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Abstract: With the application of computer vision in the field of agricultural disease recognition,
the convolutional neural network is widely used in grape leaf disease recognition and has achieved
remarkable results. However, most of the grape leaf disease recognition models have the problem
of weak generalization ability. In order to overcome this challenge, this paper proposes an image
identification method for grape leaf diseases in different domains based on Fourier domain adaptation.
Firstly, Fourier domain adaptation is performed on the labeled source domain data and the unlabeled
target domain data. To decrease the gap in distribution between the source domain data and the
target domain data, the low-frequency spectrum of the source domain data and the target domain
data is swapped. Then, three convolutional neural networks (AlexNet, VGG13, and ResNet101) were
used to train the images after style changes and the unlabeled target domain images were classified.
The highest accuracy of the three networks can reach 94.6%, 96.7%, and 91.8%, respectively, higher
than that of the model without Fourier transform image training. In order to reduce the impact of
randomness, when selecting the transformed image, we propose using farthest point sampling to
select the image with low feature correlation for the Fourier transform. The final identification result
is also higher than the accuracy of the network model trained without transformation. Experimental
results showed that Fourier domain adaptation can improve the generalization ability of the model
and obtain a more accurate grape leaf disease recognition model.

Keywords: grape leaf diseases; Fourier domain adaptation; image identification; farthest point
sampling

1. Introduction

As one of the four principal fruits in the world, the grape is a nutrient-rich source
of minerals, amino acids, glucose, vitamin C, and fiber [1]. Notably, items made from
grapes including wine, raisins, and juice are highly valuable commercially [2]. The demand
for grapes is driven by rising economic levels and an expanding worldwide population.
However, a number of leaf diseases impede the high-yield high-quality grape industry’s sus-
tained expansion. As a result, effective prevention of grape leaf diseases is urgently needed.

In the field of grape leaf disease identification, image processing technologies play a
crucial role. Currently, the predominant method relies on convolutional neural networks
(CNNs) for effective feature extraction and classification from images. Apart from CNNs,
other image processing techniques are also applied in grape leaf disease recognition. Tra-
ditional machine learning algorithms such as support vector machines (SVM), random
forests, and k-nearest neighbors (KNN) can be effective, especially with smaller datasets
and simpler feature sets. Image segmentation techniques are important for accurate local-
ization and identification of disease areas by segmenting images into distinct regions or
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objects using methods like thresholding, region growing, and edge detection. In recent
years, computer vision technology, especially convolutional neural networks (CNN), has
achieved some satisfactory results in plant disease identification, when plant disease identi-
fication networks trained in the training dataset are applied in the test dataset in the case
of a training dataset and test dataset all from the same domain [3]. However, the image
distribution of the grape leaf diseases dataset collected in the fields is domain migration
due to some factors such as different varieties, growth periods, locations, weather, etc. [4].
It leads to the grape leaf diseases identification network being trained on the one grape
leaf diseases domain dataset that performs poorly on the other grape leaf diseases domain
dataset, namely generalization problem in plant disease identification. Therefore, it is
necessary to propose a grape leaf disease identification network with strong generalization
ability to solve weak generalization due to domain migration.

Aiming at the weak generalization ability of grape leaf disease recognition, the research
methods based on deep learning include data enhancement [5], model fine-tuning [6], and
domain adaptation. The first method is to expand the dataset of rice leaf disease by
data enhancement (such as flipping, translating, building an antagonistic network, etc.)
to enhance the diversity of the original dataset of grape leaf disease. The recognition
network trained on this kind of dataset of grape leaf disease learns richer data features
and prevents over-fitting, thereby enhancing the generalization ability of the recognition
network. However, the data on grape leaf diseases collected by the recognition network
are not consistent with the data of the source domain, in other words, the accuracy of the
recognition network will decrease when the data of the source domain are inconsistent
with the data of the target domain, that is, the generalization ability will not improve
significantly. The second model is based on the original grape leaf disease dataset, which
is trained in the new grape leaf disease dataset to adjust the weights and parameters of
the network. However, model fine-tuning can only improve the generalization ability on
a single grape leaf disease dataset and needs to be trained again when applied to other
fields. In order to improve the generalization ability of the grape leaf disease recognition
model in many different fields, this chapter adopts the field adaptive method to improve
the generalization ability. The third model maps the distributed datasets of grape leaf
diseases into a special feature space, which makes the same disease data close to each other
and then trains the target function in the feature space. There is no limit to the number
of source domains and target domains, so the domain adaptive method can improve the
generalization ability of the recognition model.

