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Abstract: With the rapid growth of video data, the search for content and events in videos is becoming
increasingly relevant, and many challenges arise. Various approaches have been proposed to deal
with many issues. However, many open questions are still related to computational cost and latency,
especially for real-time applications. Considering the need for new and efficient solutions, the so-
called NOP (Notification Oriented Paradigm) could be a suitable alternative. NOP introduced a new
way of thinking and developing software in which small collaborative entities perform fact execution
and logical decision processing based on precise notifications. Following these concepts and practical
tools, this paper proposes a new querying processing method based on NOP, focusing on search and
matching in a continuous flow context. Experiments on a labeled dataset demonstrated the suitability
of the proposed method for low-latency processing with polynomial complexity. The results are
better than the state of the art, which works at exponential cost.

Keywords: query processing method; notification-oriented paradigm; event stream processing;
dataset; case study

1. Introduction

Computer vision has evolved rapidly due to recent advances in deep learning, de-
velopment libraries, and GPU computing power, allowing large amounts of video to be
processed more efficiently than before [1,2]. However, important work has pointed out
difficulties in dealing with this type of unstructured data, especially for processing and
retrieving events [3–6]. Therefore, to solve these problems, computer vision researchers
have developed a large body of work [2,7–9].

Recently, video streaming queries have gained attention, mainly due to their wide scope
of applicability. For example, traffic must be constantly supervised in smart cities [10,11].
In this context, traffic authorities may need a system that allows direct queries to detect
high-volume traffic, locate vehicles by features (e.g., license plate, color, or model), or track
suspicious vehicles that are traveling together, such as a criminal escort car, among oth-
ers [4,5,11,12]. Despite the advances, several problems still need to be solved, such as the
lack of a standard query language and an efficient engine, which requires a pragmatic
solution, as happened with relational databases with ANSI SQL. Still, complex processing
pipelines and the high latency between the user’s search command and the video retrieval
are relevant issues [4,10,13].

In addition, more attention should be given to the computational cost of applica-
tions [14]. Hence, even though there have been general technical advances in computing
power (e.g., multicore processors and GPUs), graphics processing libraries (https://docs.
opencv.org/4.x/index.html) (accessed on 16 December 2023) [15], and video databases [3,4],
the state of the art is not yet able to provide adequate solutions to the problems men-
tioned above.

From an epistemological and ontological point of view, the origin of the problem
would be beyond the current approaches, reaching its usual programming paradigms and

Appl. Sci. 2024, 14, 3566. https://doi.org/10.3390/app14093566 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093566
https://doi.org/10.3390/app14093566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3291-6465
https://orcid.org/0000-0002-2139-1261
https://docs.opencv.org/4.x/index.html
https://docs.opencv.org/4.x/index.html
https://doi.org/10.3390/app14093566
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093566?type=check_update&version=1


Appl. Sci. 2024, 14, 3566 2 of 23

related idiosyncrasies, such as the tendency to misuse processing capacity and program
coupling [16]. The so-called paradigm unfitness would be a relevant and even primary
cause of software development problems that hinder breakthrough solutions in the video
query system as much as other domains involving distributed and high-demanding pro-
cessing. Therefore, researchers have devised new development paradigms, such as the
highlighted Notification Oriented Paradigm (NOP), created more than a decade ago and
evolved in recent years [16–22].

In particular, this paradigm aims to promote better performance in system execu-
tion and easier construction of complex systems, especially to parallel and distributed
systems [16]. NOP splits a computational system into collaborative and decoupled enti-
ties with minimal subentities. Their decoupled notifier subentities collaborate through
a well-orchestrated and precise notification chain. It avoids redundancies and coupling,
saves processing power, and allows processing distribution. Several researchers have high-
lighted the advantages of NOP for software development [23], programming language [24],
computational parallelism [25], and low-cost operations [21], among others.

Inspired by the features and advantages of NOP and existing development tools, this
paper proposes a new query-processing method that handles multiple video events and
reacts with low latency when matches occur. A distinct conformation of the state-of-the-art
NOP framework is used to query the system domain to avoid intensive database operations:
storage, retrieval, and triggers. In addition, a use case with several experiments has been
developed to show the feasibility of the proposed NOP-based solution for this domain.

This paper presents three main contributions, among others:

• The Notification-oriented Querying Method and Prototype (NOP Query) is a new
querying method based on NOP concepts and its state-of-the-art framework.

• A realistic case study that systematically evaluates the proposed NOP querying
method/prototype through CPU and memory usage experiments.

• A new large labeled traffic surveillance dataset used in this case study are available to
the research community to enable reproducible experiments.

We also present and discuss some possible applications of the proposed method in
related areas.

The next sections of this paper are organized as follows. Section 2 presents related
works. Section 3 presents an overview of the NOP and its state-of-techniques development
framework. Section 4 proposes and describes the NOP Query. Section 5 presents the
case study which aims to show the suitability of the NOP Query. Section 6 discusses and
compares the NOP Query with related technologies. Section 7 concludes the paper and
discusses the promising results and future research directions.

2. Related Work

Historically, video query processing requires enormous computing power and many
different technologies, from image acquisition to pre-processing, labeling, storage, and event
processing. There are a large number of studies dealing with search engines and video
queries from different aspects. The most relevant works are considered in this section.

2.1. Computer Vision Using GPUs and FPGAs

In the field of artificial intelligence, the convergence of computer vision, deep learning,
and GPUs (Graphics Processing Units) has revolutionized the way that machines perceive
and interpret visual information [26]. Computer vision is a multidisciplinary field that
allows machines to interpret and understand visual information from images, videos, or
other visual data. In turn, Deep Learning is a subset of machine learning that uses neural
networks with multiple layers, called deep architectures [27,28]. These models learn hierar-
chical representations from raw data, automatically extracting relevant features. Still, GPUs
speed up deep learning training and inference due to their parallel processing capabilities
and ease with matrix operations, such as convolutions and matrix multiplication [29].
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Examples of applications that benefit from these technologies together include autonomous
vehicles, medical imaging, surveillance, robotics, augmented reality, and much more.

