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Abstract: The computer numerically controlled (CNC) system is the key functional component of 

CNC machine tool control systems, and the servo drive system is an important part of CNC systems. 

The complex working environment will lead to frequent failure of servo drive systems. Taking ef-

fective health management measures is the key to ensure the normal operation of CNC machine 

tools. In this paper, the comprehensive effect of fault prediction and fault diagnosis is considered 

for the first time, and a health management system for machine tool servo drive systems is proposed 

and applied to operation and maintenance management. According to the data collected by the sys-

tem and related indicators, the technology can predict the state trend of equipment operation, iden-

tify the hidden fault characteristics in the data, and further diagnose the fault types. A health man-

agement system mainly includes fault prediction and fault diagnosis. The core of fault prediction is 

the gated recurrent unit (GRU). The a�ention mechanism is introduced into a GRU neural network, 

which can solve the long-term dependence problem and improve the model performance. At the 

same time, the Nadam optimizer is used to update the model parameters, which improves the con-

vergence speed and generalization ability of the model and makes it suitable for solving the predic-

tion problem of large-scale data. The core of fault diagnosis is the self-organizing mapping (SOM) 

neural network, which performs cluster analysis on data with different characteristics, to realize 

fault diagnosis. In addition, feature standardization and principal component analysis (PCA) are 

introduced to balance the influence of different feature scales, enhance the feature of fault data, and 

achieve data dimensionality reduction. Compared with the other two algorithms and their im-

proved versions, the superiority of the health management system with high-dimensional data and 

the enhancement effect of fault identification are verified. The relative relationship between fault 

prediction and diagnosis is further revealed, and the adjustment idea of the production plan is pro-

vided for decision makers. The rationality and effectiveness of the system in practical application 

are verified by a series of tests of fault data sets. 

Keywords: machine tool servo drive system; health management; PHM; failure prediction; GRU; 

fault diagnosis; SOM 

 

1. Introduction 

The manufacturing industry is an important embodiment of national strength and 

an important force supporting the sustained growth of the global economy. The rapid 

development of the new generation of information technology and advanced manufac-

turing technology has brought an opportunity for the transformation of the traditional 

manufacturing industry. At present, more and more intelligent manufacturing elements 

have appeared in the manufacturing industry [1,2]. The emergence of the computer 
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numerically controlled (CNC) machine tool has fundamentally changed the pa�ern of the 

manufacturing industry. The CNC machine tool is widely used in the manufacturing in-

dustry with its advantages of high precision, high efficiency, and high reliability. With the 

increasing requirements on processing efficiency and product quality, improving the pro-

cessing performance and accuracy of CNC machine tools has become an urgent problem 

to be solved [3–5]. The CNC system is composed of a variety of functional modules, is the 

key to the normal operation of the machine tool control system, is affected by many factors 

in the processing process, and its stability directly determines the working state of the 

entire machine tool [6]. Unpredictable changes in the machining operating environment 

will often lead to unexpected equipment failures, which will lead to a decline in the overall 

reliability of the equipment, so the use of appropriate strategies to predict and identify 

machine tool failures and healthy management of the operating state of the machine tool 

are important prerequisites for ensuring the productivity and reliability of CNC machine 

tools. 

Prediction and health management (PHM) is a cu�ing-edge integrated technology, 

which can predict the future health state of the system based on information such as sys-

tem performance, control, and operation and maintenance knowledge and data to dynam-

ically support improved operation and maintenance decisions [7]. Over the past decade, 

PHM has undergone intense research and flourished, becoming a popular interdiscipli-

nary field in academia and industry, involving mathematics, computer science, commu-

nications, physics, chemistry, materials science, operations research, engineering, and 

other disciplines. In the fields of aerospace, energy, civil, chemical, process, and industrial 

engineering and transportation and manufacturing, PHM is recognized as an important 

enabling technology to improve mission service and production reliability, operational 

safety, equipment maintenance efficiency, and affordability [8]. 

Recurrent neural networks are widely used in nonlinear time series modeling. Typi-

cal recurrent neural networks include long short-term memory (LSTM), LSTM with cou-

pled inputs and forge�ing gates, gated loop units, etc. The recurrent neural network does 

not need to select the number of values of the delayed input time series. These recurrent 

neural networks have been shown to be successful in many applications such as natural 

language processing, residual useful lifetime prediction, traffic flow prediction, etc. [9]. 

For the rapid detection of structural anomalies, Smriti Sharma et al. [10] proposed a real-

time method based on LSTM, which uses an unsupervised LSTM prediction network for 

detection, and then a supervised classifier network for localization. Liu et al. [11] proposed 

a hybrid real-time method for determining the start time of rolling bearing failure. Based 

on the dynamic 3σ interval and the voting mechanism, the startup time can be adaptively 

predicted. First, the LSTM neural network is used to predict the trend of the bearing’s 

future operation. Then, an exponential model is used to estimate its remaining useful life 

(RUL). Zheng et al. [12] proposed a mechanical state prediction method for high-voltage 

circuit breakers based on an LSTM neural network and support vector machine (SVM). 

This method can accurately predict the mechanical state of HV circuit breakers, laying a 

foundation for realizing the predictive maintenance of the mechanical state of HV circuit 

breakers. By combining the LSTM architecture of deep learning methods with a glass SVM 

and based on training data composed entirely of healthy signals (i.e., semi-supervised), 

Kilian Vos et al. [13] developed an automatic algorithm capable of identifying any abnor-

mal mechanical behavior captured by vibration measurements. 

Lu et al. [14] proposed a RUL prediction model based on the auto-encoder gated re-

cursive unit (AE-GRU), in which the auto-encoder (AE) extracted important features from 

the original data and the gated recurrent unit (GRU) selected information from the se-

quence to predict RUL. Zhang et al. [15] proposed an innovative algorithm that combines 

a hybrid spatial and temporal a�ention-based gated recursive unit (HSTA-GRU) with the 

seasonal trend decomposition program Loess (STL) to predict more fault information from 

multiple time series data. Based on the graph convolutional network (GCN) and GRU 

models, Man et al. [16] proposed a new GCG framework combining a GCN and GRU to 
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extract features and predict shaft temperature. Chen et al. [17] developed a hybrid predic-

tion method for mechanical degradation. In this method, an algorithm based on 3r criteria 

was introduced to detect the initial time point of degradation, and the GRU network was 

used to learn the degradation characteristics based on existing data, to predict the long-

term degradation trend through multiple prediction programs. 

At present, how to quickly and accurately identify the faults generated during the 

operation of equipment has become a research hotspot in the prediction and maintenance 

management of mechanical equipment health status [18]. To diagnose equipment faults 

timely and accurately and maintain the normal operation of the equipment, a variety of 

intelligent diagnosis methods have been proposed, mainly including signal processing 

methods [19] and data-driven methods [20]. 

With the support of an intelligent data acquisition system to obtain a large amount 

of original available data, data-driven fault diagnosis technology has gradually entered 

the research field [21,22]. General intelligent diagnosis and prediction methods are mainly 

composed of two parts, namely feature extraction and fault classification [23]. At present, 

many machine learning methods have been applied to mechanical fault diagnosis such as 

the artificial neural network (ANN) [24], SVM [25], hidden Markov model (HMM) [26], 

and so on. 

Different from traditional machine learning methods that adopt supervised learning, 

unsupervised-learning-based deep learning can realize fault diagnosis when samples are 

scarce, providing an effective solution for fault feature diagnosis and analysis. This ad-

vantage makes unsupervised feature learning methods gradually enter the field of me-

chanical fault diagnosis [27,28]. Niu et al. [29], for example, proposed a hybrid flexible 

diagnosis framework for rolling bearings based on a DBN model as a reliable and effective 

general method for bearing fault diagnosis. Shi et al. [30] proposed a fault diagnosis 

method based on a sparse auto-encoder (SAE) for advanced feature learning and bearing 

fault classification, which improved diagnosis accuracy and efficiency. Liu et al. [31] pro-

posed a partial adversarial domain adaptive (SPADA) model based on stacked auto-en-

coders to solve the fault diagnosis problem in PDA, and the diagnostic performance of 

SPADA is superior to existing methods. In the field of unsupervised learning, the self-

organizing mapping (SOM) neural network is a popular algorithm in the field of data 

clustering, and it is often used in the field of fault diagnosis because of its excellent effect 

of cluster analysis. Lu et al. [32] proposed a gear fault intelligent diagnosis model based 

on the SOM neural network, which can predict the remaining service life of gear trans-

mission systems according to state indicators. You et al. [33] proposed a method to diag-

nose the converter fault of wind turbines by using the SOM method, which avoids training 

many samples and has high accuracy. Xiao et al. [34] opposed a gear fault diagnosis 

method based on variational mode decomposition (VMD) and SOM neural networks 

based on kurtosis criteria, which has a good effect on gear fault diagnosis. Wang et al. [35] 

proposed a fault diagnosis method based on integrated empirical mode decomposition 

(EEMD) time-frequency energy and SOM neural networks, and the diagnosis results of 

this method have good visibility. 

