to improved model performance [36–38].

During the execution of an experiment, the Experiment Manager actively searches for
the optimal combination of hyperparameters. Using a trial-and-error approach, a new set
of hyperparameters is tested at each iteration of the experiment, considering the results
of the previous experiments. Bayesian optimization plays a central role in this process by
gradually building a probabilistic model of the objective function. This iterative method
guides the selection of subsequent sets of hyperparameters, continuously refining the
model’s estimate of the function’s behavior. Ultimately, this iterative strategy facilitates
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the identification of the most advantageous hyperparameter configuration for a machine
learning model.

2. Materials and Methods

Feed-forward neural networks, a subtype of artificial neural networks, are used for
modeling classification and regression problems. A two-layer feed-forward network,
often referred to as a shallow neural network, consists of an input layer, a hidden layer,
and an output layer. In this architecture, the input layer receives data and the hidden
layer, utilizing an activation function, applies weights and biases to the inputs. The final
output is generated by the output layer. The hidden layer is critical for capturing complex
patterns in the data and the network refines its understanding by adjusting the weights and
biases during the training process. Despite their relative simplicity compared to deeper
architectures, two-layer feed-forward networks can prove effective for certain problems,
especially when dealing with less complex data or limited computational resources.

A RegressionNeuralNetwork object is a trained, feed-forward, and fully connected
neural network for regression. The first fully connected layer of the neural network has a
connection from the network input (predictors), and each subsequent layer has a connection
from the previous layer, see Figure 1. Each fully connected layer multiplies the input by
a weight matrix (LayerWeights) and then adds a bias vector (LayerBiases). An activation
function follows each fully connected layer, except for the last layer (activations and
OutputLayerActivation). The last fully connected layer generates the output of the network,
namely the predicted response values. The solver utilized for training the neural network
model is referred to as “LBFGS”. In the context of creating the RegressionNeuralNetwork
model, fitrnet employs the limited-memory Broyden–Fletcher–Goldfarb–Shanno quasi-
Newton algorithm (LBFGS) [39] as an optimization algorithm to minimize the loss function.
Specifically, the software aims to minimize the mean squared error (MSE) during the
training process [29].

Figure 1. Typical feed-forward, fully connected neural networks for regression [29] (left) and
activation functions used in the modeling task (right).

Bayesian optimization is an iterative algorithm with a probabilistic surrogate model
and an acquisition function to select the next evaluation point. Each iteration involves
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fitting the surrogate model to all past observations of the objective function. The acquisition
function uses the predictive distribution of the probabilistic model to guide the selection of
candidate points and balance exploration and exploitation. This approach, which is less
costly than directly evaluating the expensive black-box function, allows for comprehen-
sive optimization of the acquisition function. Although various acquisition functions are
available, the expected improvement (EI) is often preferred because it can be calculated
analytically if the model prediction y for the configuration λ follows a normal distribution,
as in the following Equations (1) and (2) [40–42]:

E[I(λ)] = E⌊max( fmin − y, 0)⌋ (1)

E[I(λ)] = ( fmin − µ(λ))Φ
(

fmin − µ(λ)

σ

)
+ σ∅

(
fmin − µ(λ)

σ

)
(2)

where ∅(·) and Φ(·) denote the standard normal density and standard normal distribution
function, respectively, and fmin represents the best observed value thus far.

When searching for optimal values for the regression hyperparameters, MATLAB
offers various optimization techniques, including Bayesopt, grid search, and random search,
with Bayesian optimization (bayesopt) being the default setting. When selecting the
hyperparameters for the subsequent experiment, any of the acquisition functions can be
used, such as expected improvement per second plus, expected improvement, expected improvement
plus, expected improvement per second, lower confidence bound, or probability of improvement, as
the optimization option.

In supervised learning, a fundamental concern revolves around the accuracy of the
resulting model. A critical challenge in this context is the phenomenon of overfitting [43],
where a model fits perfectly on the dataset on which it was trained, but has difficulty
generalizing effectively to new, unseen data. Conversely, simpler models, such as a least-
squares line, are less susceptible to being influenced by inherent noise but may inadequately
capture the relationship between variables, leading to underfitting. It is unlikely that both
overfitting and underfitting models will generalize well, demonstrating the importance of
finding a balance between the two models [44].