Specifically in the area of video queries, many authors have used GPUs to perform data
ingestion, preprocessing, and object labeling [3–5,30–33], among others. Other interesting
approaches have used GPUs to calculate string similarity metrics for large datasets [34],
as well as to object tracking using the honeybee search algorithm taking advantage of
parallel computing [35]. As matter of fact, string similarity assessment is a processing
task applied to large volumes of data, often performed by various applications, such as
search engines, biomedical data analysis, and even software tools to defend against viruses,
spyware, or spam. In turn, object tracking refers to the relocation of specific objects in
consecutive frames of a video sequence. These examples demonstrate how GPUs can be
used to solve problems that especially need parallel computing for processing mathematical
operations.

Besides, it is possible to use Field-Programmable Gate Arrays (FPGA) for deep learn-
ing tasks instead of GPUs [36]. Even if GPUs have been the dominant hardware platform
for deep learning due to their highly parallel architecture and efficient matrix operations,
FPGAs actually offer several advantages that make them attractive to certain applica-
tions mainly because their energy efficiency, reconfiguration flexibility, low latency, and
customization at the hardware level. Some interesting uses of FPGAs include real-time
detection of straight lines in static and low-definition images [37], robotic computing [38],
and neural network optimizations [39], among others.

2.2. Computing Architectures for Video Querying

Computing architecture for video querying refers to the physical integration between
producers, processors, and consumers. In general, there are three computing architectures:
(a) compute everything on a powerful server, (b) compute where the data is produced,
or (c) distribute computing across hierarchical nodes. Each approach has advantages
and disadvantages.

The most common architecture used over time is the server-only architecture, also
called client-cloud configuration or cloud computing. In this architecture, developers con-
sider distributing a powerful server or cluster with many CPUs, GPUs, memory, and band-
width across producers (e.g., mobile, IoT devices, video databases) and the cloud to process
all data [3,4,30,40–43]. The advantages are simplicity, powerful hardware support, and low
internal latency. However, the main disadvantage depends on the external Internet connec-
tion between the video source and the system, which can be very slow.

The edge-first architecture, also called client-first or server-less, is almost the opposite
of server-only. In this architecture, the focus of query processing is on the edge devices and
local edge servers rather than high-performance cloud systems [31,44–47]. This architecture
is particularly suitable for applications such as autonomous vehicles and real-time monitor-
ing that cannot tolerate internet latency and offloading of processing. The disadvantages
are related to the hardware limitations of edge computing devices.

In the fully distributed architecture, all data flow is distributed through a three-stage
pipeline coordinated by an extensive scheduling algorithm that determines when each task
is processed [42,48]. For example, [49] proposed the mobile-cloudlet-cloud architecture,
a proof-of-concept system to distribute the computing of the face recognition task on
mobile devices, cloudlet server, and cloud in order to minimize the response time, given
the diverse latencies and computing resources. Similarly, [42] focused on distributing DNN
processes between edge devices and the cloud, considering online and offline contexts.
Furthermore, [48] proposed an optimization model to maximize data throughput in a
more extensive cluster system. Because of these characteristics, it is the most complex
architecture, as it depends on many internal factors (e.g., scheduling) and external factors
(e.g., network connectivity).
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2.3. Video Query System

A video query system aims to find the most relevant videos given a user query [50].
Among the processing activities, the most important are ingesting and preprocessing, which
require advanced computer vision algorithms to find and identify relevant content, such
as shapes, objects, colors, and events [33]. Then, each object and event must be properly
labeled and stored in a data structure or database. Finally, an engine is needed to retrieve
videos and events given a user query. For this reason, video search frameworks are usually
all-in-one solutions that handle data ingestion, preprocessing, object detection, labeling,
storage, and retrieval [4–6,10,32,43,48,51–53].

From the user’s perspective, few of the mentioned works provide a query language
or human–computer interaction (HCI) [4,5,10,33,51,53,54]. Some current query languages
extend traditional SQL with specific operators related to video events, such as objects (e.g.,
a car), attributes of objects (e.g., a red car), and spatiotemporal relationships (e.g., a car to
the left of a bus, a truck that appears before the car) [10,13,53,54].

2.4. Video Databases

In recent decades, with the development of video recording devices with Internet
access, the amount of video content has increased dramatically, requiring the support of a
specific video database to facilitate storage and retrieval [10]. Over time, several studies
have used relational databases to store and query video data using regular SQL, usually in
offline mode (e.g., “after the fact”) [4,5,32,43]. In some works, relational databases have
used triggers to compute events [11,51,55].

Despite the great success of the SQL language for relational databases, they are not
directly applicable to video databases because video data are dynamic and contain many
“semantic elements”, including spatiotemporal relationships between objects and events.
Due to the disadvantages of relational databases, other types of databases have been used.
For example, [6,54] used a graph database to process spatiotemporal relationships and
perform queries. However, although graph databases can express objects and their relation-
ships more easily, the recording process in streaming scenarios is quite expensive [56].

2.5. Video Querying Latency

Image and video processing require expensive data extraction and storage resources [4,54].
The most accurate modern extraction methods are based on convolutional neural networks
(CNNs). Unfortunately, these methods require several milliseconds per image/frame when
using modern GPUs. Therefore, the final cost of queries on a huge video corpus can be
prohibitive [43].

Query latency refers to the computation time between the start of query processing
and the retrieval of the desired image or video event. There are two main processing times:
offline processing (or query time) and online processing (or ingest time). Offline processing
has no latency restrictions and can take minutes, hours, or even days. It is a very popular
approach due to its low cost, requiring powerful hardware only when the application has
latency constraints [12]. On the other hand, for online processing, latency is crucial for
detecting events in real-time. It requires modern GPUs in video ingestion, deep learning
models for image processing, and complex event detection algorithms. These features
make it more expensive and complicated than offline processing. For example, the authors
in [5,12] used cheap CNNs at ingest time to create an approximate index of all possible
object classes in each frame to process queries for each class in the future, balancing the use
of cheap models and expensive convolutional networks at query time to improve latency
and throughput as needed.

