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Abstract: Considering the vulnerability of satellite positioning signals to obstruction and interference
in orchard environments, this paper investigates a navigation and positioning method based on
real-time kinematic global navigation satellite system (RTK-GNSS), inertial navigation system (INS),
and light detection and ranging (LiDAR). This method aims to enhance the research and application
of autonomous operational equipment in orchards. Firstly, we design and integrate robot vehicles;
secondly, we unify the positioning information of GNSS/INS and laser odometer through coordinate
system transformation; next, we propose a dynamic switching strategy, whereby the system switches
to LiDAR positioning when the GNSS signal is unavailable; and finally, we combine the kinematic
model of the robot vehicles with PID and propose a path-tracking control system. The results of the
orchard navigation experiment indicate that the maximum lateral deviation of the robotic vehicle
during the path-tracking process was 0.35 m, with an average lateral error of 0.1 m. The positioning
experiment under satellite signal obstruction shows that compared to the GNSS/INS integrated
with adaptive Kalman filtering, the navigation system proposed in this article reduced the average
positioning error by 1.6 m.

Keywords: autonomous navigation; orchard; GNSS/INS integration; LiDAR; agricultural robot

1. Introduction

At present, China is the world’s largest producer and consumer of forest fruit [1],
with the State Bureau of Statistics reporting that in 2021, orchards occupied approximately
12,962 thousand hectares, marking a 2.5% increase, and the annual fruit production in China
was 296.11 million tons. However, compared with farmland production, the mechanization
rate in orchards is low, and complex tasks such as picking, transportation, weeding, and
pruning are common. The issue of seasonal employment makes it difficult to hire expensive
workers, and the rising labor cost has become an important factor restricting the improve-
ment of the forest and fruit industry. Therefore, it is vital to enhance the mechanization
level of orchard industry and improve the efficiency of orchard operations [2–4]. In view of
the unique advantages of intelligent operating equipment in complex agricultural produc-
tion, autonomous navigation technology in orchards has become more and more widely
used in recent years, and the orchard autonomous navigation technology has become an
indispensable core technology in the intelligent operation equipment. The autonomous
navigation technology of operational equipment involves its own precise positioning, path
planning, path-tracking control, and other functions, which is an important prerequisite for
realizing intelligent and efficient operation of orchard machinery.

The real-time kinematic global satellite navigation system (RTK-GNSS) is currently one
of the most widely utilized navigation technologies. It achieves centimeter-level accuracy
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in satellite positioning by processing carrier phase measurements as a ranging source in
open outdoor environments [5]. It provides real-time, absolute positioning with broad
coverage, all-weather capabilities, and high precision [6–8]. However, the tree canopy
and bird-proof nets block the satellite signals [5], making it difficult to ensure continuous
high-precision autonomous movement. Therefore, it is necessary to integrate information
from other sensors to overcome this drawback.

Recently, some robot navigation frameworks have been proposed based on com-
binations of different types of sensor information, including GNSS-INS [9,10], GNSS-
Visual [11–13], and GNSS-LiDAR [14–16]. Among them, inertial navigation is widely used
in the case of transient loss of satellite signals due to its advantages of isolation from the
environment and high operational accuracy in a short period of time. Huang et al. [17]
designed an integrated navigation system based on real-time dynamic kinematics BeiDou
satellite navigation system (RTK-BDS) and INS and conducted navigation experiments
using an agricultural machine to keep the position error within 3 cm on an open road.
Sun et al. [18] fused the GNSS with Kalman-filter-processed inertial measurement unit
(IMU) information for position estimation between GNSS position updates to improve
the positioning accuracy. Chuang et al. [19] greatly improve the accuracy and robustness
of high-precision localization in forests by utilizing GNSS/INS to obtain high-precision
attitude and velocity information via fusion of the two sensors. Due to the accuracy limita-
tion of inertial devices, INS has a drift error accumulated over time [20]. This drift makes
INS unsuitable for orchard environments where satellite signals are blocked for extended
periods, and the terrain is uneven and overgrown with weeds.