Assessing the generalization ability of a model raises an important question: How
can we assess its performance on new data? The ideal approach is to evaluate the model
with new data from the same population as the training dataset [45]. However, practical
constraints often limit the ability to conduct independent validation studies. Therefore, it is
advisable to first estimate the predictive performance before investing resources in external
validation studies. Usually, this estimation is performed using resampling techniques, such
as cross-validation [44].

There are many alternative CV schemes, and the k-fold CV is one of the most popular.
The k-fold CV is a widely used resampling method in the practical application of statistical
learning methods. The set of observations are randomly divided into k groups (folds) of
approximately equal size. In each iteration, the first fold is designated as the validation
set, and the model is trained on the remaining k − 1 folds. The mean square error (MSE)
is then calculated for the observations in the remaining group. This process is repeated k
times, resulting in k estimates of the test error (MSE1, MSE2,. . ., MSEk). The final k-fold CV
estimate is obtained by averaging these values, as in the following Equation (3) [33]:

CVk =
1
k

k

∑
i=1

MSEi (3)

Finally, the observations of the test set are used as an independent dataset to evaluate
the model’s performance and to select the model. The model with the smallest test RMSE
and the smallest mean absolute error (MAE) is selected as the final model, as these metrics
ensure that the selected model generalizes well to a new dataset. In addition to RMSE,
mean square error (MSE), mean absolute error (MAE), and coefficient of determination (R2)



Appl. Sci. 2024, 14, 2554 6 of 21

are used to evaluate the model during the test performance analysis, as in the following
Equations (4)–(7):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (6)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (7)

where n is the total number of experimental observations, yi is the experimental values for
each of the runs, ŷi is the predicted value for each of the observed values, and y is the mean
of the experimental values of the runs.

We assessed the cross-validation loss of neural network regression models by ex-
amining various hyperparameter settings, including regularization strengths (lambda),
activation functions (‘relu’, ‘tanh’, ‘sigmoid’, and ‘none’), hidden layer sizes, and hidden
node sizes. We then fine-tuned the hyperparameters using Bayesian optimization to find
the optimal configuration that minimizes model error and improves performance.

2.1. Analysis of the Dataset

In this study, the prediction of the hardness of heat-treated steel based on chemical
composition and Jominy distance is investigated. The relationship between the Jominy dis-
tance and hardness, often referred to as the hardenability curve, serves as the central aspect
of the analysis. It is assumed that the experiments conform to ASTM A-255 standards [46]
to ensure consistency and reliability in data collection. In particular, it is assumed that the
heat treatment procedures for the steel specimens meet the optimum conditions specified
in the ASTM guidelines [46] to ensure the consistency and reliability of the test setup. In
addition, the grain size of the steel samples is standardized to a value of seven on the
ASTM scale, which contributes to the uniformity and reproducibility of the heat treatment
process [2].

The dataset contains data on measurements on the Rockwell hardness scale C at
distances of 1.5, 3, 5, 7, 9, 11, 13, 15, 20, 25, 30, 40, and 50 mm. It also contains information
on the percentage of mass fraction of concentration of the seven basic alloying elements
found in the group of alloyed structural alloy steel, namely C, Mn, Si, Cr, Ni, Mo, and Cu.
Table 1 outlines the ranges of predictor parameters used in modeling the hardenability
of steels.

Table 1. Ranges of predictor parameters used to model hardenability of steels.

Range (% Mass) C Mn Si Cr Ni Mo Cu Jominy Distance (mm)

Minimum 0.12 0.36 0.12 0.09 0.04 0.0098 0.07 1.50

Maximum 0.70 1.40 0.41 1.92 2.739 0.43 0.34 50

In MATLAB, the cvpartition function is a versatile tool for creating data partitions
that is often used in machine learning and statistical analysis tasks. A typical application
of this function is holdout validation, where the dataset is partitioned into a training set
and a test set (or holdout set). The syntax cvpartition(n, ‘HoldOut’, p) generates a random,
non-stratified partition for holdout validation on a dataset with n observations. Here, p
represents the proportion of observations assigned to the test set, while the remaining data
form the training set. This method enables straightforward and efficient data partitioning
for training and evaluation purposes in machine learning workflows [29].
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Table 2 presents the descriptive statistics of the training and test datasets. It provides
a comprehensive insight into the characteristics of the datasets and illustrates their distri-
bution patterns and variability. In it, we examine critical statistical parameters, namely
the maximum, minimum, mean, and standard deviation of the percentage mass fractions
of seven elemental constituents and the Jominy distance, an indicator of hardenability. In
this way, we examine the spectrum, central tendency, and scattering tendencies of the alloy
compositions in the training and test datasets.