The shift between two distributions should be minimized through domain adaptation.
Some classical methods minimize the distance between the transformed source domain
and the target domain by finding a mapping function, such as transfer component analysis
(TCA) [7], joint distribution adaptation (JDA) [8], and dynamic distribution adaptation
(DDA) [9]. All of them are based on the common difference metric maximum mean dif-
ference (MMD). However, due to the limited expression ability of these metrics, even
minimizing MMD cannot guarantee the alignment of the two domain datasets. Another
popular method is generative adversarial network (GAN), which can enhance the general-
ization ability of the model by training the robustness of the model on adversarial samples.
It minimizes domain differences by using trained discriminators to maximize confusion
between source domain and target domain representations [10]. However, most of the
target domains do not have manual labeling in reality. When the label distribution is incon-
sistent, adversarial training makes it very easy to close the features of different categories
in different data domains, resulting in the negative effect of adversarial domain adaptation.

Thus, a grape leaf disease identification method based on Fourier domain adaptation is
proposed in this paper that does not require any training to perform the domain alignment
with a small number of target domain labels. The method includes a simple Fourier
transform and its inverse and three convolutional neural networks, namely Alexnet [11],
Vgg13 [12], and Resnet101 [13]. Firstly, the low-order frequency of the target image is
replaced by the low-order frequency of the source image by calculating the fast Fourier
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transform (FFT) [14]; afterward, the transformed image is reconstructed by inverse FFT
(iFFT) using the primitive annotation of the source domain. Then, the source domain
images and generated images are constructed into a new dataset, which is then trained in
three different networks. In order to reduce the trouble caused by the randomness of style
transformation, this paper still uses the farthest point sampling method to select images
with significant differences for transformation.

In this paper, a grape leaf disease identification method based on Fourier domain
adaptation is proposed to identify the types of grape diseases. The main contributions of
this paper are as follows:

1. A grape leaf disease identification method based on Fourier domain adaptation to
identify three common types of grape diseases;

2. The (fast) Fourier transform (FFT) is used for the adaptive method of grape leaf disease
identification from different domains;

3. Reducing the impact of randomness on experiments using the farthest point sam-
pling method.

The organizational structure of this paper is as follows. In the next section, we
introduce the materials and methods. Section 3 includes experiments and gives the results
of experiments. Section 4 is the discussion on Fourier domain adaptation for identification
of grape leaf diseases. Section 5 provides the conclusion.

Related Work

Due to factors like lighting, posture, and image quality, even identical models can
exhibit significant performance disparities in similar tasks. Domain adaptation, a facet
of transfer learning, seeks to mitigate the discrepancies between two distributions. Deep
visual domain adaptation methods have historically been categorized into two groups,
which are one-step DA and multi-step DA [15].

One-step DA can be further classified into three subcategories [16]. Discrepancy-based
methods involve fine-tuning to reduce domain migration [17–20]. Adversarial-based ap-
proaches employ discriminators to foster confusion through adversarial objectives [21–24].
Instruction-based techniques utilize data reconstruction, which is used as an auxiliary task
to guarantee feature consistency [25–28]. Many projects are based on the idea that the
disparity between two domains can be reduced by improving deep network models with
labeled or unlabeled target data. These works focus on employing several strategies to align
the statistical distribution shift between the source and target domains. maximum mean
discrepancy (MMD), correlation alignment (CORAL), Kullback–Leibler divergence (KLD),
H divergence, and other methods are frequently used to measure and lessen distribution
shifts. Another class of domain adaptation techniques that has lately gained interest is
adversarial learning. This method uses a domain discriminator to determine if a data point
comes from the source domain or the destination domain through an adversarial objective,
which is intended to promote domain confusion while decreasing the discrepancy between
the source domain and target domain mapping distributions. An example shows how to
create simulated samples similar to the target sample while retaining source domain anno-
tation data by using source images, noise vectors, or a combination of both. Alternatively,
the feature extractor uses labels from the source domain to learn a discriminating repre-
sentation. Using a domain-confusion loss, this representation is then utilized to translate
target domain data into the unified space, producing domain-invariant representations.
The aforementioned techniques fall under the one-step DA subcategory.