The positioning of a visual sensor is obtained by transforming the pixel position, pixel–
camera distance, camera coordinate system, and robot coordinate system. Ball et al. [21]
used a GNSS/INS-based navigation system and machine-vision-based obstacle monitoring
to achieve normal operation and the obstacle avoidance function of the robot without a
GNSS signal for five minutes. Zuo et al. [22] proposed a GNSS navigation method enhanced
by vision, which uses a Kalman filter to integrate binocular vision with GNSS-provided
positioning. This approach effectively reduces navigation errors when GNSS signals are
disrupted by significant noise. Chu et al. [23] developed an integrated system comprising
a camera, IMU, and GNSS, utilizing the extended Kalman filter (EKF). This integrated
approach delivers precise position estimation and potentially surpasses the performance of
tightly coupled GNSS/IMU systems, especially in challenging environments with limited
GNSS observations. In the natural outdoor environment, visual sensors are susceptible to
the influence of light. In addition, due to the large amount of image information captured
by the visual sensors, a large amount of computing power is consumed [15].

The information gathered by light detection and ranging (LiDAR) is extensive. Its
accuracy and robustness are contingent upon the feature information extracted through
position analysis algorithms and intelligent point cloud matching algorithms. Shamsudin
et al. [24] derived a weight function through the fusion of GPS and LIDAR-SLAM to ensure
their respective advantages and realize the consistent construction of the map of the fire
robot. Jiang et al. [25] propose a LiDAR-assisted GNSS/INS integrated navigation system to
ensure continuous positioning in GNSS-available and GNSS-blocked scenarios for seamless
train positioning. Elamin et al. [26] integrated GNSS and LiDAR into an unmanned aerial
vehicle (UAV) mapping system to overcome the problem of massive and prolonged GNSS
signal interruptions caused by GNSS antenna failures during data collection. For laser
navigation techniques, LiDAR positioning adopts an idea similar to inertial navigation
odometer, which also accumulates errors.

Although laser odometers have smaller accumulated errors than INS in orchard
environments, long-term operation can still cause positioning information to shift. This
issue is particularly pronounced during row changes. Therefore, this paper uses accurate
GNSS positioning information in differential mode to correct the accumulated errors of the
laser odometer.
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In summary, this paper investigates a GNSS/INS/LiDAR navigation method for
complex orchard environments characterized by dense canopies, changing light conditions,
uneven terrain, and weeds. In the following sections, Section 2 describes the hardware and
software design and construction of the orchard robot vehicle, the autonomous positioning
methods based on multi-sensor fusion, and the design of the navigation control system.
In Section 3, the experimental study verifies the effectiveness of the proposed navigation
system. Finally, in Sections 4 and 5, discussion and conclusions are presented to summarize
the whole paper.

2. Materials and Methods
2.1. Orchard Robotic Vehicle Design
2.1.1. Hardware Integration of the Orchard Robotic Vehicle

Utilized in complex orchards, our robot features a tracked chassis, an industrial
computer, GNSS antennas (T1 Receiver), a receiver (FRII-D-Plus-INS), servo motors, a
motor driver (KYDBL4875-2E), LiDAR (RS-LiDAR-16), and a wireless radio (HX-DU1601D).
The chassis has a 0.32 m track gauge and a 1.2 m track length. The T1 receiver, enabling
RTCM3.3 and centimeter-level RTK positioning, provides full RTCM differential data.
Equipped with a high-performance MEMS inertial device, the FRII-D-Plus-INS receiver
supports differential positioning with under 1.5 cm accuracy. The HX-DU1601D boasts a
robust design and supports features such as full-duplex communication, channel viewing,
and power adjustment. It enables users to set frequencies between 410 and 470 MHZ,
fitting for varied outdoor scenarios. The RS-LiDAR-16, employing hybrid solid-state
LiDAR technology, includes 16 laser transceivers. It offers a maximum range of 150 m,
precision within ±2 cm, a capacity of 300,000 points per second, 360◦ horizontal angles,
and −15◦ to 15◦ vertical angles. The RS-LiDAR-16 projects high-frequency lasers through
16 rotating emitters to scan the environment continually, yielding 3D point cloud data and
reflectivity via its ranging algorithms. The overall hardware assembly composition of the
robotic vehicle is shown in Figure 1.
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Figure 1. Robotic vehicle overall hardware diagram. Note: 1. LiDAR; 2. GNSS antenna; 3. signal
receiver; 4. industrial control unit; 5. GNSS/INS receiver; 6. mobile chassis; 7. mobile power supply.