Table 2. Descriptive statistics of the training and test datasets used in modeling the hardenability
of steels.

Dataset Statistics Datasets

Predictors

C Mn Si Cr Ni Mo Cu Jominy
Distance

Maximum
Training 0.7 1.4 0.41 1.92 2.739 0.43 0.34 50

Test 0.7 1.4 0.41 1.92 2.739 0.43 0.34 50

Minimum
Training 0.12 0.36 0.12 0.09 0.04 0.0098 0.07 1.5

Test 0.12 0.36 0.12 0.09 0.04 0.0098 0.07 1.5

Average Training 0.28 0.83 0.26 1.00 0.47 0.12 0.17 17.54

Test 0.28 0.82 0.26 1.01 0.50 0.12 0.16 18.28

Standard Deviation
Training 0.12 0.26 0.04 0.33 0.58 0.09 0.05 14.18

Test 0.13 0.26 0.04 0.34 0.60 0.09 0.05 14.89

The goal of predictive hardenability modeling is to create a model based on the
training dataset and then to apply this model to the test dataset. However, to achieve the
best results, the training dataset must be a representative sample of the data we want to
apply it to (i.e., the test dataset). Otherwise, our model will be inadequate at best or utterly
useless at worst. The Kolmogorov–Smirnov test checks whether the distributions of the
two samples, namely the training and test datasets, differ significantly. The null hypothesis
is that the samples come from the same distribution [47]. Table 3 presents the results of the
Kolmogorov–Smirnov test, which is used to assess the goodness of fit of the training and
test datasets.

Table 3. Kolmogorov–Smirnov test results of goodness of fit of the training and test datasets.

Features C Mn Si Cr Ni Mo Cu Jominy
Distance Hardness

KS test value 0.026 0.025 0.027 0.026 0.022 0.027 0.020 0.033 0.023

p-value 0.65 0.70 0.62 0.67 0.82 0.60 0.91 0.37 0.81

To assess the similarity of the feature distributions between the training and test
datasets, we performed Kolmogorov–Smirnov (KS) tests at a 5% significance level for each
feature. The KS test values, representing the maximum absolute differences between the
cumulative distribution functions, were calculated for the features C, Mn, Si, Cr, Ni, Mo, Cu,
Jominy distance, and hardness (HRC). The KS test values obtained are between 0.020 and
0.033, indicating relatively small differences between the distributions. In addition, p-values
were calculated for each test, ranging from 0.37 to 0.91. Significantly, all calculated p-values
were relatively high, indicating no substantial evidence to reject the null hypothesis of
similarity between the distributions. These results provide confidence in the similarity of
the feature distributions between the training and test datasets and confirm the robustness
of our partitioning of the dataset for training and evaluating the models, i.e., the model is
likely to generalize well to the unseen test dataset, see Figure 2.



Appl. Sci. 2024, 14, 2554 8 of 21

Figure 2. Training and test datasets’ split distribution.

2.2. Experimental Setup

The experiments were performed with MATLAB R2023b using the Statistics and
Machine Learning Toolbox (MATLAB 23.2, R2023b) for custom training experiments for
machine learning and Bayesian optimization. In addition, the Parallel Computing Toolbox
(MATLAB 23.2, R2023b) facilitated the simultaneous execution of multiple trials. The
MATLAB Experiment Manager was crucial for planning and running experiments to train
and compare the neural network models. In the Experiment Manager, a set of hyperpa-
rameters were explored using Bayesian optimization, with each experiment generating a
set of results for each run. These results comprised 1500 trials, each representing a distinct
combination of hyperparameters. The pseudocode in Appendix A outlines the process for
training a regression neural network model, tuning the hyperparameters, and computing
associated metrics in the experimental settings.