The input of high-dimensional data may have an impact on subsequent diagnostic 

efficiency and accuracy. Therefore, the reduction and feature extraction of high-dimen-

sional process data are of great significance before fault identification [36]. Principal com-

ponent analysis (PCA) is a typical method for feature extraction and data analysis, and an 

effective tool for dimensionality reduction analysis [37]. Wang et al. [38] obtained the finite 

sample approximate result of CDM-based PCA through matrix perturbation and obtained 

the final estimate of CDM-based PCA. Zhou et al. [39] improved the diagnostic accuracy 

by combining PCA and contribution analysis for fault isolation. 

This paper presents a health management method based on an improved gated loop 

unit and self-organizing mapping neural network. In the fault prediction stage, the multi-

layer GRU neural network prediction model is established, and the a�ention mechanism 

is introduced into the GRU neural network, which improves the long-term dependence 
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problem of the GRU neural network, improves the model performance, and provides the 

explanation and interpretability. At the same time, the Nadam optimizer is used to update 

the model parameters, which improves the convergence speed and generalization ability 

of the model, making it suitable for solving the prediction problem of large-scale data. In 

the fault diagnosis stage, the competitive learning mechanism is used to perform cluster 

analysis on different kinds of data, find the winning neurons, change the weights of the 

connections between the winning neurons and the input layer, make similar input varia-

bles similar to the weights of the connections between the output neurons, cluster similar 

input variables into the same class, and output the results through the SOM competition 

layer. In addition, the PCA method is used to find the most important features affecting 

the whole from the high-dimensional features to improve the expression ability of fea-

tures, reduce the complexity of training, and achieve data dimensionality reduction. 

The rest of this article is structured as follows. The second part analyzes the fault of 

a servo drive system and determines three main fault types. The third part reviews the 

basic theories and techniques of LSTM and SOM and discusses their limitations. The 

fourth part introduces and analyzes the health management process of the machine tool 

servo system and introduces the A�ention-MLGRU and PCA-SOM methods in detail. The 

fifth part introduces the process of predictive model selection and analyzes the equipment 

operation data set based on a health management system, including fault prediction and 

fault diagnosis. Finally, the conclusion is given in the sixth part. 

2. Analysis 

Nowadays, all countries in the world are vigorously developing advanced manufac-

turing technology and intelligent production equipment to improve manufacturing ca-

pacity, which is also an important way to promote economic development and improve 

comprehensive national strength. As a next-generation manufacturing system, intelligent 

manufacturing can improve quality, increase productivity, reduce costs, and improve the 

flexibility of manufacturing [40]. The control system is the core component of CNC ma-

chine tools, its control performance directly affects the quality of CNC machine tool prod-

uct processing and processing efficiency, and its failure rate and reliability have become 

important factors restricting the development of advanced manufacturing technology and 

equipment. 

2.1. Brief Introduction of CNC System 

Taking a five-axis CNC machine tool as the research object, Figure 1 is its system 

frame diagram. According to the structure characteristics and actual use of a high-grade 

CNC system, the software and hardware of the high-grade CNC system are divided into 

several functional modules, including the CNC panel, spindle drive unit, feed drive unit, 

detection unit, electrical system, preprocessing module, monitoring, and diagnosis mod-

ule. 

 

Figure 1. Five-axis machine tool CNC system frame diagram. 
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The CNC machine tool servo system mainly includes a feed servo system and spindle 

servo system, and Figure 2 shows its composition and workflow diagram. The feed servo 

system operates mainly through the numerical control system to transmit information and 

control the movement of the device to achieve the speed control of feed movement, while 

accurately controlling the moving position of the workpiece. The CNC machine tool spin-

dle feed servo system includes a servo motor and servo drive device in two parts, of which 

the spindle feed servo system is connected to the speed control system, with speed control 

function and positive and negative rotation function. The speed control range is wide, 

controlled by the CNC device, and can also be controlled by a programmable controller. 

At present, the common spindle feed servo system includes a DC spindle control system 

and AC spindle control system, and the fault types are also significantly different. 

 

Figure 2. Schematic diagram of servo drive system. 

2.2. Failure Data Analysis of CNC System 

The fault analysis of a certain type of high-grade numerical control system is carried 

out. The fault data of the CNC machine tool with this type of CNC system are tracked and 

recorded for three years, and the fault data related to the CNC system are extracted from 

the obtained data. According to the division of function modules and faulty parts, the 

faulty parts of the numerical control system are statistically analyzed. The number and 

frequency of failures in each faulty part are shown in Table 1 and Figure 3. 

Table 1. Number and frequency of faulty parts of CNC system. 

Code Position Times Frequency 

H1 Motherboard 15 12.61% 

H2 CPU 1 0.84% 

H4 RAM 2 1.68% 

H5 Power Supply 17 14.29% 

H6 CNC Panel 4 3.36% 

H7 Machine Operation Panel 2 1.68% 

H10 Manual Box 1 0.84% 

H13 Feed Servo System 54 45.38% 

H16 Electrical System 10 8.4% 

S3 Preprocessing Module 1 0.84% 

S5 Position Control Module 2 1.68% 

S6 PLC Software Module 8 6.72% 

S7 Real-Time Management Module 2 1.68% 
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Figure 3. Statistical histogram of CNC system failure analysis. 

From the statistical data, the most common part in CNC system failure is the feed 

drive unit, and its failure frequency is much higher that of than other parts. This shows 

that the servo drive system is the main component affecting the stability of the machine 

tool but also the key to improve its reliability. 

2.3. Fault Analysis of Feed and Spindle Servo System 

The fault types of CNC machine tools are diverse, including feed system, spindle 

servo system and auxiliary mechanism, and other parts, and any link problems will affect 

the normal operation of CNC machine tools. In practical applications, the servo system of 

CNC machine tools has a high probability of failure. Some faults can be displayed through 

the CRT or the operation panel alarm, some can be displayed using the hardware display 

on the servo unit, and some only show that the feed movement is abnormal, but there is 

no warning information, so such faults are more difficult to judge and bring great diffi-

culty for subsequent maintenance and management work. In such a complex situation, it 

is of great significance to predict, diagnose, and eliminate various faults quickly and ac-

curately to improve the production efficiency and machining accuracy of the machine tool. 

To determine and eliminate the system fault timely and accurately, a comprehensive 

overview of the common fault types of the existing servo drive system is made, and its 

fault mechanism is deeply analyzed, as shown in Figure 4. The types of fault that occur in 

the servo system can include the servo shaft moving, the spindle speed becoming unsta-

ble, being unable to reach the highest speed, acceleration and deceleration failure, speed 

deviation being too large, etc. Some of the reasons for these failures are analyzed as fol-

lows: 

Servo shaft moving: feed transmission chain has reverse clearance, servo drive gain 

is too large. 

Servo shaft crawling: servo system gain is too low, poor lubrication of the feed trans-

mission chain, etc. 

Servo shaft vibration: the bearing of the motor is poorly lubricated, the fastening 

screw inside the motor is loose, etc. 

The spindle speed is unstable: the tachometer generator installed at the tail of the 

spindle fails, the speed command voltage is poor or wrong, etc. 

Cannot reach the highest speed: motor excitation current adjustment is too large, the 

excitation control loop is bad. 

Acceleration and deceleration failure: current feedback loop se�ing, mechanical 

transmission system is poor. 
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Overload: excessive load, poor lubrication of the feed transmission chain, etc. 

Spindle does not turn: machine load is too large, mechanical connection falls off, etc. 

Excessive speed deviation: improper adjustment of se�ing of speed regulator or 

speed measurement feedback loop, etc. 

The root cause of servo drive failure is explored, and it is found that it is related to 

the transmission device, drive system, and detection components of the machine tool. 

When the transmission device fails, the power of the motor and other devices cannot be 

transferred to the actuator, and the failure mostly occurs in the coupling, lead screw, bear-

ing, machine tool guide, and other parts. The drive system refers to the servo motor and 

other driving devices, and the failure of the drive system mainly includes the failure of 

the drive control unit and the servo motor. The detection parts mainly include the encoder, 

grating ruler, and other detection parts, and the fault of the detection part is mainly man-

ifested as the feedback data error being too large or no feedback. 