As far as the authors of this article are aware, the VidCEP work [6,13,53] and other
related studies, including the recent PhD thesis [33], are the first to show efficient query
processing with low latency (e.g., near real time). However, the approach uses intensive
graph database operations and short-term window analysis, which significantly limits the
size of the search range, and the processing time increases significantly with large window
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sizes. Currently, there is a gap in video querying with some real-time concerns, which
promotes the need for new solutions, as explained in the following sections of this article.

3. The Notification-Oriented Paradigm

The NOP is an emerging paradigm that originated from a manufacturing discrete
control solution [19], which later evolved into a general discrete control solution, an alter-
native inference solution, and even a computational paradigm [21]. As a main differential,
NOP has two groups of distinct processing entities, namely fact–execution entities and
logical–causal entities, which collaborate through punctual, precise notifications.

The fact–execution entities deal with NOP elements and the execution of proce-
dures/actions that change their states, whereas the logical–causal entities decide which
actions should be executed. In turn, the fact–execution entities are represented by Fact Base
Elements (FBEs) with their Attributes and Methods. The logical–causal entities are repre-
sented by Rules elements with their Conditions-Premises and Actions-Instigations [16,57]. Still,
FBEs and Rules, with their constituents, can be and usually are represented in a declarative
way [58].

Figure 1 presents an example of the NOP entities for a given sensor application.
The FBE named Sensor, somehow similar to an instance of a class in the Object-Oriented
Paradigm (OOP), represents a sort of notifier object composed of two boolean Attributes,
atIsRead and atIsActivated, and a Method named mtTrigger that sets the values of atIsRead
to true and atIsActivated to false. In turn, the associated notifiable Rule rlSensorTrigger
comprises a Condition related to Premises and an Action related to an Instigation. When both
Condition’s Premises are true after notifications of the pertinent Attributes, it fires the Rule
rlSensorTrigger, which causes the Action’s Instigation to start the Method mtTrigger from the
FBE Sensor. As the example suggests, the FBE and Rule constituents collaborate through
precise notifications.

Figure 1. Example of instances of FBE Sensor and Rule rlTriggerSensor with their constituents for a
sensor application.

The NOP state of the art, called Notification-Oriented Paradigm Language (NOPL),
combines a programming language and a compilation system for specific targets. De-
spite being very performant, the NOPL is yet to apply to large or industrial-level projects.
For now, it is used to demonstrate NOP properties in academic and benchmark appli-
cations [59,60]. Alternatively, the NOP state-of-techniques is the so-called NOP C++
Framework 4.0/4.5 for large or industrial projects. This framework is an evolution of the
previous ones and achieved maturity to be more extensively applied. As it is a notification-
oriented framework over C++, changing the usual way that C++ operates, it is naturally
less performant than the quite prototypal NOPL Technology with dedicated language
and compilers. Nevertheless, this framework is still performant and stable for real NOP
applications [59–61].
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Considering the example of Figure 1, Algorithm 1 presents the corresponding code for
NOPL, and Algorithm 2 presents the corresponding code using NOP Framework C++ 4.0.
More details about the NOPL and the NOP Framework C++ can be found in [24,57,60,62].
The framework is in the final stage of the patent process, and it is not currently available to
the community. However, its structure and details have been widely disclosed [22,57,59],
including the works cited in this section.

Algorithm 1 Example of NOPL statements for FBE Sensor and Rule rlTriggerSensor pre-
sented in Figure 1

1: fbe Sensor
2: private boolean atIsRead = false
3: private boolean atIsActivated = false
4: private method mtTrigger
5: assignment
6: this.atIsRead = true
7: this.atIsActivated = false
8: end_assignment
9: end_method

10: rule rlSensorTrigger
11: condition
12: subcondition
13: premise prIsReadFalse
14: this.atIsRead == false
15: end_premise
16: and
17: premise prIsActivated
18: this.atIsActivated == true
19: end_premise
20: end_subcondition
21: end_condition
22: action sequential
23: instigation sequential
24: call this.mtTrigger();
25: end_instigation
26: end_action
27: end_rule
28: end_fbe

The core mechanism of the paradigm is the so-called NOP Inference Chain [63], which
is modeled in Figure 2 and exemplified in Figure 3. Each NOP entity can send and/or
receive precise and pertinent notifications, thereby allowing the evaluation of states only
when a notification arrives. This collaborative notification-oriented behavior provides a
new form to develop and execute software (and even hardware) applications based on
small reactive notifiable entities [16,21].
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Algorithm 2 Example of NOP Framework C++ statements for FBE Sensor and Rule rlTrig-
gerSensor presented in Figure 1

1: /* Include the NOP Framework C++ 4.0 */
2: #include “libnop/framework.h”
3:
4: /* Create the class Sensor */
5: class Sensor
6: {
7: public:
8:
9: /* Create the Attribute atIsRead */

10: NOP::SharedAttribute<bool> atIsRead
11: { NOP::BuildAttribute<bool>(false) };
12:
13: /* Create the Attribute atIsActivated */
14: NOP::SharedAttribute<bool> atIsActivated
15: { NOP::BuildAttribute<bool>(false) };
16:
17: /* Create the Premise prIsRead */
18: NOP::SharedPremise prIsRead
19: { NOP::BuildPremise(this.atIsRead, false, NOP::Equal()) };
20:
21: /* Create the Premise prIsActivated */
22: NOP::SharedPremise prIsActivated
23: { NOP::BuildPremise(this.atIsActivated, true, NOP::Equal()) };
24:
25: /* Create the Condition cnRlSensorTrigger */
26: NOP::SharedCondition cnRlSensorTrigger =
27: NOP::BuildCondition<NOP::Conjunction>(prIsRead, prIsActivated);
28:
29: /* Create the Method mtTrigger */
30: NOP::Method mtTrigger{
31: this.AtIsRead = true;
32: this.atIsActivated = false;
33: };
34:
35: /* Create the Instigation inMtTrigger */
36: NOP::SharedInstigation inMtTrigger =
37: NOP::BuildInstigation(mtTrigger);
38:
39: /* Create the Action acMtTrigger */
40: NOP::SharedAction acMtTrigger =
41: NOP::BuildAction(inMtTrigger);
42:
43: /* Create the Rule rlSensorTrigger */
44: NOP::SharedRule rlSensorTrigger =
45: NOP::BuildRule(cnRlSensorTrigger, acMtTrigger);
46:
47: /* End class */
48: };
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Figure 2. NOP inference chain.