The parameters optimized during the modeling process are ‘Activations’, ‘Lambda’,
‘LayerSizes’, and ‘Standardize’. These parameters are options for the optimization of
hyperparameters in connection with the fitting of a neural network regression model
(fitrnet). The specific functions and effects of each parameter are explained below:

1. Activations: This parameter refers to the choice of activation functions used in the
neural network layers. Activation functions introduce non-linearity into the neural
network and allow it to learn complex relationships in the data.

2. Lambda: This parameter represents the strength of regularization, often referred to
as λ (lambda), which penalizes significant coefficients in the neural network model.
Regularization helps prevent overfitting by discouraging overly complex models.
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3. LayerSizes: This parameter refers to the size (number of neurons) of the hidden layers
in the neural network. The selection of appropriate layer sizes is crucial for the balance
between model complexity and performance.

4. Standardize: This parameter specifies whether or not each numeric predictor variable
should be standardized before fitting the neural network. When standardizing, the
predictor variables are scaled to have a mean of zero and a unit standard deviation.
This can improve convergence and performance, especially if the predictors have
different scales.

There are numerous normalization methods, including statistical normalization, stan-
dardization, sigmoidal normalization, and others. In this study, standardization is used
because it results in consistent variances in the features and normalizes the input features
to the same range [48].

In hyperparameter optimization, the goal is to find the combination of these parame-
ters that minimizes the cross-validation loss and, thus, optimizes the performance of the
neural network model for the task at hand [29].

Five distinct experiments with different hyperparameter settings were conducted for
the hyperparameter optimization process. Using the BO methods of hyperparameter opti-
mization and cross-validation schemes, different combinations of hyperparameters were
investigated in the experiments, including the number of layers, activation functions, stan-
dardization techniques, regularization parameters and layer sizes. Systematically varying
these parameters and performing 5-fold and 10-fold cross-validation experiments, the study
aimed to identify optimal model configurations that balance model complexity and gener-
alizability, thereby improving the accuracy of predicting hardenability. The experiments
were run for 1500 trials, and validation RMSE was recorded as the performance metric.

1. Experiment 1 (10-fold CV): NumLayers [1, 2], Activations [‘relu’, ‘tanh’, ‘sigmoid’,
‘none’], Standardize [‘true’, ‘false’], lambda [1.9172 × 10−9, 0.1], Layer 1 [1, 300] and
Layer 2 [1, 300].

2. Experiment 2 (5-fold CV): NumLayers [1, 2], Activations [‘relu’, ‘tanh’, ‘sigmoid’,
‘none’], Standardize [‘true’, ‘false’], lambda [1.9172 × 10−9, 0.1], Layer 1 [1, 300] and
Layer 2 [1, 300].

3. Experiment 3 (10-fold CV): Layer 1 [1, 300], Activations [‘relu’, ‘tanh’, ‘sigmoid’,
‘none’], Standardize [‘true’, ‘false’] and lambda [1.9172 × 10−9, 0.1].

4. Experiment 4 (10-fold CV): Layer 1 [1, 100], Activations [‘relu’, ‘tanh’, ‘sigmoid’],
Standardize [‘true’, ‘false’] and lambda [1.9172 × 10−9, 0.1].

5. Experiment 5 (10-fold CV): Layer 1 [1, 30], Activations [‘relu’, ‘tanh’, ‘sigmoid’],
Standardize [‘true’, ‘false’] and lambda [1.9172 × 10−9, 0.1].

For the tuning of the hyperparameter process, 5-fold and 10-fold CV were employed
to protect the model against overfitting. Experiment 1 and Experiment 2 have the same
hyperparameter settings with different cross-validation folds.

In this study, the main dataset of 6136 observations is randomly split into two sets:
A training dataset contains 85% of the observations and is used to determine the model
parameters and hyperparameters, and a separate model test dataset contains the remaining
15% of the observations. The training dataset is then used for k-fold cross-validation during
the training and validation phase of model development. The training dataset containing
the observations is randomly split into k mutually exclusive folds of approximately equal
size. In each iteration, the first fold is determined as the validation set, and the model is
trained on the remaining k − 1 folds. The root mean square error (RMSE) is then calculated
for the observations in the remaining fold. This process is repeated k times, resulting in k
estimates of the validation error. The average of these results is the final estimate of the
k-fold CV and is reported as the validation RMSE of the model.
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3. Results

This section provides a comprehensive overview of model training and tuning, perfor-
mance analysis, and model evaluation and selection to obtain the best-performing model
for prediction and deployment. The performance of the various neural network config-
urations was evaluated using the root mean square error (RMSE) and the configuration
with the lowest RMSE was selected for subsequent model testing using a separate test
dataset. The tuned models were thoroughly evaluated to determine the most appropriate
configuration for accurate hardness prediction. All models used standardized datasets and
the sigmoid activation function that appeared to be effective for the modeling task.