2.1.2. Navigation System Design of the Orchard Robotic Vehicle

The framework of the automatic orchard navigation system is shown in Figure 2, which
mainly focuses on the positioning unit, decision unit, and control unit. The localization
unit consists of RTK-GNSS, LiDAR, and the inertial measurement unit, and provides the
central control unit of the robot with localization information and RTK-GNSS signal status
information. RTK-GNSS includes a wireless transmission radio, GNSS receiver, GNSS
antenna, and GNSS base station. The decision unit is connected to each module through
the serial port to process the positioning information. Firstly, based on RTK-GNSS status
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information, the system selects the appropriate navigation positioning mode. Next, it
calculates the navigation path and determines the speeds of the left and right wheels using
the PID control algorithm. Finally, the system issues control commands to the motion
control module.
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Figure 2. GNSS-LiDAR fusion navigation framework.

The system software of the orchard mobile platform runs on the Linux operating
system, using ROS as the software integration platform for the autonomous positioning
and navigation system. The robot vehicle acquires and publishes the satellite-based self-
positioning information and positioning status, as well as the LiDAR-based self-positioning
information and positioning status, through the ROS-driven sensors. The information
processing module subscribes to the sensor information through ROS and analyzes and
processes the data. When the GNSS status, which indicates satellite positioning status
information, is at 2, meaning the GNSS differential signal is good, the system navigates
using GNSS positioning information. If the status is not 2, it switches to using laser
odometer positioning information for navigation and positioning. After the information
is processed and calculated, the system sends the robot’s motion control signals to the
motion control module. Upon receiving the command, the drive controller activates the
left and right brushless DC motors, causing the main control wheel to rotate and thereby
controlling the movement of the robot vehicle. The overall architecture of the software
system is depicted in Figure 3.

2.2. GNSS-LiDAR Fusion Positioning Principle
2.2.1. Coordinate System Integration of GNSS and LiDAR

When the orchard robot operates on open and unobstructed roadways, it primarily
relies on the GNSS system for navigation. The positioning information output by this
system is based on the WGS84 geodetic coordinate system, presented in the form of
LLA (latitude, longitude, altitude). This type of LLA position information cannot be
directly used for robot vehicle localization and navigation. It is necessary to convert
the latitude and longitude information obtained by the robot into coordinate values in
a planar rectangular coordinate system. The Gauss–Krüger projection is essentially an
equirectangular projection, which can convert the latitude and longitude coordinates of
the Earth into two-dimensional right-angle coordinates of the plane [27]. Its geometric
schematic is shown in Figure 4.
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This paper adopts the 6◦ projection, whereby every 6◦ is divided into a projection belt
from the meridian of 1.5◦E, the world is divided into a total of 60 projection belts from west
to east, and the belt number is sequentially coded as the 1st, 2nd, . . ., 60th belt. For the
longitude of the central meridian of China’s 6◦ band, totaling 11 bands from 73◦ every 6◦ to
135◦. The band number is denoted by n and the central meridian of longitude by L. If the
geodetic coordinate of a certain point (E, N) is known, the 6◦ belt projection of the point
can be obtained. The formula for belt number is

n =
L − 1.5

6
(1)