Figure 3. Notification flows.

3.1. NOP Inference Chain

The following items explain the NOP entities according to the inference chain, taking
into account Figures 2 and 3:

• Fact Base Element (FBE): Entity (e.g., an instance of a type or class) that contains the
notifier Attributes and inciteful Methods;

• Attribute: Entity that is responsible for storing a value that represents property states
of an FBE and can precisely notify related Premises when their value changes;

• Premise: Entity that, after being notified by an Attribute, compares that Attribute
with another Attribute or a constant via a logic-relational operator (e.g., =, ̸=, >, <),
and subsequently, notifies related Condition when its logical state changes;

• Condition: Entity that groups one or more Premises and, when notified by any of them,
performs a logical operation (e.g., conjunction or a disjunction) over their states and
notifies its concerned Rule if its logical value changes;

• Rule: Entity with a Condition and an Action that determines the execution of its Action
when its Condition is approved (e.g., its logical state is true);

• Action: Entity that, when instigated by its Rule, activates its Instigations to execute its
functions, properly parametrizing them if necessary;
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• Instigation: Entity related to one or more Actions that, when instigated by an Action,
instigates a set of Method entities to execute, properly parametrizing them if necessary;

• Method: Entity that, when instigated by an Instigation, executes a function or service of
a FBE and, therefore, may change the states of Attributes, thereby feeding a notification
inference cycle.

The NOP organization reduces or even eliminates some of the issues concerning
classical development paradigms, such as the Imperative Paradigm (IP) and Declarative
Paradigm (DP), which, respectively, and even notably, include OOP and Rule-Based Sys-
tems (RBS) [16,57]. Examples of those issues are the often strong coupling of code parts
and the related structural and temporal redundancies concerning logical–causal evaluation
processing [57].

Structural redundancies occur when a given logical and/or causal evaluation is un-
necessarily repeated elsewhere in the code. In turn, temporal redundancies occur when
a given logical and/or causal evaluation is unnecessarily re-executed over time, and the
data involved in this calculation did not change since its last execution. These problems
frequently happen, for example, in nested loops in IP languages that usually tend to cause
code coupling, thereby making it more challenging to achieve processing parallelism and
distribution [16,18,22].

The problems mentioned above do not happen in NOP since the precise notifications,
e.g., between Attributes and Premises, avoid temporal redundancy. Furthermore, the Con-
ditions sharing Premise collaborations avoid structural redundancy. In this sense, NOP
differs from OOP approaches because it is not loop-oriented, and NOP differs from rule-
based approaches because it is not based on a monolithic factual search-oriented inference
engine [16,18,19,22].

To summarize, the NOP Inference Chain allows software development with three
elementary properties [16]:

1. High-level rule-oriented modeling and programming, which helps easiness in some
software/system development [59].

2. Avoidance of structural and temporal redundancies, which allows achieving proper
system performance [64].

3. Implicit entity decoupling, which can favor parallel and/or distributed comput-
ing [65].

More detailed information about the NOP and its extensive research can be found
in [16,25,58,66].

3.2. The Historical Applicability of NOP

Many efforts have been made to become NOP development more straightforward and
popular. However, as NOP is a relatively new paradigm, some artifacts and materialization
may still need to reach the maturity level necessary for developing a complete industry-
level software project.

Besides, a gap exists concerning industrial-like projects using NOP C++ Framework
4.0. To the best of the authors’ knowledge, only academic example problems were still
approached to assess the feasibility of NOP C++ Framework 4.0 and even the NOP tech-
nologies in general. Even if some of those academic examples are relevant for NOP
demonstrations, more complex applications are necessary to evaluate their potential in a
real-world scenario [59–61].

In essence, new applications may contribute to the maturity and popularity of NOP as
a general development paradigm, always regarding its philosophical and current techno-
logical foundations. Considering this motivation about NOP itself and the gaps mentioned
above in video querying systems, this paper proposes an innovative online/streaming
video query solution using the NOP C++ Framework 4.0.
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4. Notification-Based Querying Method (NOP Query) Proposal

This section proposes and discusses the Notification-oriented Querying Method (NOP
Query), a new processing method for streaming queries. NOP Query supports automatic
query matching when data arrive in the system, thus avoiding intensive database operations.

4.1. NOP Query Overview

As shown in Section 3, the NOP inference chain is the “core of NOP”, responsible for
managing the notification mechanism when any Attribute value is changed. The proposed
NOP Query inherits the advantages of this paradigm by using/adapting the features of the
C++ 4.0 NOP Framework, naturally differing from existing video query methods. As the
NOP Query is NOP-compatible, it is natively reactive. It avoids loop-based encoding and
unnecessary logic evaluations, thus reducing wasted processing power and potentially
allowing for fine-grained processing distribution. In fact, as a high-performance decoupling
mechanism, NOP Query considers changes to Attribute to initiate the notification inference
chain and promptly calculates alerts when the query matches.