The faults of the servo drive system mentioned in the above analysis can be classified 

into three categories according to the fault nature: feed speed fault, spindle speed fault, 

and spindle load fault. In the case of complex fault causes, the accurate identification of 

the fault category can provide help for the subsequent determination of the fault location 

and the formulation of maintenance plans, which is of great significance to ensure the 

production reliability and efficiency of CNC machine tools. 

 

Figure 4. Fault analysis of servo drive system. 

3. Method 

3.1. Basic Theory and Techniques for LSTM 
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determines the degree of retention of the memory unit at the previous moment, the output 

gate determines the weight of the output, and the memory unit is responsible for storing 

and transmi�ing information. 

The flexibility of the LSTM through the gating mechanism enables it to adaptively 

and selectively ignore or retain information in the input data, thus be�er capturing long-

term dependencies in the sequence. In addition, LSTM also has trainable parameters that 

can be trained end-to-end using backpropagation algorithms. By training on a large 

amount of data, LSTM can learn pa�erns and regularities in the data to achieve predic-

tions of future time series data. At the same time, LSTM can also build a deeper neural 

network model by stacking multiple LSTM layers or combining with other neural network 

layers to improve the expressiveness and performance of the model. 

3.1.1. LSTM Algorithm Flow 

LSTM cell structure is shown in Figure 5. LSTM uses two gates to control the content 

of cell state c, one is the forget gate, which determines how much of the cell state ���� at 

the previous time is retained to the current time c�. The other is the input gate, which 

determines how much of the network’s input �� is saved to the cell state c� at the current 

moment. LSTM uses an output gate to control how much of the c� state of the unit is 

output to the LSTM’s current output value h�. 

Forgo�en gate:�� = ���� ⋅ [ℎ���, ��] + ���,  (1)

 

Figure 5. LSTM unit structure. 
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In the above formula, �� is the weight matrix of the forget gate, [ℎ���, ��] repre-

sents joining two vectors into a longer vector, �� is the bias term of the forget gate, and � 

is the sigmoid function. If the dimension of the input is d�, the dimension of the hidden 

layer is d�, and the dimension of the cell state is d� (usually �� = d�), then the dimension 

of the weight matrix �� of the forget gate is �� × (d� + ��). In fact, the weight matrix 

�� is a concatenation of two matrices: one is ���, which corresponds to the input ℎ���, 

whose dimension is �� × d�. The other is ���, which corresponds to the input ��, whose 

dimension is �� × d�. �� can be wri�en as: 

���� �
ℎ���

��
� = [��� ���] �

ℎ���

��
� = ���ℎ��� + �����,  (2)

Input gate:�� = �(�� ⋅ [ℎ���, ��] + ��), (3)

In the above formula, �� is the weight matrix of the input gate and �� is the offset 

term of the input gate. 

���  is used to describe the cell state of the current input, which is calculated based on 

the last output and the current input: 

��� = ���ℎ(�� ⋅ [ℎ���, ��] + ��), (4)

�� is the state of the cell at the current time. It is produced by multiplying the previ-

ous cell state ���� by element by the forget gate ��, then multiplying the current input cell 

state ���  by element by the input gate ��, and adding the two products: 

�� = �� ∘ ���� + �� ∘ ��� , (5)

The symbol ∘ means multiplication by element. 

LSTM can combine the current memory ���  with the long-term memory ���� to form 

the new cell state ��. Thanks to the control of the forget door, it can save information from 

a long time ago, and because of the control of the input door, it can avoid the current 

insignificant content in the memory. 

Output gate:�� = �(�� ⋅ [ℎ���, ��] + ��), (6)

The final output of the LSTM is determined by the output gate and the cell state: 

Output: ℎ� = �� ∘ ���ℎ(��), (7)

Table 2 shows the formula of the activation function. 

Table 2. Activation function description. 

The Activation Function The Formula 

Sigmoid �������(�) =
1

1 + ���
 

TanH ���ℎ(�) =
�� − ���

�� + ���
 

3.1.2. Drawbacks of the LSTM Method 

When there are enough sample data, LSTM can perform the prediction task based on 

time series well. However, LSTM also has some defects in time series forecasting: 

(1) LSTM has a relatively complex structure, including more gating units and 

memory units, which may lead to higher model complexity. This results in LSTM being 

computationally more complex, requiring more computational resources and time for 

training and reasoning, while being more prone to overfi�ing, requiring more data to gen-

eralize and improve performance. 

(2) Because LSTM has more parameters and a more complex structure, it may require 

longer training time and more data to converge and achieve optimal performance. In 
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addition, the LSTM training process is also more prone to gradient disappearance or ex-

plosion problems, and skill is needed to alleviate these problems. 

(3) The complexity and number of parameters of the LSTM may lead to an increased 

risk of overfi�ing. In a timing prediction task, overfi�ing can result in a model that per-

forms well on training data but poorly on previously unseen test data. Therefore, when 

using LSTM for timing prediction, proper regularization and model selection need to be 

paid a�ention to avoid overfi�ing problems. 

3.2. Basic Theory and Techniques for GRU 

The GRU is a variant of the RNN that uses gating mechanisms to be�er capture and 

remember long-term dependencies in sequence data [42]. There are some similarities be-

tween the GRU and the LSTM in that both have gating mechanisms that control the flow 

of information and the updating of memories. The main difference between them is the 

internal structure and the number of gating mechanisms. The GRU simplifies the structure 

of the LSTM and consists of only two gated units: update gate and reset gate. The update 

gate controls whether the memory unit from the previous moment is passed to the current 

moment, while the reset gate controls how the input from the current moment is combined 

with the memory unit from the previous moment. Because of their simpler structure and 

fewer parameters, GRUs can train models faster and have be�er computational efficiency 

than LSTM in some cases. 

3.2.1. GRU Algorithm Flow 

The GRU unit structure is shown in Figure 6. The basic flow of the GRU algorithm is 

as follows: 

Update g���: �� = �(�� ⋅ [ℎ���, ��]) (8)

Reset g���: �� = �(�� ⋅ [ℎ���, ��]) (9)

The reset gate is used to decide how to merge the hidden state of the previous mo-

ment with the input of the current moment, and the update gate is used to decide whether 

to pass the hidden state of the previous moment to the current moment. 

Calculation of candidate hidden state of GRU: 

ℎ�
� = ���ℎ(�� ⋅ [��⨀ℎ���, ��]) (10)

where ⊙ means multiplication by element. 

GRU hidden status update: 

ℎ� = (1 − ��)⨀ℎ��� + ��⨀ℎ�
�  (11)

The final hidden state, ℎ�, will be the output at the current moment and passed to 

the GRU as input at the next moment. 

In the above formula, ��  represents the input at the current moment, ℎ���  repre-

sents the hidden state at the previous moment, �� is the update gate, �� is the reset gate, 

ℎ�
�  is the candidate hidden state, and ℎ� is the hidden state at the current moment. By 

iterating over the above process, the GRU can gradually update the hidden state based on 

the input sequence and output the corresponding hidden state at each moment. This al-

lows the GRU to effectively capture long-term dependencies in sequence data, suitable for 

tasks such as natural language processing, time series prediction, and more. 
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Figure 6. GRU unit structure. 

3.2.2. Limitations of GRU Method in Failure Prediction 

As a common recurrent neural network, the GRU is often used for timing processing 

tasks, and although the GRU performs well in many sequence modeling tasks, there are 

still some limitations in fault prediction: 

(1) Long-term dependence: Although the GRU solves the problem of gradient disap-

pearance or explosion in the traditional circulating neuron through the gating mechanism, 

there are still limitations in the modeling of long-term dependence. In failure prediction, 

some failures may be caused by complex factors over a long period of time in the past, 

and the GRU may not be able to effectively capture this long-term dependence. 

(2) Difficulty in parameter adjustment: Many parameters in the GRU model need to 

be adjusted, including learning rate, regularization, etc. In fault prediction, the selection 

of these parameters may be affected by factors such as data quality, sample size, and fault 

type, so adjustments need to be made, increasing the difficulty of modeling. 

3.3. Basic Theory and Techniques for SOM 

SOM is an unsupervised neural network, which effectively retains the original topol-

ogy of input samples in an intuitive visual form, and is an important tool for fault diag-

nosis and monitoring [43]. SOM employs competitive learning, in which each neuron or 

node competes with other nodes or neurons to get closer to the input data point. Finally, 
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the network is formed by clustering and grouping similar input data points together. As 

a kind of unsupervised learning competitive neural network, SOM has good topological 

relationship preservation performance and strong self-learning ability and has great ad-

vantages in visualization, so it is widely used in the field of cluster analysis. 