3.1. Experimental Results Analysis

Table 4 and Figure 3 presents five optimal models determined by Bayesian opti-
mization of the hyperparameters in five different experiments, and their performance
evaluations. These results indicate the performance of each model. The RMSE and R2

values for both the training and test datasets show how well the models generalize in
relation to unseen dataset.

Table 4. Optimal models were determined through Bayesian optimization of the hyperparameters in
the five experiments.

Model Architecture Lambda
RMSE R2 MSE MAE

Train Test Train Test Test Test

I (10-fold CV) 8-110-104-1 0.0001 1.0324 1.1201 0.9914 0.9892 1.2546 0.7214

II (5-fold CV) 8-93-120-1 0.0002 1.0690 1.0976 0.9907 0.9896 1.2046 0.7101

III (10-fold CV) 8-298-1 1.0816 × 10−7 1.1544 1.3222 0.9892 0.9849 1.7483 0.8560

IV (10-fold CV) 8-100-1 0.0001 1.2083 1.3529 0.9882 0.9842 1.8305 0.8897

V (10-fold CV) 8-30-1 2.367 × 10−5 1.5505 1.6299 0.9805 0.9771 2.6565 1.1553

Figure 3. Comparison of the training loss of the best five models from the five experimental runs.
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All models perform well, as shown by the relatively low RMSE values for both the
training and test datasets. The R2 values, which represent the proportion of variance
explained, are consistently high, indicating that the models capture a significant portion of
the variability in the data.

Model II is characterized by the lowest RMSE in the test dataset (1.0976), indicating a
higher predictive accuracy compared to the other models. The performance of the model is
shown in Figure 4 for more clarification. Model V has shown the highest RMSE on the test
dataset (1.6299), indicating that it is less effective when generalizing to new data.

Figure 4. Performance evaluation of Model II (model4301) on an unseen new test dataset.

The differences in architecture (number of hidden layers and nodes) between the
models do not consistently correlate with performance. Models I, III, IV, and V show
similar performance values despite their different architectures. The lambda values for reg-
ularization vary, indicating the influence of regularization strength on model performance.

Of the top models from each experiment, Model II proves to be the most promising,
as it has the lowest RMSE for the test set and high R2 values. It appears to be the best-
performing model among the options offered and shows superior predictive accuracy for
the new unseen test set.

3.2. Experiment 1 and Experiment 2 Comparative Analysis

In Experiment 1, a 10-fold cross-validation approach was used to evaluate the per-
formance of the model under different hyperparameter configurations. The parameters
considered include the number of layers (NumLayers) from 1 to 2, activation functions (acti-
vations) including ‘relu’, ‘tanh’, ‘sigmoid’ and ‘none’, standardization (standardize) options
of ‘true’ or ‘false’, regularization parameter (lambda) with values between 1.9172 × 10−9

and 0.1, and the sizes of Layer 1 and Layer 2 ranging from 1 to 300. In Experiment 2, a
5-fold cross-validation was performed to evaluate the robustness of the model under the
same hyperparameter variations. These experiments aimed to systematically investigate
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the effects of different configurations on the predictive performance of the model and to
gain insights into the optimal hyperparameter settings for each regression task.

The process of identifying the optimal model for predicting hardness in the regression
task involved three important steps. First, the fifteen best-performing models from each
experiment were selected, highlighting their performance in the test datasets. Then, the
selection was refined to the five best models. The results are shown in Tables 5 and 6. In
the final stage, a comparative analysis was performed between the best model from each
experiment and the best models from the training datasets. Ultimately, the most effective
test model was identified for subsequent prediction and deployment.

Table 5. The five best models from Experiment 1 (10-fold CV).