Similar to the single-step DA, multi-step DA has three subcategories [29]. With
hand-crafted approaches, specialists identify intermediate domains based on their knowl-
edge [30]. Instance-based techniques comprise intermediate domains by picking specific
data segments from additional datasets, hence training the deep network [31]. By freez-
ing previous trained networks and using their intermediate expressed as inputs for next
networks, representation-based approaches promote transfer [32]. The multi-step DA tech-
nique starts from the intermediate domain where the correlation between the localization
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and the source domain and the target domain is stronger than their direct relationship.
One-step DA is then used to transfer knowledge between the source, intermediate, and des-
tination domains, minimizing information loss. It is important for multi-step DA to select
the intermediate domain and use it efficiently. The common approach is to extract central
data portions from auxiliary datasets to form meta-structure domains, subsequently train-
ing the deep learning network. The selective learning algorithm (SLA) serves as a notable
technique, gradually choosing relevant unlabeled data from intermediate domains. This ap-
proach functions as a bridge to bridge the substantial distribution gap, enabling knowledge
transfer between distant domains. SLA is adeptly employed to address the distant domain
transfer learning (DDTL) challenge. It leverages supervised autoencoders or supervised
convolutional autoencoders as base models, accommodating various input types.

With image-to-image translation carried out via low-frequency spectra components
exchange (amplitudes only), Fourier domain adaptation (FDA) supplies a workable substi-
tute for the aforementioned techniques while still achieving the same outcomes on natural
images. The outcomes of adapting this technique for cityscapes, medical imaging, digit
recognition, item recognition, and adaption between the actual world and the virtual
world are all excellent [33]. However, its use in agricultural modernization has not been
very widespread.

2. Materials and Methods

This paper mainly studies the identification of grape leaf diseases by Fourier domain
adaptation. In this section, the paper first introduces the data used in the experiment and
then introduces the methods proposed in this study.

2.1. Materials

The images of grape leaf diseases acquired in this paper are from the AI Challenger
2018. To download this data, please visit the link in the Data Availability Statement at the
end of the article. We obtained 2808 RGB images of total data and classified two domains
according to the severity of the disease and the general condition of the disease, as shown
in Table 1. The subjects were black measles fungus, black rot fungus, and leaf blight fungus,
as seen in Figure 1.

Table 1. The number of each class of diseases.

Disease Source Dataset Target Dataset Total

Black Measles Fungus 478 577 1055
Black Rot Fungus 528 435 963
Blight Fungus 720 70 790
Total 1726 1082 2808

Among them, the source domain dataset entails the data with more serious diseases
and the image disease of the target domain dataset is general. In subsequent experiments,
the images will be processed according to the needs of each experiment. The source
domain dataset is allocated in a ratio of 8:2 as the training set and the validation set. The
target domain dataset is used as the test set and the accuracy obtained in this paper is the
recognition accuracy of the test set. Black measles fungus can be easily identified as brown
streaking lesions on any part of the leaf. Black rot fungus appears as a small spot on the
leaves and then becomes round and white tan, often surrounded by brown rings. Blight
fungus is characterized by the presence of a white powdery (ash-like) coating in patches on
both sides of the leaves and the affected leaves turn pale and curl up.
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2.2. Methods
2.2.1. Motivation and Intuition

In recent years, much of the ongoing work in grape leaf disease identification has
relied heavily on training within the same dataset. Nonetheless, real-world agricultural
scenarios present certain challenges: (1) securing a significant volume of grape leaf disease
data is arduous, particularly in the confines of a single grape planting base. (2) Model
generalization, even when trained on identical datasets, necessitates enhancement. This
entails that despite optimal training, the model may not deliver satisfactory outcomes when
applied to datasets with diverse environmental contexts.