SOM consists of a grid map and a low-dimensional matrix, with each node consid-

ered to be a neuron. The neurons in the network each have a weight vector the same size 

as any input data point. This matrix is used to evaluate the distance of any input vector 

from each cell weight in the data set. In the initialization phase, the weights of each cell 

are randomly assigned, and then the data points find the closest neuron and are assigned 

to the nearest neuron. The neuron with the smallest distance can be called the best 

matched unit (BMU). The weight of the BMU is then updated as neurons move towards 

the data point. During the same iteration, the weights of neurons adjacent to the BMU are 

also updated so that they move in the same direction as the displaced BMU, but at a lower 

rate. As more iterations are made during the training process, the amount of change in the 

neuron weights decreases as the grid map gradually approaches the input data points 

with each iteration. All data points in the training process are ongoing. After the network 

training is complete, each data point is assigned to a cell of the grid map. Inputs with 

similar data characteristics are grouped around adjacent cells, and SOM networks are of-

ten constructed as two-dimensional, regularly arranged la�ice arrays of neurons, as 

shown in Figure 7. 

 

Figure 7. SOM Network Structure and Neural La�ice Array. 

3.3.1. SOM Algorithm Flow 

The SOM neural network obtains the winning node by outpu�ing neurons in the 

competition layer, and the weight of the connection between the winning neuron and the 

input layer needs to be changed. The weight value is changed to make the difference be-

tween the input variable and the winning neuron smaller and smaller, so that similar in-

put variables are like the weight of the output neuron connection, and similar input vari-

ables are clustered into the same class. 

The specific algorithm steps are as follows: 

(1) Initialize 

Set the initial value of learning rate �(0), the initial value of neighborhood radius 

�(0), and the neuron weight vector ���. 

(2) Look for winning neurons 
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Calculate the distance �� between the input vector and the output neuron to find the 

winning neuron. 

d� = �� (�� − ���)
�

�

���
, (12)

where X� is the selected vector; W�� is the weight of the ith neuron in the input layer and 

the jth neuron in the output layer. The one with the smallest distance is the winning neu-

ron. The neuron satisfies Equation (10). 

s(i) = arg min ||�� − ���|| (13)

(3) Update weights 

The weight of the winning neuron within the radius of the neighborhood is updated, 

and the learning adjustment of the weight vector is shown in Equations (11) and (12). 

�(t) = �(t − 1) + �(t)A��� − ���, (14)

A = �

1,     c = q
0.5,    c ∈ r�(t)

0,    others 

, (15)

Where c represents neurons in the output layer; q is the winning neuron; ��(�) is the 

winning neighborhood. 

(4) Update learning rate and neighborhood radius 

�(t) = (1 − � T⁄ ) × η(0), (16)

�(t) = (1 − � T⁄ ) × r(0), (17)

(5) Judge whether the training times reach the preset value and, if so, end the training; 

otherwise continue training. 

3.3.2. Limitations of SOM Method in Fault Diagnosis 

As a clustering and visualization algorithm, SOM is commonly used in the field of 

fault diagnosis. However, due to the performance limitations of SOM itself, there are some 

limitations in handling fault diagnosis tasks, especially when dealing with large data sam-

ples and high-dimensional data: 

(1) Data volume limitation: The SOM method has certain limitations when dealing 

with large-scale data. The data sample size of the fault diagnosis task is large, and the 

SOM method needs more iterations to converge to a stable result, which increases the 

calculation time and cost. Meanwhile, the SOM method may be affected by data sampling 

and distribution, resulting in increased instability of model training results. 

(2) Data dimension limitation: The SOM method has limited processing capacity for 

high-dimensional data. SOM has a good clustering effect when processing low-dimen-

sional data, but when performing fault diagnosis tasks, the data dimensions are high, and 

the mapped results may lose some feature information of the original data, resulting in 

errors in the identification of cluster centers and aliasing. 

4. Proposed Method 

4.1. Health Management Process Based on A�ention-MLGRU and PCA-SOM Algorithms 

To ensure the normal operation of a CNC machine tool servo drive system for a long 

time, a health management method of a machine tool servo drive system based on the 

A�ention-MLGRU and PCA-SOM algorithms was proposed. The core of this method in-

cludes two parts, fault prediction and fault diagnosis. In the fault prediction stage, a multi-

layer GRU neural network is used to predict the time sequence of the operating parame-

ters, and the a�ention mechanism is introduced to establish the fault prediction model of 
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the servo drive system. The introduction of the a�ention mechanism in GRU neural net-

works can improve the long-term dependence problem of GRU neural networks, improve 

model performance, handle variable-length input sequences, and provide interpretability 

and interpretability. This makes the model more flexible, accurate, and interpretable in 

sequence tasks. 

In the fault diagnosis stage, the SOM neural network is used for cluster analysis, and 

feature standardization and PCA are introduced into the SOM neural network to establish 

the fault diagnosis model of the servo drive system. The fault diagnosis effect of the model 

is be�er than that of the traditional method, and it can realize the dimensionality reduc-

tion analysis of high-dimensional fault data and can accurately identify the fault charac-

teristics of the data, which solves the problem that the fault causes of the existing CNC 

machine tool servo drive control system are complicated and difficult to diagnose and 

provides a good idea for the fault diagnosis of the CNC machine tool servo drive system 

and improves the operation reliability of the machine tool. The specific process of health 

management is shown in Figure 8. 

Step 1: Use the workshop detailed manufacturing data and process system (MDC 

system) to monitor the actual production status of CNC machine tools and collect data for 

some key production parameters. 

Step 2: According to the production data of the field equipment of the MDC system, 

select appropriate data as the sample data set and conduct data preprocessing. The data 

preprocessing adopts the Gaussian filter method, and the processed data set is used as the 

input for fault prediction and fault diagnosis analysis. 

Step 3: Fault prediction 

(1) Initialization of parameters: Initialize the weight and bias of the multi-layer GRU 

neural network. 

(2) Forward propagation: For each time step, calculate the current input and the hid-

den state of the previous time step, as well as the a�ention weight. The input sequence is 

weighted and summed according to the a�ention weight to obtain the a�ention-weighted 

representation. The a�ention-weighted representation is input into a multi-layer GRU, 

and the hidden state of the current time step is calculated. 

(3) Calculate the loss: Input the hidden state of the last time step into the output layer, 

calculate the predicted value, and calculate the loss function according to the predicted 

value and the target label. 

(4) Backpropagation: Calculate the gradient of the loss function to the predicted value 

and calculate the gradient of each parameter in the multi-layer GRU neural network 

through the backpropagation algorithm. 

(5) Use the Nadam algorithm to update network parameters, adjust weights and bias. 

Step 4: Fault diagnosis 

(1) Carry out feature standardization processing for different types of input sample 

data sets and determine the parameters of the output layer. 

(2) Establish an improved self-organizing neural network fault diagnosis model, in-

put the feature standardized sample data set into the model, and conduct PCA dimen-

sionality reduction to obtain the sample data after dimensionality reduction. 

(3) Conduct SOM cluster analysis on the sample data after dimensionality reduction 

and output the cluster analysis results. 

(4) Output fault diagnosis results according to cluster analysis results and determine 

the fault diagnosis accuracy rate. 
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Figure 8. Health Management Flow Chart. 

4.2. Instructions on Data Set Creation 

4.2.1. Potential Challenges in Data Set Creation 

In the construction of a health management system, data are crucial, and given the 

reality of production, the establishment of data sets faces some potential challenges and 

limitations: 

(1) Difficulty in obtaining data: Generally speaking, the data required for fault pre-

diction and diagnosis may need to be obtained from multiple sources, including equip-

ment logs, maintenance records, etc.. There may be difficulties in obtaining these data at 

the same time, such as data access restrictions, data integration problems between devices 

and systems, etc., so appropriate ways are needed to obtain relevant data. 

(2) Insufficient amount of data: The establishment of an effective fault prediction and 

diagnosis model usually requires a large amount of data to train, especially for the diag-

nosis of complex systems and multiple types of faults. In actual production, there may be 

an insufficient volume of data, which affects the performance and generalization ability 

of the model. 
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(3) Poor data quality: the actually collected data may have quality problems, such as 

outliers, noise, etc., which may affect the training and prediction accuracy of the model, 

so it is necessary to clean and preprocess the acquired data in an appropriate way to en-

sure the quality of the data set. 

4.2.2. MDC System Overview 

Intelligent monitoring plays an important role in the intelligent automation of man-

ufacturing systems, and advanced data collection technology has been widely used to 

promote real-time data collection [44]. The Manufacturing Data Collection & Status Man-

agement (MDC) system is a software and hardware solution for real-time acquisition, 

charting, and reporting of detailed manufacturing processes and data on the shop floor. 