Figure 4 provides an overview of the NOP Query method comprising three parts:
Video/Data Ingestion, Event Matching and Meaning, and Query Manager. Video/Data
ingestion is responsible for reading a video stream or a set of CSV data, extracting data,
and defining features for all objects in the frame. Deep learning inference models can be
used to detect objects and attributes. It calculates the frame number, object label, color, ID,
and bounding box values (e.g., positions). In turn, the Query Manager handles queries from
a user/manager and generates results when a query matches the event in the data/video
stream. Finally, Event Matching and Meaning is the core of NOP Query and consists of
three modules:

1. The Window and Time Manager receives input from the data ingestion and filters it
according to the time restrictions and data values of the Static NOP Query Chain;

2. The Static NOP Query Chain (SQC) is responsible for receiving queries from the Win-
dow and Time Manager and creating a static structure that represents the manager’s
query following the NOP Chain schema;

3. The Dynamic NOP Query Chain (DQC) is responsible for receiving data from the
Window and Time Manager, checking the data flow against the SQC, computing
notifications, and sending warnings when the data match the SQC.

Figure 4. Notification-oriented querying method overview.

The next two sections present more detailed information about SQC and DQC, since
they are the essence of the NOP Query.
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4.2. Static NOP Query Chain (SQC)

The SQC is a static schema of the query expression that describes the elements of the
query and the corresponding values and associations between them, represented as an
NOP Chain. Consider a hypothetical query that finds a “red car on the left below a white
truck” expressed in the Listing 1 using the SQL-like format. Currently, the “NOP Query
language” is a prototype under development.

Listing 1. Query example for finding a red car to the left below a white truck.

SELECT LEFT BELOW( Object [ 1 ] , Object [ 2 ] )
FROM DataStream
WHERE Object [ 1 ] . l a b e l = ‘ car ’
AND Object [ 1 ] . c o l o r = ‘ red ’
AND Object [ 2 ] . l a b e l = ‘ truck ’
AND Object [ 2 ] . c o l o r = ‘ white ’

Based on this query, Figure 5 presents an overview of the SQC creation process. Using
the Symbol Table, the Lexical Analyzer examines the query expression and separates the
elements and their corresponding values. The query can be represented in two predicates
because two vehicles are recognized FBEs: “red car left below” and “white truck”. Con-
sidering these elements, the resulting tokens belong to FBEs and their attributes, spatial
relations, and the action “find”. In the first step, the Notification Chain Assembler (NCA)
assembles the Static NOP Query Chain with Attributes for object names/labels (car and
truck) and colors (red, white).

Figure 5. Overview of the process for creating the static NOP query chain.

In the second step, the NCA assembles the corresponding Premises for labels, colors,
and position values (X and Y), following the scheme shown in Figure 6, using a 2D
coordinate system of the computer vision:

• Premise 1: “car left truck”, “Attribute X (FBE 1) < Attribute X (FBE 2)”;
• Premise 2: “car below truck”, “Attribute Y (FBE 1) > Attribute Y (FBE 2)”;
• Premise 3: “Attribute Color (FBE 1) = red”;
• Premise 4: “Attribute Label (FBE 1) = car”;
• Premise 5: “Attribute Color (FBE 2) = white”;
• Premise 6: “Attribute Label (FBE 2) = truck”.

In the third step, the NCA creates the Condition with all these Premises and sets the
conjunction operator. In the fourth step, the NCA creates the Rule with the associated
Condition, Instigation, and Action elements. Finally, the Method is created to display a
warning message if the query is matched. The result of the SQC process with all these
entities and expected states required for query matches is shown in Figure 7.
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Figure 6. Spatial position coordinates perspective. Source: Original image of the UTFPR-HSD public
dataset available at http://labic.utfpr.edu.br/datasets/UTFPR-HSD.html, accessed on 16 December
2023.

Figure 7. Result of the static NOP query chain. The position values are suggested according to the
query needs.

4.3. Dynamic NOP Query Chain (DQC)

DQC receives filtered Window and Time Manager data and checks each object accord-
ing to the SQC structure. It is dynamic because the NOP chain connections between the
elements are assembled as the data are ingested, and when a new ID/object appears and
matches, even partially, the query. When an object matches all or part of the first or second
predicate query, the DQC must be updated. The object ID is needed in the current version
to match the elements and create the DQC connections.

For example, if an object/FBE with label or color matches the SQC structure (e.g.,
atLabel = “car” or atColor = “red”), the DQC adds that FBE to the DQC and connects
it to all other existing FBE Trucks. In this way, each object relevant to the SQC belongs
to a “dynamic network” with other related objects defined by the query. The following
procedure is performed for each new FBE Car in the system:

• Check every FBEs “Truck” in the DQC;
• For each FBE Truck present, then connects it to the current FBE Car;
• If this connection exists, update the corresponding Attributes and start the notification

mechanism.

http://labic.utfpr.edu.br/datasets/UTFPR-HSD.html
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A similar process occurs when the object belongs to the second predicate of the query,
but the match is made in all the FBEs of the first predicate. When two FBEs are combined to
form DQC once, the corresponding Premises P3 and P5 (color) and Premises P4 and P6 (label)
are created (see Figure 7). In the next step, the corresponding Condition, Rule, Instigation,
Action, and Method will be created. SQC occurs once and DQC occurs when each new
relevant object arrives from the stream.

5. Case Study

We have developed a case study to allow empirical evaluation of the proposed NOP
Query. It aims to evaluate the performance of the NOP Query, the memory usage, and the
Rules produced, as well as to test and debug the prototypes. The tests were conducted
carefully using empirical validation.

5.1. The NS100KCOLORID Dataset

In the literature, the Noscope (Jackson Town Square) (https://github.com/stanford-
futuredata/noscope (accessed on 16 December 2023)) [3] is one of the most popular
datasets used in query experiments about traffic surveillance in general. It contains 60 h of
surveillance video and the respective labeled CSV dataset with annotations for each object
(event) found in each frame. The CSV file contains 1,064,237 events (object detections) in
6,426,647 frames with the following fields: frame, objectname, confidence, xmin, ymin, xmax,
and ymax.