During our quest to enhance model generalization, we uncovered the potential of
domain adaptation. This technique has demonstrated success across various domains in
improving model generalization. However, certain methodologies rely on sensor-derived
features to address the statistical distribution shift. Unfortunately, merely matching means
and covariances falls short in consistently aligning distinct domains. Moreover, some meth-
ods, although effective, entail intricate computational processes that are not particularly
user-friendly for practical agricultural applications.

Our intuition in doing so stems from the observation when image classification main-
tains a high level of performance; a low level of spectrum (amplitude) can change signifi-
cantly. No matter whether something in the picture is a plant leaf or a disease, it should
not be affected by sensors, light sources, or other factors. Fourier transform is simpler than
other methods and they can be registered.

To handle the case where the model’s generalization capability needs to be enhanced
and the dataset for grape leaf disease is difficult to obtain, Figure 2 depicts the suggested
Fourier transfer’s processing flow. Images of three different grape leaf diseases that were
captured in a field location serve as the input. They separated the leaves from the captured
photos and categorized each sick leaf into severe and general categories. The classification
of three CNN identification models for grape leaf diseases was conducted and the outcomes
were compared. The target domain data from the grape leaf disease dataset are visualized
using the most accurate VGG13 identification finding and then the farthest point sampling
method is used to reduce the chance of model success.
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2.2.2. Fourier Domain Adaptation

To facilitate discussion, we first introduce some notation. The source dataset is defined
as Ds =

{(
xs

i , ys
i
)
∼ P(xs, ys)

}Ns
i=1, where xs ∈ RH×W×3 is a color image of grape leaves

and ys ∈ R is the category label related to xs described as having two domains, S for the
source and T for the target. The target dataset, which lacks category labels, is denote as
Dt =

{(
xt

i
)}Nt

i=1. Typically, when the recognition network trained on Ds tries on Dt, its
performance will decrease. In order to diminish the domain gap between the two domains,
we propose Fourier domain adaptation for the identification of grape leaf diseases.

FA : RH×W×3 and F P : RH×W×3 represent the amplitude and phase of an RGB
image Fourier transform F , respectively. For the image x, the transformation is shown in
Formula (1) as follows:

F (x)(m, n) = ∑
h,w

x(h, w),−j2π( h
H m+ w

W n) , j2 = −1 (1)

which the FFT method may implement effectively. F−1 is the inverse Fourier transform
that returns the phase and amplitude of spectral signals to picture space. All images are in
RGB format, so the red channel, green channel, and blue channel are used as independent
two-dimensional signals, respectively, and then 2D FFT is applied to each channel. In this
way, the characteristics and spectral information of each color channel can be analyzed in
the frequency domain to support subsequent image processing and analysis. Additionally,
we represent a mask with Mβ, whose value is zero except for the central region where
β ∈ (0, 1).

Mβ(h, w) = 1(h,w)∈[−βH:βH,−βH:βH] (2)

here, we will suppose that (0,0) is the image’s center. Because β is not measured in pixels,
selecting β is independent of the size or resolution of the image. There are two randomly
selected photo definitions of xs ∼ Ds, xt ∼ Dt; Fourier domain adaptation is represented
by the following Formula (3):

xs→t = F−1
([

Mβ ◦ FA(xt)+ (
1 − Mβ

)
◦ FA(xs),FP(xs)

])
(3)

in the formula, xt is the target image, which takes the place of the source image’s low-
frequency portion of its amplitude. FA(xs) is the source image. The picture xs→t, whose
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content is identical to xs but will resemble the appearance of a sample from Dt, is then
projected back to the changed spectral representation of xt, with its phase component
unaltered. The mask Mβ, which is depicted in green in Figure 2, shows the procedure.