MDC uses a variety of flexible methods to obtain real-time data from the production site 

(including equipment, people, production tasks, etc.), store it in databases such as Access, 

SQL, and Oracle, and build on the lean manufacturing management philosophy. Com-

bined with nearly 100 kinds of special calculation, analysis, and statistical methods of the 

system, it directly reflects the production status of the workshop in the form of a variety 

of reports and charts and helps the production department of the enterprise to make sci-

entific and effective decisions. Figure 9 is the MDC system diagram. 

 

Figure 9. MDC System Framework Diagram. 

The MDC system has the following characteristics when processing data: 

(1) Real-time data acquisition: The MDC system can collect all kinds of data in the 

production process in real time, including equipment operation data, sensor data, etc. 

Compared with traditional data acquisition methods, the MDC system has the character-

istics of automation and real time, which can greatly improve the efficiency and accuracy 

of data acquisition. 

(2) Data consistency: By automating data collection and processing, the MDC system 

ensures data consistency and accuracy, avoiding errors and inconsistencies caused by 

manual operations and ensuring data reliability and availability. 

(3) Historical data recording: The MDC system can record and store historical data 

to form a complete historical data record to ensure the integrity and quantity of data, 

which is important for fault analysis and the fault prediction model. 
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Using the MDC system to obtain data ensures data availability and quantity require-

ments are met. 

4.2.3. Data Preprocessing Method—Gaussian Filter 

Gaussian data filtering is a common signal processing technique used to reduce high-

frequency noise in data, smooth data, and retain low-frequency information in data. Its 

principle is based on the characteristics of the Gaussian function, by weighted average 

data to achieve filtering. 

The Gaussian function is a continuous distribution function in the shape of a bell 

curve. In data filtering, the Gaussian function is used as the convolution kernel of the filter. 

The convolution kernel is the core function of weighted summation of input data, smooth-

ing input data, and reducing noise in the data. In Gaussian data filtering, the convolution 

kernel is determined by a standard deviation parameter. The higher the standard devia-

tion, the higher the smoothing degree of the filter and the be�er the filtering effect of the 

data noise. In the filtering process, each point in the convolution checks data and its adja-

cent points are weighted to calculate the filtering value of the point. 

By using Gaussian filtering, the high-frequency noise in the data can be removed to 

smooth the data, while retaining the low-frequency information in the data, improving 

the quality and accuracy of the data, so as to ensure the data quality of the data set. 

4.2.4. Introduction to Data Characteristics 

The MDC system is used to collect the actual running data of CNC machine tools, 

and some working parameters that can characterize the running state of the machine tools 

are analyzed, including feed speed, actual speed, spindle ratio, spindle speed, feed rate, 

actual feed, and spindle load, as shown in Table 3. 

Table 3. Equipment parameter type. 

Device Parameter Type The Symbol Device Parameter Type The Symbol 

Feed speed FS Feed rate FR 

Actual speed AS Actual feed AF 

Spindle magnification SM Spindle load SL 

Spindle speed SS Label LA 

According to the seven field equipment production data collected by the MDC sys-

tem, data are selected as a sample data set at a certain time interval and taken as input, as 

shown in Table 4, which includes three types of fault data that can characterize the servo 

drive system, including feed speed, spindle speed, and spindle load. Three types of trou-

ble-free data, including actual speed, spindle rate feed, and actual feed are included. The 

label value indicates the fault type of the data sample, where “1” indicates the feed speed 

fault, “2” indicates the spindle speed fault, and “3” indicates the spindle load fault. Table 

4 shows the fault indicators of each fault type. When the working parameters are within 

the target range, the servo drive system is in a normal working state; when the working 

parameters are beyond the target range, the corresponding fault occurs. A waterfall dia-

gram of the running parameters of the machine tool is shown in Figure 10. 

Table 4. Equipment fault types and corresponding indicators. 

The Fault Types On the Limit Under the Limit Ideal Value Unit 

Feed speed fault 20 × 10−3 5 × 10−3 18.8 × 10−3 in/r 

Actual speed fault 15 12 13.5 in/r 

Spindle magnification fault 0.95 0.83 0.89 % 

Spindle speed fault 8 × 103 7 × 103 7.5 × 103 r/min 

Feed rate fault 3.4 2.7 3.2 mm/r 
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Actual feed fault 6.5 2 4.7 mm/r 

Spindle load fault 8 5 5.3 % 

 

Figure 10. Waterfall diagram of machine tool operation parameters. 

4.3. Fault Prediction Method 

4.3.1. A�ention Mechanism Principle 

The a�ention mechanism is a mechanism for weighting information at different lo-

cations in the sequence data [45]. The introduction of the a�ention mechanism in the neu-

ral network model allows the model to make different a�ention adjustments to the input 

at different moments when processing the sequence data so that the key information in 

the sequence can be processed more flexibly. The structure of the a�ention mechanism is 

shown in Figure 11. 
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Figure 11. Principle of a�ention mechanism. 

The formula expression of the a�ention mechanism can vary according to the specific 

variant. The following is a general formula expression of the a�ention mechanism: 

Given the input sequence � = (ℎ�, ℎ�,……, ℎ�), the a�ention mechanism calculates 

the a�ention weight\alpha and the context vector c as follows: 

1. Calculate a�ention weight: 

     �� =
���(��)

∑ ���(��)�
���

 

where �� is the result of the score function score, which measures the correlation of posi-

tion i with other positions in the sequence. 

2. Calculate the context vector: 

� = � α�h�

�

���
 

In the self-a�ention mechanism, the common scoring function score has the following 

forms: 

Product a�ention: �� = ℎ� ⋅ ℎ�; 

Additive a�ention: �� = ���ℎ(��ℎ� + �); 

Where �� is a learnable weight matrix and b is a learnable bias vector. 

Scaled dot product a�ention: �� =
��⋅��

√�
; 

Where d is the dimension of the input sequence. 

The above formula is the general form of the a�ention mechanism, and the specific 

application scenario and model will determine the appropriate scoring function and cal-

culation method. 

The introduction of a�ention mechanisms in neural networks can improve the long-

term dependency problem of LSTM and GRU neural networks, improve model perfor-

mance, handle variable-length input sequences, and provide interpretability and explain-

ability. This makes the model more flexible, accurate, and interpretable in sequence tasks. 

4.3.2. Type of Neural Network Structure 

In general, neural network structures come in many variants, including single-layer, 

multi-layer, and bidirectional neural network structures. In general, a single-layer neural 

network has a simple structure and high computational efficiency, but its learning ability 

is limited. A multi-layer neural network has stronger representation and learning ability, 
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which is suitable for various complex tasks. A bidirectional neural network can make use 

of bidirectional dependency to provide more comprehensive context information when 

processing sequence data. Choosing a suitable neural network structure depends on the 

complexity of the task and the characteristics of the data. 

Several variants of the LSTM structure are shown in Figure 12, including: 

1. Single-layer LSTM: Also known as standard LSTM, it contains three gate control 

units (input gate, forget gate, and output gate), as well as a memory unit (cell state), which 

can conduct long-term dependency modeling of sequence data. 

2. Multi-layer LSTM: A network structure composed of multiple LSTM layers. Each 

LSTM layer can obtain input from the output of the previous layer and increase the com-

plexity and representation of the model by stacking multiple LSTM units. 

3. Bidirectional LSTM: Based on the standard LSTM, the forward and reverse LSTM 

units are introduced, which can model the sequence data in both forward and backward 

directions at the same time to capture more comprehensive context information. 

 

Figure 12. (A1) SLLSTM structure, (A2) MLLSTM structure, (A3) Bi-LSTM structure. 

Several variations of the GRU structure are shown in Figure 13, including: 

1. Single-layer GRU neural network: The single-layer GRU neural network contains 

only one GRU hidden layer and, compared with LSTM, the GRU has a more simplified 

structure, reducing a part of the gating unit, and the number of calculations and parame-

ters is lower. Single-layer GRUs show be�er performance when dealing with simple se-

quential tasks. The training speed is relatively fast, which is suitable for medium-scale 

data sets. 

2. Multi-layer GRU neural network: The multi-layer GRU neural network contains 

multiple GRU hidden layers, and the output of the upper layer serves as the input of the 

next layer. The multi-layer structure can capture more complex sequence pa�erns and 

abstract representations, while increasing the depth and expressiveness of the network. It 

is suitable for processing more complex sequences, but the complexity of training and 

parameter adjustment is higher. More computing resources and more data are needed to 

avoid overfi�ing. 

3. Bidirectional GRU neural networks: Bidirectional GRU neural networks consider 

both past and future contextual information. At each time step, the input sequence is 

passed forward and backward to the two GRU hidden layers, and their outputs are 

merged. Bidirectional architecture can be�er capture dependencies and context infor-

mation in sequence data and is suitable for sequential tasks such as speech recognition, 

machine translation, etc., but the training time and computing resource consumption are 

relatively high. 
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Figure 13. (B1) GRU structure, (B2) MLGRU structure, (B3) Bi-GRU structure. 