The Noscope dataset is adequate for simple object-related queries and spatiotemporal
attributes. However, the query expressed in Section 4.2 needs more information: the object’s
color and the ID of the objects. The last is required by the DQC (Section 4.3) to create the
connections between FBEs dynamically. It is worth mentioning that other related works in
the literature also use the ID and color of objects [33,53,54].

Therefore, a new dataset was created for this case study from around 10% of the
original Noscope dataset. The new NS100KCOLORID dataset contains 102,835 labeled
events in 858,806 frames. This subset was improved by including two more fields: the
predominant color of the vehicle (red, blue, green, yellow, white, gray, black, pink, and teal)
and a unique Id of each object obtained using the DeepSort algorithm [67]. Furthermore,
aiming at improving the data quality, only the events with at least 50% confidence were
added, following the literature approach to computing objects above this confidence in a
video stream [54].

The NS100KCOLORID dataset offers more data to explore the capabilities of the
NOP Query. Several tests can be performed focused on CPU usage, memory consumption,
and reactivity to different streaming video queries. The dataset generated during the current
study is available in the GitHub repository at the following link (https://github.com/
bioinfolabic/NS100KCOLORID (accessed on 16 December 2023)). It is another contribution
of this paper.

There are no other large, public datasets available in the related literature. Most of the
authors used streams from surveillance cameras on Youtube that are no longer available.

5.2. Preparatory Steps

The experiments presented in this section were based on similar work in the litera-
ture [6,53,54]. These authors performed queries and tests with the operators objects, conj,
le f t, seq, and count. Table 1 describes and exemplifies these operators using a SQL-like
notation created by the authors above:

• The object operator retrieves the frame of interest within a time window. For instance,
the query example selects/finds the frame of an object with the label “car” within a
time window of 10 s, considering each second is composed of 30 frames. This operator
is the most simple one and evaluates only one attribute.

• The conj or conjunction operator retrieves the frame of interest, evaluating objects and
attributes within the time window. The query example selects the frame in which an

https://github.com/stanford-futuredata/noscope
https://github.com/stanford-futuredata/noscope
https://github.com/bioinfolabic/NS100KCOLORID
https://github.com/bioinfolabic/NS100KCOLORID
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object appears with the label “car” and another object with the label “truck” within a
10 s time window.

• The le f t operator retrieves the frame of interest, evaluating the spatial relationship
“left” between objects in the same frame. The query example selects the frame in which
an object with the label “car” appears at the left of the object with the label “truck”
within a 10 s time window.

• The seq operator retrieves the frame of interest, evaluating their temporal relationship
in a given time window interval. The query example alerts if an object with the label
“car” and another with the label “truck” appear within the same time window of 10 s.

• The count operator is the most complex than the former ones, and it counts the number
of objects, evaluating their temporal occurrence within the same time window interval.
The count of objects should be consistent across several frames, denoted by each frame
clause. The query example counts any objects that appeared within a time window of
10 s and alerts if the count is greater or equal to 5.

• The window operator also establishes a time interval scope in which the queries are
performed based on frame numbers or timestamps. It is often used to limit the time
interval to reduce the computational cost of searches. This operator restricts the time
window size of the entire query.

Table 1. Operators and queries used in the experiments following SQL-like syntax.

Operator Query Example

OBJECTS
SELECT Object
FROM Data_stream
WHERE Object. label = “car”

CONJ

SELECT Object[1], Object[2]
FROM Data_stream
WHERE Object[1]. label = “car” AND
Object[2]. label = “truck”

LEFT

SELECT LEFT(Object[1], Object[2])
FROM Data_stream
WHERE Object[1]. label = “car” AND
Object[2]. label = “truck”
WITHIN_TIME_WINDOW = 10 s

SEQ

SELECT SEQ(Object[1], Object[2]) FROM
Data_stream
WHERE Object[1]. label = “car” AND
Object[2]. label = “truck”
WITHIN_TIME_WINDOW = 10 s

COUNT

SELECT COUNT(Object) FROM Data_stream
WHERE Object. label LIKE “%” AND
COUNT(Object)>= 5
FOREACH_FRAME
WITHIN_TIME_WINDOW = 10 s

Below, we briefly explain each Rules required per query.

• The operator objects require one Rule per target object/attribute.
• Both operators, left and conj, require one Rule for each pair of target objects.
• Three Rules are needed for the seq operator. Rule (a) counts the number of times the

objects appear within the time window. Rule (b) fires when the seq count is reached.
Rule (c) resets the count when the seq’ Rule fires.

• The operator count also requires three Rules. Rule (a) counts the number of objects in
the same frame. Rule (b) checks if the count is consistent for each frame and fires when
it matches the number of objects in the time window. Rule (c) resets the count operator
when the count’ Rule fires.
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5.3. Experimental Results

The prototype system was implemented in the C++ programming language using
the g++ 11 compiler, NOP C++ Framework 4.0, and Linux Ubuntu 20.04 Kernel 5.4.0-125-
generic. The experiments were carried out on a computer with an Intel Core i7-8750H
CPU and 16 GB of RAM. It is important to note that the GPU was not used in this current
experiment version. GPUs were not used because our method only focuses on query
processing, in which GPUs could be useful but are not fundamental. Actually, focusing just
precisely on query processing, the activities of data ingestion and object detection were not
considered, being by nature those activities the GPUs demand.

We use the operators mentioned earlier for two different experiments. The first is
aimed at establishing some comparison with the literature. Therefore, it is limited to the
scope and operators of the time window size found in [54]. In that work, the authors tested
six different time windows (5 s, 10 s, 25 s, 1 min, 5 min, 10 min). The second experiment
uses a broader range of time windows, from 10 min to 190 min, and it is aimed to estimate
the computational complexity of the proposed approach experimentally.

5.3.1. Comparison with the Literature

Figure 8 shows the CPU processing time considering the same queries, operators,
and window sizes common in the literature [54]. A total of 300 tests were carried out,
and the results shown correspond to the average of 10 runs per query and different time
windows. We used four trend curves for the left operator, which is more expensive: linear,
polynomial, logarithmic, and exponential. The processing time considers the construction
of the NOP query, the search time, and the reaction time when the query is matched.