Assuming that the earth is a rotating ellipsoid, since the format of latitude and longi-
tude information output by the GNSS system used for navigation and positioning is WGS-
84, the WGS-84 ellipsoid model is used in this paper, and its long half-axis a = 637,8137 m,
short half-axis b = 6,356,752.3142 m, and inverse of the oblateness is 298.257233563 m. If
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e1 is the first eccentricity of the earth’s ellipsoid and e2 is the second eccentricity of the
earth, then

e1 =

√
a2 − b2

a2 (2)

e2 =

√
a2 − b2

b2 (3)

Suppose that the radius of curvature of the meridian circle of the earth is M, the radius
of curvature of the dolomite circle is S, and that the length of the meridian from the equator
to the latitude W of the point where it is located is Ls. Then,

M =
a
(
1 − e2

1
)√(

1 − e1
2sin2N

)3
(4)

S =
a√(

1 − e1
2sin2N

) (5)

Ls = a(1 − e2
1)

[
C1N − C2

2
sin 2N +

C3

4
sin 4N − C4

6
sin 6N +

C5

8
sin 8N

]
(6)

C1, C2, C3, C4, and C5 in Equation (10) are the basic constants, which are calculated as
shown in Equation (11): 

C1 = h0 +
h2
2 + 3

8 h4 +
5

16 h6 +
35

128 h8

C2 = h2
2 + h4

2 + 15
32 h6 +

7
16 h8

C3 = h4
8 + 3

16 h6 +
7

32 h8

C4 = h6
32 + h8

16
C5 = h8

128

(7)

where h0 = a
(
1 − e2

1
)
, h2 = 3

2 e2
1h0, h4 = 5e2

1h2, h6 = 7
6 e2

1h4, h8 = 9
8 e2

1h6.
Then, the algorithm formula to convert geodesic coordinates (E, N) to planar coordi-

nates (x, y) by Gaussian projection orthographic formula is as follows:

x = Ls +
M

2ρ2
2
l2sin Ncos N + M

24ρ4
2
l4sin Ncos3 N

(
5 − t2 + 9η2 + 4η2)+

M
720ρ6

2
l6sin Ncos5 N

(
61 − 58t2 + t4)

y = M
ρ2

l2cos N + M
6ρ3

2
l3cos3 N

(
1 − t2 + η2)+

M
120ρ4

2
l5cos5 N

(
5 − 18t2 + t4 + 14η2 − 58η2t2

) (8)

where l is the difference in longitude from the position of the point to the position of the
central meridian, ρ2 is a constant, and η is an auxiliary parameter, with

ρ2 =
180
π

× 3600 (9)

l = E − L0 (10)

η = e2cos N (11)

By using Gauss–Kruger projection algorithm, the (x, y) coordinate representation of
latitude and longitude in a planar coordinate system is obtained.

To ensure stability and consistency in the switching and usage of the two sensors,
it is necessary to unify the GNSS navigation planar coordinate system with the three-
dimensional LiDAR-SLAM navigation coordinate system after Gaussian projection. By
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doing so, descriptions of self-positioning and environmental information under the unified
coordinate system can be obtained.

As shown in Figure 5, XlOlYl is the laser odometer reference coordinate system, and
XgOgYg is the coordinate system after Gauss–Krüger projection. This paper takes the laser
odometer reference coordinate system XlOlYl as the unified coordinate system, with (x0, y0)
as the initial position after the robot operates the navigation system. At the same time,
(x0, y0) is also the origin of the laser odometer reference coordinate system. This paper
obtains the angle θ between the Yl axis of the laser odometer reference coordinate system
and the true north from the heading angle output by the INS. Then, the coordinates (x1, y1)
are transformed through rotation and translation transformations to obtain