Choosing a single-layer, multi-layer, or bidirectional neural network architecture re-

quires trade-offs based on the specific task and complexity of the data set, as well as train-

ing time and computational resource constraints. The LSTM and GRU neural network 

structures with an a�ention mechanism are shown in Figures 14 and 15. 

 

Figure 14. (C1) SLLSTM structure, (C2) MLLSTM structure, (C3) Bi-LSTM structure with a�ention 

mechanisms. 

 

Figure 15. (D1) GRU structure, (D2) MLGRU structure, (D3) Bi-GRU structure with a�ention mech-

anisms. 
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4.3.3. A�ention-MLGRU Algorithm Flow 

The a�ention-based multi-layer GRU neural network is a recursive neural network 

structure that combines a�ention mechanisms for processing sequence data. By introduc-

ing a�ention mechanisms, it can automatically learn and focus on key information in the 

input sequence. 

1. Forward propagation: 

It is assumed that there is a multi-layer GRU network with an L-layer, and the a�en-

tion mechanism is introduced. The calculation process of each GRU unit can be expressed 

as: 

The reset gate of the GRU unit on level l: 

r�
(�)

= σ(W�
(�)

x� + U�
(�)

h���
(�)

+ ��
(�)

�� + b�
(�)

) (18)

The update gate of the GRU unit on level l: 

z�
(�)

= σ(W�
(�)

x� + U�
(�)

h���
(�)

+ ��
(�)

�� + b�
(�)

) (19)

The candidate hidden state of the GRU unit on level l: 

ℎ��
(�)

= tanh(W�
(�)

x� + U�
(�)

(��
(�)

⨀ℎ���
(�)

) + ��
(�)

�� + b�
(�)

) (20)

where �� is the input vector, ℎ���
(�)  is the hidden state of layer l at the previous moment, 

r�
(�)

 is the reset gate, z�
(�)

 is the update gate, and ℎ��
(�)

 is the candidate hidden state. 

Calculation of a�ention vector: 

��
(�)

= ���ℎ(��
(�)

ℎ���
(�)

+ ��
(�)

�� + ��
(�)

) (21)

��
(�)

=
���(��

(�)
)

∑ ���(��
(�)

)�
���

 (22)

�� = � ��
(�)

ℎ��
（�）

�

���
 (23)

where ��
(�)

 is the intermediate result of the a�ention vector, ��
(�)

 is the a�ention weight, 

�� is the a�ention-weighted context vector, and ℎ��
(�)

 is the candidate always hidden state 

of the l-level GRU unit. 

Hidden state update: 

ℎ�
(�) = �1 − ��

(�)
�⨀h���

(�) + ��
(�)

⨀ℎ��
(�)

 (24)

where ℎ�
(�) is the hidden state of layer l at the current moment. 

The forward propagation process of the entire multi-layer GRU neural network can 

be expressed as: 

ℎ�
(�) = GRU(�)(��, ℎ���

(�)
, ��) (25)

where GRU(�) represents the GRU unit of layer l. 

2. Calculate the loss function: 

Use an appropriate loss function, such as the mean square error loss, to calculate the 

error between the predicted value and the true label. 

3. Backpropagation: 

According to the loss function, calculate the gradient of the loss relative to the pa-

rameter. Through the backpropagation algorithm, it is possible to calculate the gradient 

of the loss function to the network parameters and use the optimization algorithm (such 

as gradient descent) to update the parameters to train and optimize the network. 

4. Parameter update (Nadam optimizer): 

The Nadam optimizer uses the following formula to update parameters: 
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�� = �� ⋅ ���� + (1 − ��) ⋅ �� (26)

�� = �� ⋅ ���� + (1 − ��) ⋅ �� (27)

��� =
��

1 − ��
� (28)

��� =
��

1 − ��
� (29)

�� = ���� −
���

���� + �
⋅ ��� ⋅ ��� + (1 − ��) ⋅ �� +

�� ⋅ (1 − ��
���)

1 − ��
� ⋅ (��� − ����)� (30)

where �� and �� represent the first moment estimate and second moment estimate of 

the gradient, respectively, �� represents the gradient at the current moment, �� and �� 

are adjustable hyperparameters with a general value of 0 and 0.999, � denotes the learn-

ing rate, � is a small number (such as 1 × 10−8) used for numerical stability. ���  and ���  

are deviation corrections for the first and second moment estimates of gradients used to 

solve the deviation problem of the Adam optimizer. By introducing the correction term of 

Nesterov momentum, the first moment estimation of the gradient is more accurate. 

The weight parameters and bias terms in the above formula are updated according 

to the rules of gradient descent to minimize the loss function. The above steps are repeated 

for multiple rounds of iterative training until a predetermined stopping condition or con-

vergence is reached. By using the a�ention mechanism and the Nadam optimizer, a�en-

tion weights and learning rates can be adjusted adaptively in multi-layer GRU neural net-

works to optimize the updating process of network parameters. 

4.4. Fault Diagnosis Method 

4.4.1. Introduction to Principal Component Analysis 

PCA is a standard method applied to reduction and feature extraction and is the most 

used linear dimension reduction method. The purpose of PCA for dimensionality reduc-

tion is to reduce the original features as far as possible to ensure that “information is not 

lost” and obtain the maximum data information (maximum variance) in the dimension of 

the projection. In other words, the original feature is projected onto the dimension with 

the maximum projection information, so that the information loss after dimensionality 

reduction is minimized [46] and the characteristics of more original data points are re-

tained while the data dimension is reduced. 

4.4.2. PCA-SOM Algorithm Flow 

To improve the operation rate, clustering accuracy, and data processing ability of the 

SOM neural network, a PCA-SOM neural network is proposed by combining a PCA neu-

ral network with a SOM neural network. At the same time, feature standardization is in-

troduced into the SOM neural network to balance the influence of different feature scales, 

and then the SOM neural network is further optimized. The network structure is mainly 

composed of an input layer and output layer. The input layer accepts high-dimensional 

data and transforms them into two-dimensional data visual output through a competitive 

learning mechanism. For the operation parameters of the equipment to be evaluated, the 

SOM neural network can output a two-dimensional topology after the monitoring data 

are processed, assuming that the number of neurons in the output layer is L. The specific 

algorithm process is as follows: 

(1) Data feature standardization processing 

Conduct feature standardization processing on the input training data matrix ��, 

and the processed data matrix is D: 
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� =
�� − mean(��)

std(��)
 (31)

where: �� (Nxd) is the training data, where N is the number of training samples, d is the 

dimension of sample data, mean(��) is the mean value of matrix data, and std(��) is the 

standard deviation of matrix data. 

(2) Determine parameters 

Determine the number of nodes X and Y in the output layer: 

X = Y = �5√N (32)

(3) PCA dimensionality reduction 

(1) Calculate the covariance matrix 

According to the data matrix D after feature standardization, the corresponding co-

variance matrix is calculated as S: 

� = �

���� ���� … ����
���� ���� ⋯ ����

⋮ ⋮ ⋱ ⋮
���� ���� ⋯ ����

� (33)

� =
1

� − 1
��� (34)

(2) Calculate the eigenvalues of the covariance matrix and corresponding eigenvec-

tors 

The eigenvalues of the covariance matrix S are decomposed, and then the eigenvalues 

and corresponding eigenvectors are calculated. 

� = ���� = Pdiag(��, ��, … , ��)�� (35)

s.t. �� ≥ �� ≥ ⋯ ≥ �� ≥ 0 

where: Λ represents the diagonal matrix; P represents the eigenvector matrix composed 

of corresponding eigenvectors in descending order. The largest eigenvalue and corre-

sponding eigenvector can represent the variance and direction of the first principal com-

ponent, and the smallest eigenvalue and corresponding eigenvector can represent the var-

iance and direction of the last principal component. 

(3) The original feature is projected onto the selected feature vector to obtain the new 

K-dimensional feature after dimensionality reduction, and ��� is the real-time sample vec-

tor after dimensionality reduction. 

�

���
���
⋮

���

� =

⎣
⎢
⎢
⎡
 ��

� ∙ (���� ����   …     ���� )�

��
� ∙ (���� ����   ⋯     ���� )�

           ⋮ ⋮   ⋱ ⋮
��

� ∙ (���� ����   ⋯      ���� )�⎦
⎥
⎥
⎤

 (36)

(4) SOM clustering 

(1) Weight vector initialization 

After PCA feature dimensionality reduction, the weight vector matrix ��(�)  be-

tween the real-time sample vector ��� and the Lth neuron of the output layer in the period 

of (��, ����) is, after n updates, 

��(�) = [���(�), ���(�), ⋯ ⋯ ���(�)] (37)

After random replication and normalization of L weight vectors in the output layer, 

the initial superior domain ��(0), the initial learning rate ��(0), and the initial weight 

vector ��(0) are determined. 