Unfortunately, from these results, it is not possible to infer the computational cost
because the time windows are short. On the other hand, the literature results of [54] show
an exponential cost from 1 min onwards.

Figure 8. Processing time results considering query construction and search time using short time
window sizes.

5.3.2. Estimation of the Computational Complexity

The second experiment set aims to estimate the computational complexity of CPU and
memory usage as well as the number of Rules created considering large time window sizes,
from 10 min to 190 min. A total of 950 runs were made, and the results shown correspond
to the average of 10 runs per query and time window size. We also used four curve fits
to estimate the computational cost: linear, polynomial, logarithmic, and exponential. As
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mentioned earlier, the left operator was also used to estimate the trend lines. In this version
of the experiments, the operators involving more than one object are configured on all
the objects that match the query, even partially. Therefore, the tests were extensive and
explored all the combinations to find out their processing capacity at high workloads.

Figure 9 shows the results of the CPU processing time considering the construction of
the NOP query and the search time. Please observe that the left, conj, and seq operators are
expensive because they evaluate pairs of objects within the time window size. In particular,
the left operator is more costly because it evaluates the spatial positions of the objects and
their Attribute values. In this application, positioning changes are constant because the
objects are moving. In turn, the objects and count operators are the least expensive because
the objects operator only evaluates one object at a time, and the count operator only adds
the counter when an object appears in the time window. These results suggest that the
computational complexity grows polynomially. Therefore, this approach performs better
than others in the literature.

Figure 9. CPU processing time results considering the NOP Query construction and search time
using large time window sizes.

Figure 10 presents the results regarding memory usage, keeping in mind that the
current version of the experiment does not have any garbage collector when the objects and
the respective NOP elements are not used. This strategy was defined to test the application
in a CPU-intensive and memory-consuming setting. It was observed that the left, conj,
and seq operators require more memory because they evaluate pairs of objects. Once again,
it can be observed that the objects and count operators perform with constant computational
cost because the dataset contains a similar distribution of objects across time window sizes.

Figure 11 presents the amount of Rules produced. The Rules are created when a new
object matches, even partially, with the query expression. It means that the number of
Rules created was high due to the lack of a garbage collector. If some strategy for clearing
unused or “old” NOP elements from memory were used, the final number of Rules would
be smaller, but the real potential would not be known. In this way, it is possible to see how
the system behaves with a large mass of data processed.
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Figure 10. Memory usage results considering large time window sizes.

Figure 11. Number of Rules created considering large time window sizes.

5.4. Discussion of Experimental Results

In Section 3.1, we highlight the features and advantages of NOP in avoiding structural
and temporal redundancies to reduce wasted processing and unnecessary evaluations. The
promising results in the case study corroborate the theoretical concepts of NOP, suggesting
that the proposed approach can be very suitable for surveillance and query applications
regarding computational cost and latency. Furthermore, the current version of the experi-
ment runs on a server-only architecture. Still, the distributed properties of NOP elements
may allow edge-first or even fully distributed architectures in future versions, further
optimizing the available resources.

It is worth noting that the current version of this project does not use multithreads
or multiprocessing. However, the results are very proper already with single threads.
The results of our experiments show the computational complexity curves as the workload
increases. As the graphs show, even if the computational cost does not tend to be linear,
it is polynomial and not exponential, thereby being treatable. Still, as mentioned above,
the results obtained in the literature have an exponential computational cost. Therefore,
our approach is better than those from the literature.

Besides, by induction and by the NOP literature, if more processing cores are available,
the results tend toward logarithmic complexity. In turn, logarithmic complexity grows
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much more slowly than current polynomial complexity. Thus, a priori, the results could
still be better. Regardless, the use of multithreads or multiprocessing with our approach is
envisaged as future work.

The current performance limiting factor is the memory consumption required to
connect all the NOP entities for each identified object. In this sense, Figure 2 (NOP Inference
Chain) and Figure 7 (Result of the Static NOP Query Chain) show how the connection
between the NOP entities occurs. Each entity is an object relating to other objects, and this
requires memory space. Still, as mentioned in the paper, the current version of this work
does not have the garbage collector feature precisely in order to test the “worst” possible
scenario. Even so, the results are very promising, as stated in the experiment results in
the paper. In any case, the literature approaches also use a lot of memory due to their
idiosyncrasies and much more processing resources due to their computational paradigm
orientation.

Furthermore, our approach offers manageable performance even when dealing with
a lot of data/object movement by taking advantage of the NOP properties in the terms
explained in above. As a matter of fact, this is another advantage over literature.

Moreover, the analysis of the experimental results suggests the following highlights:

• The computational complexity of the proposed approach does not grow exponentially,
and it is treatable between polynomial and logarithmic.

• Only when some Attribute value changes (e.g., label, color, or positions), the corre-
sponding Premise is notified to reevaluate its state and fire a notification if the new
state is different. Because of such behavior, the system performance is high, and the
latency is low.

• Unlike the literature, the latency is low for short and long window sizes.
• It is possible to develop complex event queries using NOP Rules.
• The NOP Query works as an active database without permanent triggers. It is the

foundation of a new technology called “Reactive database based on NOP” under
development.

• This querying method is focused on real-time processing.

6. Comparison of the NOP Query with Related Technologies and Possible Applications

The best way to discuss NOP Query in terms of its concepts and advantages is
to compare it with related technologies so that it is possible to foresee possible future
applications. A priori, NOP Query can be used in any domain where the system receives
inputs and needs to process them with low latency to compute event/semantic information
or inference.