(
x′′

1 , y′′
1
)

in the
laser odometer coordinate system as follows.
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First, the laser odometer coordinate system XlOlYl is used as the unified coordinate
system, and (x0, y0) is the starting position of the autonomous positioning navigation
system. The angle between the X0 axis of the laser odometer coordinate system and true
north is obtained by receiving the heading angle output from INS as θ, and then the GNSS
navigation plane coordinates (x, y) after Gaussian projection are transformed by translation
to obtain (x1, y1) in the laser odometer coordinate system as[

x′′
1

y′′
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]
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[
cos θ −sin θ
sin θ cos θ
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x1 − x0
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By rotating and translating the coordinate system, an accurate description of the laser
odometer positioning information, the GNSS positioning information, and the navigation
path in the same coordinate system can be obtained. Following the conversion of the
coordinate system, the system now articulates the positioning information from both the
laser odometer and GNSS, along with the navigation path defined by latitude and longitude,
in a unified coordinate framework.

2.2.2. GNSS-Corrected Laser Odometer

The GICP algorithm improves the accuracy and robustness of the registration between
point cloud data by considering the position uncertainty of each point. Compared with the
traditional ICP algorithm, GICP not only incorporates the Gaussian distribution information
of points in the solution process but also uses KD-tree to efficiently search for the nearest
point, which greatly accelerates the registration speed. Suppose the source point cloud
Ps =

{
Ps

1 , PS
2 , . . . , Ps

n
}

and the target point cloud Pt =
{

Pt
1, Pt

2, . . . , Pt
n
}

, which are registered
by the estimated transformation matrix X̂. X̂ belongs to the special Euclidean group SE(3),
consists of a rotation matrix and translation vectors, and can be expressed as X̂ ∈ SE(3).

pt
i = X̂ × ps

i (13)
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Since real-world measurements include noise, the location of each point cloud is
assumed to be the mean of the estimated position that obeys the point. The covariance
matrix of the point is the Gaussian distribution of the covariance. p̂s

i and p̂t
i are the

mean values of the source point cloud Ps and the target point cloud Pt, respectively. Cps

i

and Cpt

i are the covariance matrices of the source point cloud Ps and the target point
cloud Pt, respectively. The source point cloud Ps and the target point cloud Pt are the
Gaussian distribution:

ps
i ∼ N

(
p̂s

i , Cps

i

)
(14)

pt
i ∼ N

(
p̂t

i , Cpt

i

)
(15)

The alignment error di for each pair of corresponding points can be obtained as

di = pt
i − X̂ps

i (16)

Since ps
i , pt

i are Gaussian distributions independent of each other, then di also belongs
to a Gaussian distribution:

di ∼ N
(

0, Cpt

i +
(
X̂
)
Cps

i
(
X̂
)T

)
(17)

The iterative calculation of X̂ is obtained by the maximum likelihood estimation
(MLE) method:

X̂ = arg max
X̂

ε
(
X̂Ps, Pt) (18)

where the residual error ε is defined as

ε
(
X̂Ps, Pt) = n

∑
i

dT
i

(
Cps

i + X̂Cps

i X̂T
)−1

di (19)

The GICP algorithm has a wider range of applications than the classical ICP algorithm,
and the GICP alignment is better than the ICP in terms of matching speed and accuracy [28].
Therefore, this paper chooses the algorithm based on GICP matching for point cloud
alignment. The structure of the laser odometer workflow is shown in Figure 6.
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After the work described above, we obtained descriptions of GNSS and LiDAR po-
sitioning information under a unified coordinate system. In actual use of the LiDAR
odometry based on generalized iterative closest point (GICP), we discovered that although
its cumulative error is smaller compared to INS, it can still lead to shifts in positioning
information over long periods of use. This shift phenomenon is especially noticeable when
changing rows, as illustrated in Figure 7a. To enhance the navigation accuracy of the LiDAR
odometer in the orchard, we integrate the GNSS positioning information after coordinate
alignment to correct and initialize the LiDAR odometer at the end of each row. After
reaching the next transverse end of the field, initialization is stopped, and the current frame
is used as the initial frame, taking the GNSS output at this moment as the pose information
for the initial frame. Then, the keyframes in the stored keyframe library are cleared to
eliminate accumulated errors. The effect of the GNSS-corrected LiDAR odometer is shown
in Figure 7b.
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2.2.3. GNSS-LiDAR Orchard Positioning Scheme Based on Dynamic Switching