(2) Look for winning neurons 
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The real-time sample vector ��� after dimensionality reduction is combined with the 

weight vector ��(�) of each neuron in the output layer to obtain ��, in which the neuron 

with the largest inner product �� is the winning neuron. The winning neuron can be ob-

tained by calculating the minimum Euclidean distance, so the inner product �� can be 

improved to 

�� = ‖���−��(�)‖ = �� (���� − ���(�))�
�

���
 (38)

(3) Adjust the winning areas 

Taking the winning neuron as the center, the winning domain ��(�) is adjusted to 

determine the winning region. A variety of distance functions can be used to determine 

the winning field, and common ones such as Euclidean distance functions are used in this 

paper. 

(4) Adjust the weight value 

Adjust the weight vector of all neurons in the winning domain and update the for-

mula as follows: 

��(� + 1) = ��(�) + ��(�)����−��(�)� = �1 − ��(�)���(�) + ��(�)��� (39)

(5) End the iteration 

When the learning rate ��(�) decays to the preset threshold, the SOM neural net-

work can be trained and the optimal weight vector ��
∗ of each neuron in the output layer 

can be obtained. 

(6) Output cluster analysis results 

5. Results and Discussion 

By analyzing and summarizing the data collected by the MDC system, an appropri-

ate device running parameter data set for health management analysis can be selected. 

The data set of equipment operating parameters includes seven types of operating param-

eter, which are feed speed, actual speed, spindle ratio, spindle speed, feed rate, actual 

feed, and spindle load. The health management analysis process mainly includes two 

steps, which are fault prediction and fault diagnosis. The analysis process of health man-

agement is detailed below. 

5.1. Fault Prediction Phase 

In the fault prediction stage, model optimization should be carried out. The criterion 

of model optimization is based on the prediction evaluation index, and the object of model 

optimization includes the algorithm optimizer, model structure, and neural network type. 

After selecting and determining the neural network model, fault prediction is carried out 

to predict the operating parameters of the machine tool, and the predicted operating pa-

rameters of the machine tool are used to prepare for the subsequent fault diagnosis pro-

cess. 

5.1.1. Prediction and Evaluation Index 

Prediction evaluation indexes are used to measure the performance and accuracy of 

machine learning models in prediction tasks. The selection of appropriate evaluation in-

dexes needs to consider the characteristics of tasks, data distribution, and model objec-

tives. Appropriate evaluation indicators can help us understand the performance of mod-

els and carry out model selection, tuning, and comparison. The following are the types of 

prediction evaluation indicators selected. 

1. Mean square error (MSE) 

MSE =
1

�
� (�� − ���)

�
�

���
 (40)
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where �� − ��� is the true–predicted value on the test set. 

The range of MSE is [0, +∞), which is equal to 0 when the predicted value is exactly 

consistent with the true value, that is, the perfect model. The greater the value, the greater 

the error, and the smaller the value, the more accurate the machine learning network 

model. 

2. Root mean square error (RMSE) 

RMSE = �
1

�
� (�� − ���)

�
�

���
 (41)

RMSE = sqrt (MSE) 

The root mean square error is a measure of the difference between the observed value 

and the true value. Similarly to MSE, the smaller the gap between our predicted value and 

the true value, the higher the accuracy of the model. 

3. Mean absolute error (MAE) 

MAE =
1

�
� |(�� − ���)|

�

���
 (42)

The range of MAE is [0, +∞) and, like MSE and RMSE, when the difference between 

the predicted value and the true value is smaller, the model is be�er; conversely, the model 

is worse. 

4. Mean absolute percentage error (MAPE) 

���� =
100%

�
� �

�� − ���

��
�

�

���
 (43)

The range of MAPE is [0, +∞), where a MAPE of 0% indicates a perfect model and a 

MAPE greater than 100% indicates a poor model. 

5. R-squared (��) 

�� =
∑ (��� − ���)

�
�

∑ (�� − ���)
�

�
= 1 −

∑ (�� − ���)
�

�

∑ (�� − ���)
�

�
 (44)

where the numerator part represents the sum of squared variances of the true value and 

the predicted value, which is like the mean square variance (MSE). The denominator part 

represents the sum of the square variance of the true value and the mean, similar to the 

variance Var. 

The value range of R-squared is [0, 1]. If the value is 0, the model fi�ing effect is poor. 

If the value is 1, the model is error-free. The larger the R-squared, the be�er the model 

fi�ing effect. R-squared reflects the approximate accuracy, because with the increase in 

the number of samples, R-squared will inevitably increase, and the accuracy cannot be 

truly quantified, only the approximate quantity can be found. 

6. Explained variance score (EVS) 

��� = 1 −
���(�� − ���)

���(��)
 (45)

where Var represents variance. 

EVS is an indicator used to evaluate the performance of a regression model, which 

measures the degree of explanatory variance of the model for the target variable. EVS 

ranges from [-∞, 1]. The closer the value is to 1, the be�er the explanatory ability of the 

model. If EVS is 1, it means that the model perfectly explains the variability of the target 

variable. If EVS is negative, it means that the performance of the model prediction is worse 

than simply averaging. 
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5.1.2. Algorithm Optimizer Selection 

According to the equipment operation parameter data set, an AF data item is selected 

to optimize the algorithm model. This experiment applied cross-validation to compare a 

total of five algorithm optimizers: Adam, SGD, Adagrad, RMSprop, and Nadam. After 

comparison of multiple groups of experiments, it was found that the multi-layer GRU 

neural network model could be�er reflect the influence of different optimizers, so the 

model was displayed using multi-layer GRU neural network. Figure 16 shows the predic-

tion results. 

The parameter se�ings of each optimization algorithm are the best results proposed 

in the literature. Most current neural networks use Adam to optimize the loss function. 

The advantage of the Adam algorithm is that it converges quickly and can deal with high 

noise and sparse gradient problems. The proposed Nadam optimization algorithm 

changes the Adam momentum and speeds up the convergence of the model. 

 

Figure 16. MLGRU prediction results with (E1) Adam optimizer, (E2) SGD optimizer, (E3) Adagrad 

optimizer, (E4) RMSprop optimizer, (E5) Nadam optimizer. (E6) Comparison of training results 

with different optimizers. 
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Table 5 shows the prediction evaluation indexes of MLGRU combined with different 

optimizers. The results show that the prediction accuracy of the Nadam optimizer is 

higher, so the Nadam optimizer is selected. 

Table 5. Comparison of the predicted results of evaluation indexes from different optimizers. 

Model Optimizer 
Prediction Evaluation Index 

MSE RMSE MAE MAPE R2 EVS 

MLGRU 

Adam 0.00163 0.04031 0.01803 0.29742 0.99992 99.99% 

SGD 0.14438 0.37998 0.25664 4.95808 0.99255 99.26% 

Adagard 0.12446 0.35279 0.27877 5.66912 0.99358 99.37% 

RMSprop 0.02471 0.15721 0.10667 1.43667 0.99872 99.88% 

Nadam 0.00123 0.03509 0.01227 0.23866 0.99994 99.99% 

5.1.3. Algorithm Model Selection 

According to the equipment operation parameter data set, an AF data item is selected 

to optimize the established algorithm prediction model. In this experiment, a total of 12 

model methods were cross-verified, and the prediction results were shown in Figure 17, 

where curves of different colors respectively represented the prediction results of different 

models. 

 

Figure 17. (F1) Summary of prediction results. Prediction results with (F2) SLLSTM, (F3) MLLSTM, 

(F4) Bi-LSTM, (F5) SLSTM-A�ention, (F6) MLSTM-A�ention, (F7) Bi-LSTM-A�ention, (F8) GRU, 
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(F9) MLGRU, (F10) Bi-LGRU, (F11) GRU-A�ention, (F12) MLGRU-A�ention, (F13) Bi-LGRU-A�en-

tion. 

Table 6 shows the prediction evaluation indexes of different models. The results show 

that the A�ention-GRU method proposed in this paper can more accurately predict the 

operating parameters of the machine tool servo drive system. When the operating param-

eters are abnormal, A�ention-MLGRU can predict them in advance. Therefore, A�ention-

MLGRU is chosen as the prediction model. 

Table 6. Comparison of results of the evaluation indexes of the algorithm prediction. 