6.1. Active Database × NOP Query

According to [68], traditional relational databases are passive, providing data only
when explicitly requested by users or applications. In contrast, active databases consist
of a series of triggers that are fired when certain conditions occur. They were developed
to overcome the limitations of relational databases. Interestingly, most modern relational
databases include active database features in the form of database triggers. However, this
approach is challenging to maintain due to the complexity of understanding the effects of
these triggers. Otherwise, the NOP Chain, the core of the NOP Query, is succinct, easy to
understand, and easily maintainable. The chain of notifications starts when some Attribute
changes its value and notifies its related Premise(s), feeding the notification chain. The
NOP Query can be an engine for a new type of (Re)active Database in which the Rules and
related NOP elements are the central focus instead of triggers.

6.2. Knowledge Graph × NOP Query

Knowledge graphs are a structured representation of facts consisting of entities, rela-
tions, and semantic descriptions. Entities can be real objects or abstract concepts, edges
represent the relationship between entities and semantic descriptions contain properties
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with well-defined meanings [69]. They are frequently used in various domains because
of their rich structured knowledge. The technology most closely related to NOP Query
is the knowledge graph, as shown in [53,54]. Both technologies can express objects and
relationships through entities/nodes and connections. Future work includes extending
NOP Query to function as a new type of database system and comparing its performance
with other related technologies in terms of latency, especially in real-time, distributed,
and Big Data contexts.

6.3. Information Retrieval × NOP Query

Information retrieval aims to find relevant documents in a large collection, minimizing
manual effort [70]. Meanwhile, NOP Query also performs data/event retrieval following a
different method from the existing literature, especially for applications where the entries
are regular, as the start of the notification chain depends on the change in the values of
Attribute(s). The NOP query can also support information retrieval offline, e.g., without
regular entries, but requires further experimentation to adapt to this context.

6.4. Big Data × NOP Query

In the literature, video streaming applications also belong in the big data context due
to the high speed with which videos are generated, the large video files stored, and the
variety of video formats and sources [7]. NOP Query’s features are suitable for the big data
context due to the reduced computational cost, the distributed elements (e.g., parallelizable),
and the fact that they avoid intensive writing to and reading from secondary memory,
following current trends in big data frameworks, such as Apache Spark (https://spark.
apache.org/ (accessed on 16 December 2023)) and Apache Storm (https://storm.apache.
org/ (accessed on 16 December 2023)).

7. Conclusions

Streaming video queries have been one of the most challenging research areas in
computer vision, software engineering, and big data. In recent years, several approaches to
video queries have emerged. However, none have become popular due to many limitations
related to the high latency between the user’s query and information. These approaches
also require intensive CPU and memory usage, several database operations per second,
complex data structures, and high network usage. In addition, the related solutions are
usually created as monolithic structures. Although GPU processing enables fast computing,
existing video query approaches are still expensive for real-time processing. Considering
these aspects, this work presents the following contributions.

First, a new lean query processing method called NOP Query (Notification-oriented
Querying Method) was presented as a straightforward and intuitive approach to dealing
with streaming video queries. As far as we know, this is the pioneering work based on
NOP for this context. NOP Query inherits important features from NOP, such as formalism
and tools that are constantly being improved. Additionally, this work has demonstrated
the viability of NOP Query for applications that require resource optimization and fast
processing, especially in the context of video queries and event matching.

Next, a new dataset based on the popular Noscope has been developed by adding
two more fields (color and ID), making it more suitable for this type of experiment. The
NS100KCOLORID dataset is available to the community to promote further research
and comparisons.

Then, we carried out systematic experiments and compared the results with the litera-
ture. In this way, we evaluated the suitability of the NOP Query method and its potential
for processing large amounts of data and different types of queries. These experiments can
be useful for future work and comparisons with other emerging technologies.

Finally, NOP Query is a prominent application that creates and manages thousands
of Rules, simultaneously demonstrating the NOP Framework C++ 4.0’s ability to process
complex queries.

https://spark.apache.org/
https://spark.apache.org/
https://storm.apache.org/
https://storm.apache.org/
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Future Work

As far as we know, this work is the first to focus solely on video event data and
query processing without considering tasks such as pre-processing, convolutional neural
network costs, and database operations. Therefore, the proposed solution and results
show the real computational cost without the burden of third-party algorithms. Future
work will consider testing the NOP Query on a real-world surveillance system with many
video streams, using an entire computer vision pipeline, including GPU processing. NOPL
support will be added, and the results will be compared with the C++ 4.0 NOP Framework
results. An interesting extension of the current work includes the development of a new
“NOP-based (re)active database”, which avoids permanent triggers. It also includes the
addition of other query operators, such as the one recently published in [4,6,32]:

• The selection operator allows the selection of particular objects or events of interest.
For example, users may search for instances of people.

• The aggregation operator allows computing some statistics over the video frames.
Common aggregations include count, sum, average, maximum, and minimum opera-
tors. For example, a city planner may be interested in computing the average number
of cars per frame or counting the number of pedestrians that cross in front of a camera.

• The limit operator allows finding a cardinality-limited number of events occurring
within some time interval. For example, a city planner may search for ten instances of
buses at stop signs.

• The similatiry operator allows searching for portions of the video similar to an input
frame or video clip. For example, a football analyst may input a frame or video clip of
a goal of a soccer player. Such queries often involve iterative, ad hoc analysis to arrive
at the final query.

• The join operator allows performing a join and, subsequently, a selection, aggregation,
or limit query. For example, an amber alert application may join extracted license
plates with an external data source.

• The projection operator extracts only a part of the information to compute video events.

In addition, other possible use cases for NOP Query include the domain of Complex
Event Processing (CEP) systems, also known as event stream processing. This technology
is used to query data before storing them in a database or, in some cases, without storing
them. The main objective of CEP is to identify significant events, such as opportunities
or threats, in real-time situations and quickly respond to them. More details about CEP
systems can be found at [68,71]. Examples of CEP systems include:

• Stock market trading systems: real-time analysis of market data;
• Mobile devices: handling incoming streams of events;
• Fraud detection: identifying suspicious patterns;
• Business activity monitoring: monitoring business processes;
• Security monitoring: detecting anomalies;
• Transportation industry: real-time tracking;
• Governmental intelligence gathering: analyzing diverse data sources.
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