To meet the navigation needs of the orchard environment, we utilize the ROS system
to subscribe to the GNSS STATUS topic. Based on the assessment of GNSS signal status, we
propose a method for dynamically switching between GNSS-LiDAR positioning modes.
Figure 8 is a schematic diagram of the work performed by the orchard robotic vehicle. In
this diagram, the green areas represent the end of the field, where there is no overhead cover,
and the satellite differential signals are good. The yellow areas represent the working areas
between the rows of trees, and the black areas are where satellite signals are obstructed.
During operation, the orchard robotic vehicle dynamically switches between odometer
positioning information and RTK-GNSS positioning information, based on the GNSS
signal status. In the green areas, the orchard robotic vehicle navigates using RTK-GNSS
positioning information. In the black areas, it determines the switch to laser odometer
positioning mode by assessing GNSS signal status. Upon exiting such areas, it switches
back to RTK-GNSS positioning mode.

2.3. Path-Tracking Control System
2.3.1. Kinematic Model of Robotic Vehicle

To adapt to the complex, uneven, and soft soil ground in the orchard, the robotic
vehicle adopts a track structure for its chassis. This structure has a large contact area with
the ground, providing greater friction and stronger off-road performance compared to
wheel drive, making it more suitable for the orchard environment. The chassis used in
this study is based on the principle of differential motion, whereby steering is achieved
by controlling the speed difference between the left and right tracks. We assume that the
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surface of the orchard roads is approximately a two-dimensional plane, and the mass of
the mobile platform is uniformly distributed. Its center of mass is located on the geometric
longitudinal symmetry line, and it will not deflect or slip during driving. Based on this, a
differential drive kinematic model is established.
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The robot kinematics model is shown in Figure 9. The point OL(x0, y0) is the center of
mass of the moving platform, XOY is the world coordinate system, and XLOLYL is the robot
coordinate system. The forward motion direction is the positive direction of the y-axis, the
right motion direction is the positive direction of the x-axis, and the z-axis is perpendicular
to the paper surface outward. At this time, the position of the robot is represented by the
vector

[
x y θ

]T , which serves as the reference coordinate point of the moving platform
in the orchard. Oc is the center of rotation center of mass; v is the linear velocity of the
center of mass; rc is the turning radius of the center of mass; vl , vr are the linear velocities of
the left and right driving wheels; ω is the angular velocity of the center of mass with respect
to the rotational center Oc; and Lr is the distance between the centers of the two tracks.
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The linear velocity of the orchard moving platform can be expressed as

V =
vl + vr

2
(20)

The angular velocity of the orchard moving platform can be expressed as

ω =
V
Lc

=
vr

Lc + Lr/2
=

vl
Lc − Lr/2

=
vr − vl

Lr
(21)

The derivative of the positional state of the orchard moving platform is
.
x
.
y
.
θ

 =

cos θ 0
sin θ 0

0 1

[ v
ω

]
(22)

According to Equations (20) and (21),
.
x,

.
y,

.
θ are, respectively,

.
x = vl+vr

2 cosθ

.
y = vl+vr

2 sin θ
.
θ = vr−vl

Lr

(23)

The above equation shows that controlling the rotational speed of the tracks on both
sides of the robotic vehicle can realize the control of its steering and driving speed, which
can be obtained by discretization:

x(t + 1) = x(t) + Vcos θ × T
y(t + 1) = y(t) + Vsin θ × T
θ(t + 1) = θ(t) + ω × T

(24)

In summary, it can be seen that by controlling the rotational speed of the tracks on
both sides of the robot, it is possible to control the robot’s steering and straight-line travel.