Models Activation Lambda L1 L2
RMSE R2 MSE MAE

Train Test Train Test Test Test

Model 4204 ‘sigmoid’ 0.000214222 125 148 1.0388 1.1125 0.9913 0.9893 1.2376 0.7407

Model 4208 ‘sigmoid’ 6.93 × 10−5 85 141 1.0426 1.0790 0.9912 0.9900 1.1643 0.6938

Model 4210 ‘tanh’ 0.001612633 82 154 1.0451 1.1023 0.9912 0.9895 1.2150 0.6988

Model 4211 ‘tanh’ 0.00199953 74 175 1.0460 1.1083 0.9911 0.9894 1.2284 0.7068

Model 4212 ‘sigmoid’ 7.22 × 10−5 73 112 1.0463 1.0963 0.9911 0.9896 1.2019 0.7184

Table 6. The five best models from Experiment 1 (5-fold CV).

Models Activation Lambda L1 L2
RMSE R2 MSE MAE

Train Test Train Test Test Test

Model 4301 ‘sigmoid’ 0.000185376 93 120 1.0690 1.0976 0.9907 0.9896 1.2046 0.7101

Model 4303 ‘sigmoid’ 0.000136655 116 112 1.0768 1.0826 0.9906 0.9899 1.1720 0.6885

Model 4307 ‘sigmoid’ 0.000224495 82 123 1.0968 1.1109 0.9903 0.9894 1.2340 0.7269

Model 4308 ‘sigmoid’ 8.70 × 10−5 91 153 1.0971 1.0830 0.9903 0.9899 1.1729 0.6937

Model 4314 ‘sigmoid’ 0.000146841 87 167 1.1033 1.0982 0.9901 0.9896 1.2059 0.7040

These results provide a comprehensive insight into the performance of the models
under different cross-validation schemes and help to select the most effective models for
predicting hardness in the regression task.

Based on the metrics provided in Table 7 and Figures 5 and 6, Model 4208 appears
to outperform the other models, except for in terms of the mean absolute error (MAE).
It achieves a relatively low MSE of 1.1643, indicating its ability to minimize the squared
differences between predicted and actual values. The root mean squared error (RMSE)
is also comparatively low at 1.0790, indicating accurate predictions with less variability.
Although the MAE is slightly higher compared to some other models, it is still reasonable
at 0.6938, indicating a relatively small average absolute error.

Table 7. Comparing the results of the best model from each experiment and the best models from the
training datasets.

Model MSE RMSE MAE R R2 STD MaxAE

Model 4201 1.2546 1.1201 0.7214 0.9946 0.9892 1.1204 11.0010

Model 4208 1.1643 1.0790 0.6938 0.9951 0.9900 1.0790 9.8748

Model 4301 1.2046 1.0976 0.7101 0.9948 0.9896 1.0979 10.0270

Model 4303 1.1720 1.0826 0.6885 0.9950 0.9899 1.0827 11.1998
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Figure 5. Comparison of training losses for the two best models from the training and test datasets.

In addition, Model 4208 has a high correlation coefficient (R) of 0.9950, indicating
a strong linear relationship between the predicted and actual values. The coefficient of
determination (R2) is 0.98996, which means that the model captures a substantial portion
of the variance in the data. The standard deviation (STD) is 1.07898, which indicates a
relatively low dispersion of the residuals.

The table displays the performance metrics of different models in predicting hard-
ness. Each model is assessed based on various metrics, including mean squared error
(MSE), root mean squared error (RMSE), mean absolute error (MAE), correlation coefficient
(R), coefficient of determination (R2), standard deviation (STD), and maximum absolute
error (MaxAE).

To summarize, Model 4208 is a promising candidate for hardness prediction. It
shows a balanced performance on various metrics, with a particularly notable strength in
minimizing the squared error and a high correlation with the actual data.
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Figure 6. Performance evaluation of Model 4208 on an unseen new test dataset.

3.3. Illustrative Example of Model 4208 to Determine Hardenability Curves

To evaluate the performance of the model, the hardenability curves of the 41Cr4 and
42CrMo4 steel (according standard [49]) grades are compared by examining the experimen-
tal and predicted results.