Model 
Prediction Evaluation Index 

MSE RMSE MAE MAPE R2 EVS 

SLSTM 0.01598 0.12642 0.08161 1.72489 0.99918 99.94% 

MLSTM 0.01694 0.13014 0.05334 0.11771 0.99913 99.92% 

Bi-LSTM 0.00478 0.06911 0.06299 1.49578 0.99975 99.99% 

SLSTM-Attention 0.01149 0.10719 0.08338 1.71055 0.99941 99.97% 

MLSTM-Attention 0.00657 0.08107 0.06687 1.35809 0.99966 99.99% 

Bi-LSTM-Attention 0.01142 0.10687 0.0634 1.50937 0.99941 99.96% 

GRU 0.00274 0.05234 0.04463 1.02071 0.99986 99.99% 

MLGRU 0.00135 0.03678 0.01738 0.30526    0.99993 99.99% 

Bi-LGRU 0.0013 0.03599 0.01867 0.27339 0.99993 99.99% 

GRU-Attention 0.00519 0.07205 0.03083 0.72028 0.99973 99.98% 

MLGRU-Attention 0.00127 0.0356 0.01683 0.39899 0.99993 99.99% 

Bi-LGRU-Attention 0.00247 0.0497 0.02308 0.302 0.99987 99.99% 

By introducing a�ention mechanisms and multi-layer GRU structures, the A�ention-

MLGRU model can dynamically focus on important information at different locations in 

the input sequence, while be�er controlling the complexity of the model and reducing the 

risk of overfi�ing, which makes the model more generalized and be�er able to adapt to 

different data sets and application scenarios. 

5.1.4. Operational Parameter Model Prediction 

The selected model is used to predict the operating parameters of the machine tool, 

and the results are shown in Figure 18. According to the prediction results, the selected 

prediction model can accurately predict the output of the operating parameters of the ma-

chine tool and prepare for further fault diagnosis. At the same time, the prediction model 

derived from a single data item can still have a good prediction effect when processing 

the other six data items, which further explains the excellent generalization ability of the 

MLGRU-A�ention prediction model. 

Table 7 shows the network structure of the neural network model used for prediction. 

Table 7. Architecture of the MLGRU model with a�ention layer. 

Layer Output Shape Parameters 

GRU1 (Samples, 24, 50) 7950 

GRU2 (Samples, 50) 15,300 

Attention (Samples, 50) 7500 

dense (Samples, 1) 51 

Total  30,801 
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Figure 18. Prediction results of (G1) FR, (G2) SM, (G3) SL, (G4) SS, (G5) AF, (G6) AS, (G7) FS. 

5.2. Fault Diagnosis Phase 

5.2.1. Expression of Results 

After PCA-SOM cluster analysis, high-dimensional data should be transformed into 

two-dimensional data visual output, and the output mode is analyzed below. 

S1 in Figure 19 shows the sca�er diagram of cluster analysis, which can display all 

data in the form of points on the coordinate system to show the degree of mutual influence 

between variables. The position of points is determined by the value of variables. From 

the distribution of data points, correlations between variables can be inferred. If there is a 

correlation between the variables, most of the points will show a trend. If the variables are 

not related to each other, then they will appear as randomly distributed discrete points. 

S2 in Figure 19 shows the pie chart of cluster analysis. A pie chart is a basic graph in data 

visualization, often used to show the proportion of each category in a categorical variable. 

According to the angle size of each sector in the pie chart, the proportions of various data 

can be compared. 
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Figure 19. (S1) Sca�er diagram of cluster analysis. (S2) Cluster analysis pie chart. 

S3 in Figure 20 shows the UMAP weight graph, which is a representation of a 

weighted graph, and edge weights represent the possibility of connecting two points. To 

determine connectivity, UMAP extends a radius outward from each point, and when 

these radii overlap, it connects the points. UMAP accomplishes this process by selecting a 

radius based on the distance from each point to the NTH adjacent point. Then, as the ra-

dius increases, the possibility of connection decreases, making the UMAP map “fuzzy”. 

Finally, by specifying that each point must be connected to at least its nearest point, UMAP 

ensures a balance between local and global structures. The color depth of the map repre-

sents the similarity relationship between data points. S4 in Figure 20 is the confusion ma-

trix diagram, also known as the possibility matrix or error matrix. Confusion matrices are 

visual tools that can be used for unsupervised learning and are the most intuitive and 

computationally simple way to represent the accuracy of a classification model. 

 

Figure 20. (S3) UMAP weight chart. (S4) Confusion matrix. 
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5.2.2. Diagnostic Data Set Generation 

According to the prediction data set obtained in the fault prediction stage and the 

normal operation index of each operating parameter, the time interval of fault occurrence 

is determined. When the operating parameters fluctuate unsteadily, this is the time point 

at which the fault occurs. According to the fault occurrence interval, the fault diagnosis 

data set is selected for fault diagnosis analysis, as shown in Figure 21, and the fault interval 

is determined. 

 

Figure 21. Interval of fault occurrence. 

5.2.3. PCA-SOM Fault Diagnosis Analysis 

The PCA-SOM algorithm was used for fault diagnosis of large sample fault data sets, 

and the diagnosis results are shown in Figure 22. The fault diagnosis effect of PCA-SOM 

is very good, the fault types are accurately identified, and the data dimension reduction 

analysis is realized. At the same time, according to the pie chart, the component propor-

tion of each cluster is close to 100%, and the classification boundary is clear. According to 

the confusion matrix of diagnosis results, the accuracy of fault diagnosis is 99.5%. 

Table 8 shows the detailed results of PCA-SOM processing of a large data sample, 

including time consumed and recognition accuracy. PCA-SOM is not limited by the size 

of the data sample due to its powerful reduction and feature enhancement functions, 

which shows the superiority of the PCA-SOM method. 

Table 8. Comparison results of SOM and PCA-SOM for a large sample. 

 Elapsed Running Time(s) Recognition Accuracy (%) 

PCA-SOM 7.46 99.5 
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Figure 22. (H1) Sca�er diagram of PCA-SOM fault analysis for multiple fault data; (H2) PCA-SOM 

fault analysis pie chart for multiple fault data; (H3) Fault diagnosis result diagram; (H4) Diagnostic 

result confusion matrix. 

6. Conclusions 

This paper presents a health management system based on an improved gated recur-

rent neural network (A�ention-MLGRU) and improved self-organizing mapping neural 

network (PCA-SOM) and realizes the health management of a computer numerically con-

trolled (CNC) machine tool servo drive system based on this method. The health manage-

ment system mainly includes two parts, which are fault prediction stage and fault diag-

nosis stage. 

In the fault prediction stage, the gated recurrent unit (GRU) neural network is 

adopted as the prediction algorithm, a multi-layer GRU neural network prediction model 

is established, and the a�ention mechanism is introduced into the GRU neural network to 

carry out weighted processing of information at different positions in the sequence data, 

which improves the long-term dependence problem of the GRU neural network and im-

proves the model performance. It also provides interpretability and explainability. At the 
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same time, the Nadam optimizer is used to update the model parameters, which improves 

the convergence speed and generalization ability of the model and makes it suitable for 

solving the prediction problem of large-scale data. 

In the fault diagnosis stage, based on the traditional self-organizing mapping (SOM) 

neural network method, feature standardization and principal component analysis (PCA) 

are introduced into the SOM neural network data preprocessing part, which solves the 

problem that the traditional SOM neural network struggles to analyze large data samples 

and improves the accuracy and efficiency of fault diagnosis. Different from common fault 

diagnosis techniques, the PCA-SOM method can reduce the dimensionality of original 

data features, while retaining more features of original data points, which greatly im-

proves the ability of this method to process large data samples. In addition, this method 

enhances the characteristics of fault data, makes fault data easy to distinguish, and solves 

the problem that the traditional fault diagnosis method has poor diagnosis effect when 

the fault characteristics are fuzzy. 

It is worth noting that this method not only predicts and evaluates the difference 

between the fault and the health state of the machine tool servo drive system but also 

accurately identifies the fault type, which provides help for the follow-up maintenance 

work and the formulation of maintenance strategy. Finally, the validity of the health man-

agement method is tested with the equipment operation parameter data set containing 

fault data. The results show that the health management system can accurately predict 

and identify the fault information and can realize the health management of the machine 

tool servo drive system. 

The future research direction is mainly to improve the generalization ability and 

recognition ability of the model. In the manufacturing industry, due to the complexity and 

variability of the production environment, data changes are particularly common, for ex-

ample, the aging of equipment, the replacement of materials, and the fine tuning of pro-

cess parameters may lead to changes in data distribution. Therefore, improving the gen-

eralization ability of the model is particularly important for fault prediction and diagnosis. 

At the same time, in the fault data, there may be a serious imbalance between normal 

samples and fault samples, which will cause the model to prefer to learn common normal 

pa�erns in the training process, while the recognition ability of rare fault modes is weak. 

Therefore, it is necessary to solve the problem of data sample imbalance to improve the 

performance of the model. 
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