2.3.2. PID-Based Path-Tracking Algorithm

Due to the uneven ground of the orchard and the soft soil, the mobile platform of the
orchard often deflects and slips during the walking process, causing it to deviate from the
preset navigation path. The PID control algorithm is an important part of classical control
theory and has been widely used in practical engineering [29], and we use it to implement
path-tracking control.

The essence of a PID controller is a linear controller. In the PID control system, the
selection of PID controller parameters Kp, KI , KD can significantly affect the effectiveness
of the system. Continuous PID algorithm prototype formula:

u(t) = Kp

[
e(t) +

1
Ti

∫ t

0
e(t)d(t) + Td

de(t)
dt

]
(25)

where u(t) is the PID controller output regulation, Kp is the proportionality coefficient, e(t)
is the real value and the set value of the error, Ti is the integral time constant, and Td is the
differential time constant.

Since the industrial control machine cannot directly use the continuous PID prototype
function, the algorithm is discretized as follows:

u(n) = Kpe(n) +
kpT
Ti

n

∑
i=1

e(i) +
KpTd

T
[e(n)− e(n − 1)] (26)
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where kp, kp/Ti, KpTd correspond to the three parameters Kp, KI , and KD in the PID
controller, e(n) is the error between the real value and the set value at n moments, and T is
the sampling period.

The PID controller studied in this paper takes the heading deviation θ and lateral
deviation d between the navigation process of the robotic vehicle in the orchard and the
set navigation line as inputs, and the left and right wheel rotational speeds of the mobile
chassis as outputs. The control principle is shown in Figure 10, and the control model is
as follows:

u(n) = Kp1
.
x + Kp2

.
θ + KI

n

∑
i=1

d(i)+KD[d(n)− d(n − 1)] (27)
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This can be obtained by combining the differential robot model above:
vr = v − 1

2

(
Kp1

.
x + Kp2

.
θ + KI

n
∑

i=1
d(i)+KD[d(n)− d(n − 1)]

)
vl = v + 1

2

(
Kp1

.
x + Kp2

.
θ + KI

n
∑

i=1
d(i)+KD[d(n)− d(n − 1)]

) (28)

The sampling time was set to 250 milliseconds, and the path-tracking speed to
v = 0.25 m/s. Through testing, it was determined that when Kp1 = 59.6, Kp2 = 0.65,
KI = 1.2, and KD = 6.5, the system exhibits the best stability and fastest response time.
The simulation results of the PID control performance under the selected parameters are
shown in Figure 11. The controller used in this paper has a rise time of no more than 1 s, a
lateral deviation overshoot of no more than 0.1 m, a course deviation overshoot of no more
than 0.2 rad, a settling time of no more than 2 s, and a steady-state error of zero. These
characteristics meet the fundamental requirements of PID control.
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3. Results
3.1. Experiment Setting

To verify the performance of the orchard navigation system proposed in this paper,
tests on its path-tracking and positioning functions were conducted in an apple orchard
in Beijing City, as shown in Figure 12. Five rows of apple trees were selected in the
experimental area, spaced approximately 3.5 m apart, with each row being about 95 m
long, and the orchard floor was covered in weeds. The robot vehicle walked through
the rows of apple trees, covering a total distance of about 360 m. During the test, a
dynamic switching GNSS/INS-LiDAR positioning mode was used within the rows of trees,
while the GNSS/INS positioning method was employed at the row ends. Given that the
positioning information error obtained by the GNSS/INS navigation system under good
signal conditions is equal to or less than 1.5 cm, this experiment used it as the actual path
trajectory during the orchard traversal process.
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3.2. Navigation Test with Unobstructed GNSS

In the experimental orchard area without anti-bird nets, the road between the rows
of apple trees has no overhead obstructions. This condition allows for a strong satellite
differential signal, enabling the autonomous navigation test for the orchard’s robotic vehi-
cle. Given the robust satellite differential signal, the system relies solely on the GNSS/INS
system’s positioning information for path tracking. The walking trajectory during navi-
gation is shown in Figure 13, and the lateral deviation value of the real walking trajectory
from the preset navigation path is shown in Figure 14. Due to the uneven ground of the
orchard, and because the robotic vehicle used in the test is small and prone to side-slip, the
lateral deviation value fluctuates greatly in the figure. The test indicates that the maximum
path-tracking lateral error does not exceed 0.35 m, and the average path-tracking lateral
error does not exceed 0.1 m. The standard deviation of the lateral error is 0.076 and the root
mean square error (RMSE) is 0.016 m.