In this particular example, the performance of the model is evaluated by comparing
the predicted hardness values with the observed (experimental) values for the 41Cr4 and
42CrMo4 steel grades. As evident from Table 8 and Figure 7, the results show close agree-
ment between the experimental and predicted values. The close agreement between the
experimental and predicted hardness values indicates a high degree of accuracy and relia-
bility in the model’s ability to predict the hardenability of the steels. This robust predictive
capability indicates the model’s potential for optimizing heat treatment processes, assisting
in material selection, and improving overall efficiency in the design and manufacture of
steel components.
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Table 8. Experimental and predicted hardness for 41Cr4 and 42CrMo4 steel grades.

Steel Grade

Distance in mm from Quenched End

Hardness in HRC

1.5 3 5 7 9 11 13 15 20 25 30 40 50

41Cr4
Exp. 58.50 57.50 56.75 55.25 54.00 51.75 49.25 45.50 40.50 38.00 37.75 29.00 24.00

Pred. 58.38 57.71 56.57 55.49 54.05 51.69 48.70 45.61 40.64 38.34 36.39 29.39 23.90

42CrMo4
Exp. 56.33 55.33 54.17 53.50 52.00 49.00 45.17 42.00 37.67 35.17 34.00 31.83 28.67

Pred. 56.17 55.55 54.55 53.57 51.94 48.91 45.41 42.33 37.57 35.42 33.96 31.24 29.02

Figure 7. The target and predicted hardenability curves of 41Cr4 and 42CrMo4 steel grades.

3.4. Illustrative Example of Model 4208 to Determine Restricted Hardenability Band of 42CrMo4
Steel Grade

In this section, the use case of the model in determining the hardenability band is
discussed. Determining the H-band offers numerous advantages, including optimized
material selection, enhanced component performance, cost-effective manufacturing, pre-
vention of defects and failures, improved consistency and quality control, tailored material
properties, and customization to specific customer requirements. Moreover, it aids in
restricting the chemical composition ranges for applications and ensures the desired perfor-
mance characteristics.

Due to variations in chemical composition among different heats of the same steel
grade, hardenability bands are defined using the Jominy end-quench test. The upper curve
indicates maximum hardness values corresponding to the upper composition limits, while
the lower curve represents minimum hardness values for the lower composition limits.
Hardenability bands are valuable for both suppliers and customers, with most steels now
purchased based on these bands. Suppliers ensure that a significant percentage, typically 93
or 95%, of mill heats meeting chemical specifications fall within the specified hardenability
band [50].

The model can be used either manually or can be combined with Bayesian optimiza-
tion or a genetic algorithm [14] to determine the limiting chemical compositions values
within the required hardness stated by the customer. The integration of artificial neural net-
works with various modeling techniques, such as mathematical modeling, computational
intelligence, and artificial intelligence is a common practice. The amalgamation of different
methods within a single model enables the exploration of a larger problem space and leads
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to a synergistic effect that utilizes the strengths of the individual methods [23,51]. Table 9
shows the chemical compositions determined when comparing the 42CrMo4 steel grade
hardness with the DIN EN 10083-3 technical standard [49].

Table 9. 42CrMo4 steel grade and its chemical composition for calculating H-band.

Chemical Composition (% Mass) C Mn Si Cr Ni Mo Cu

42CrMo4

+HH
Max 0.45 0.81 0.28 1.08 0.12 0.23 0.22

Min 0.4 0.68 0.22 0.91 0.13 0.16 0.11

+HL
Max 0.45 0.82 0.28 1.12 0.12 0.25 0.25

Min 0.4 0.61 0.18 0.95 0.04 0.18 0.07

Table 10 shows the predicted maximum (Max) and minimum (Min) hardness values for
the restricted hardenability towards the top of the scale (+HH) and restricted hardenability
towards the bottom of the scale (+HL) bands of 42CrMo4 steel grade. The predicted values
were determined using the developed model. In addition, the DIN EN 10083-3 provides
reference values for the 42CrMo4 (+H) maximum (Max) and minimum (Min) hardness for
comparison. This is visually depicted in Figure 8 for enhanced clarity.

Table 10. 42CrMo4 steel grades hardness with restricted hardenability scatter bands (+HH and
+HL grades).

42CrMo4

Distance in mm from Quenched End

Hardness in HRC

1.5 3 5 7 9 11 13 15 20 25 30 40 50

+HH
Max 59.37 58.97 58.19 57.48 56.99 56.70 56.35 55.84 54.23 51.95 49.67 44.65 40.49

Min 54.84 54.20 53.20 52.24 50.45 47.29 43.66 40.66 37.15 35.87 34.68 32.41 30.58

+HL
Max 57.67 57.14 56.23 55.45 54.92 54.58 54.15 53.53 51.61 49.16 46.78 42.31 38.69

Min 52.88 52.32 51.34 50.00 47.41 43.67 40.11 37.24 33.35 32.34 31.82 30.36 28.31

Figure 8. Restricted hardenability scatter band (RH-Band) for the 42CrMo4 steel grade.
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Comparing the predicted values with the standard reference values shows that the
predictions of the model are generally within the specified hardness ranges, both for
the hardenability and hardenability-limited bands. The close agreement between the
predicted values and standard values indicates that the model performs well in estimating
the hardenability properties of the 42CrMo4 steel grade. This information is critical to
ensure that the steel meets the specified hardness requirements for various applications
and contributes to effective material selection and component design.

Since the model is data-based and has been trained on datasets comprising nearly
40 steel grades with chemical composition and Jominy distance information, its application
extends to the prediction of hardenability curves for these specific steel grades. However,
it is important to note one limitation of the model: it cannot predict results for features
beyond the range covered by the training datasets.

4. Discussion

The results of the experiments not only provided valuable insights into the perfor-
mance of the neural network regression model in predicting the hardenability of steels, but
also shed light on the effects of the chosen hyperparameters and cross-validation strategies
on the robustness of the model and the prediction accuracy through a comparative analysis.

The results obtained from the neural network regression (fitrnet) models, particularly
Model 4208 (8-85-141-1), demonstrate their remarkable effectiveness in predicting the hard-
ness of steels. The rigorous hyperparameter tuning, facilitated by Bayesian optimization,
contributes significantly to the performance of the models. The 5-fold and 10-fold cross-
validation schemes ensure the reliability and generalizability of the models and provide
robust insights into their predictive capabilities. The 10-fold cross-validation proved to be
the optimal choice in this study, which is in line with recommendations from the previous
literature [34]. When comparing various evaluation metrics, such as mean square error
(MSE), root mean square error (RMSE), mean absolute error (MAE), and coefficient of
determination (R2), the 4208 model comes out on top. With an impressive RMSE of 1.0790
and an R2 of 0.9900, the model demonstrates excellent accuracy and reliability across the
assessment measures.

The illustrative example in the research paper shows the practical application of Model
4208 in determining the hardenability band for a particular steel grade. This application
highlights the effectiveness of the model in predicting and optimizing heat treatment results
and underscores its practical utility in materials engineering.

In summary, the experiments highlight the predictive capabilities of fitrnet models
in determining the hardenability of steel, with Model 4208 demonstrating exceptional
accuracy and robustness. The inclusion of Bayesian optimization improves the efficiency of
hyperparameter tuning and highlights its importance in improving model performance.

5. Conclusions

The experiments conducted shed light on the effectiveness of the regression neural net-
work (fitrnet) models in predicting steel hardness. The models, which were rigorously tuned
using Bayesian optimization, have impressive predictive capabilities for steel hardness.
Among the models, Model 4208 (8-85-141-1) stands out, demonstrating excellent accuracy
and robustness across a range of assessment measures. The comprehensive cross-validation
schemes (5-fold and 10-fold) ensure the reliability of the models and their generalization to
unseen data. The inclusion of Bayesian optimization not only improves the efficiency of
hyperparameter tuning but also highlights its importance in refining model performance.
The performance of the model is also demonstrated through examples which show its ef-
fectiveness in tackling practical problems. This research provides valuable insights into the
field of modeling material science and engineering properties. It highlights the potential of
regression neural networks in improving hardenability prediction and lays the foundation
for future advances.
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Appendix A

This pseudocode outlines the process for training a regression neural network model,
tuning hyperparameters, and computing associated metrics within the experiment frame-
work. It includes functions for conducting the experiment, tuning the hyperparameters,
creating the regression model, and performing cross-validation.

Figure A1. Cont.
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Figure A1. Regression model optimization pseudocode.
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