3.3. Navigation Test with Intermittent GNSS Dropout

An anti-bird net was laid over a part of the road between the third and fourth rows of
apple trees in the orchard experimental area to test the effect of satellite differential signal
blocking. The positioning trajectory during navigation is shown in Figure 15. Figure 16
shows the positioning deviation of the laser odometer and the GNSS/INS positioning
deviation of the occluded part of the satellite differential signal. The positioning deviations
of the laser odometer and the GNSS/INS under obstruction conditions are shown in
Table 1. The average positioning deviation of the laser odometer is 0.14 m, the maximum
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positioning deviation is 0.62 m, the standard deviation is 0.115, and the RMSE is 0.0328 m.
When the satellite differential signal is obstructed, the average positioning deviation of the
GNSS/INS positioning system is 1.24 m, the maximum positioning deviation is 2.23 m,
the standard deviation is 0.6927, and the RMSE is 2.0195 m. When the satellite signal is
blocked, the positioning accuracy of the laser odometer and the fluctuation of positioning
error are better than that of the GNSS/INS navigation and positioning system.
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4. Discussion

The satellite signal enables RTK differential positioning without barriers, achieving
a GNSS/INS navigation accuracy within 1.5 cm. This accuracy serves as the baseline for
the robotic vehicle’s path trajectory during autonomous navigation. Field tests show that
with satellite signal blockage, GNSS/INS positioning records an average error of about
1.24 m and a maximum error of roughly 2.23 m, alongside a standard deviation of 0.69
and an RMSE of 2.02 m. Conversely, the laser odometer’s average error remains below
0.14 m, with the maximum deviation not exceeding 0.63 m, a standard deviation of 0.16,
and an RMSE of 0.03 m. By the fusion of the laser positioning information, the problem of
intermittent loss of satellite positioning signals in the complex environment of the orchard
is effectively overcome. Although the positioning error fluctuates greatly, it can be used
as the basis for the robotic vehicle’s navigation and positioning when the satellite signal
is lost or blocked. Its positioning accuracy is acceptable for orchard spraying, weeding,
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transportation, and other uses of mechanical mobile platforms. The results are expected to
improve the navigation capability of autonomous operating equipment in orchards.

5. Conclusions

To mitigate the issue of signal blockage by dense orchard canopies causing significant
drops in satellite navigation system accuracy, this study introduces a loosely coupled
laser odometer and GNSS/INS system for robotic vehicles in orchards. The approach
includes creating the vehicle’s kinematic model, developing a PID-based path-tracking
algorithm, planning paths tailored to orchard terrain, and executing navigation trials.
Results indicate that with the robotic vehicle moving at 0.35 m/s, the peak tracking error
stays below 0.35 m, the mean absolute error remains under 0.1 m, with a standard deviation
close to 0.078, and an RMSE under 0.017 m. The autonomous navigation and control
system adopted by the robotic vehicle meets the requirements of autonomous navigation
of orchard robots. It improves the navigation accuracy in the partially obstructed orchard
environment and improves the performance of the navigation system. When satellite
signals are obstructed, laser odometry becomes the standard for navigation and positioning.
Compared to the GNSS/INS method, this approach reduces the maximum and average
positioning deviations by 1.6 m and 1.1 m, respectively. This effectively enhances navigation
stability and positioning accuracy under conditions of blocked satellite signals, overcoming
the challenges of self-positioning in environments where satellite signal interruptions occur.
The disadvantage is that the positioning error of the laser odometer fluctuates greatly,
which still needs to be further optimized and improved.
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