According to Equation (3), β = 0, xs→t will be rendered exactly as the original source
image xs. On the other hand, the amplitude of xs will be replaced by that of xt when
β = 1.0. Figure 3 shows how β is an impact. The image xs→t approaches the goal image xt

as β approaches 1.0 but also shows noticeable artifacts, as can be seen from the enlarged
blue and yellow boxes area in Figure 3. We choose β ≤ 0.15. But in Table 1, similar to a
straightforward multi-scale pooling strategy, we display the impact of various β selections
along with the average of the generated models.
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2.2.3. FDA for Image Identification

We proposed our identification approach of grape leaf diseases based on the Fourier
domain adaptation technique. Firstly, it consists of swapping the low-frequency amplitudes
of the source image spectrum with those of those of the target image, the style of which
should be borrowed. Then, the generated new image and the source domain image are
combined into a new dataset, which is put into AlexNet, VGG13, and ResNet101 for image
identification training and tested with the target domain dataset to obtain the identification
results. It shows an image identification model for grape leaf diseases based on Fourier
domain adaptation with VGG13 as an example in Figure 4.
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2.2.4. Farthest Point Sampling

Farthest point sampling (FPS) is a widely utilized sampling algorithm recognized
for its capability to ensure uniform sampling of samples. This methodology operates
by iteratively selecting the furthest point from the existing set of sampled points. The
algorithm follows the following detailed steps:

i. Select a point, which is denoted by p0, from the data point as the initial point to
form the initial sampling point set: s = {p0};

ii. By calculating the distance from all points to p0, an N-dimensional array called l is
generated. Select the point corresponding to the maximum value in l as p1. Update
the sampling point set: s = {p0, p1};

iii. Calculate the distances from all points to p1. For each point pi, the distance from it
to p1 is compared with the value in l[i]. If the distance from p1 to pi is less than the
value in l[i], the distance is used to update l[i]. Therefore, the array l always stores
the nearest distance from each point to the sampling point set s;

iv. Proceed by selecting the point consistent with the maximum value in the array
l as p2. Renew the sampling point set: s = {p0, p1, p2}. Repeat Step 2 to Step 4
iteratively until the quantity required of n target sampling points is achieved.

This process ensures a gradual selection of points that maximizes the spatial spread,
effectively achieving uniform and diverse sampling.

3. Results

In this section, we introduce the training details, parameter adjustment experiments,
and comparative experiments of the grape leaf disease recognition model based on Fourier
domain adaption and discuss the experimental results.

3.1. Training Details

The experiment uses Pytorch as the deep learning framework for Python and uses
NVIDIA GeForce RTX 3080 Ti to build and implement the network model. The acceleration
process of this experiment is realized by calling a graphics processing unit (GPU). Table 2
shows the workstation specifications.

Table 2. Workstation specifications.

Hardware Software

CPU: Intel Core i9-10900K Windows10
RAM: 128 GB CUDA12.1.112 + CUDNN8.0
GPU: NVIDIA GeForce RTX 3080 Ti Pytorch Stable (2.3.0)

With the purpose of the availability of the proposed grape leaf disease identification
method based on Fourier domain adaptation, we conducted three types of experiments.
The first experiment is the parameter adjustment experiment about the Fourier transform.
The training set consists of the source domain image and the style transformation image
containing the features from the target domain and label from the source domain after one
Fourier transform; the test set is the target domain dataset. There are two sub-experiments
in this experiment: (1) β selected 0.01, CNN network selected Alexnet. The learning rate has
four parameters of 0.0001, 0.0005, 0.001, and 0.01 and the batch_size has four parameters of
4, 8, 16, and 32, which are one-to-one correspondence. After 16 experiments, two groups
of batch_size and learning rate combinations with better training effects were obtained;
(2) β has three parameters of 0.01, 0.05, and 0.09, epochs have three parameters of 50, 100,
and 200, and the CNN network has three networks of Alexnet, Vgg13, and Resnet101.
Combined with the two combined parameters obtained in the experiment, (3) the best
grape leaf disease identification model with single-scale Fourier domain adaptation was
obtained after 54 groups of experiments.
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The second experiment is a comparative experiment. The source domain image
without Fourier transform is trained in the same Vgg13 network under the same parameters
and conditions. The results obtained are compared with the results of Fourier transform
training, which proves that the proposed method has practical significance and effects.

In the third experiment, in order to eliminate the randomness of the model, we propose
a fusion farthest point sampling algorithm. Three images with far feature distance are
selected in the target domain dataset and their features are adaptively transferred to the
source domain dataset through the Fourier domain. In total, 1434 images are obtained and
478 images in the source domain are added to obtain 1912 training set images, which are
put into Vgg13 for training and tested with target domain images.

In the grape leaf disease identification experiment, the performance of the method
was evaluated by accuracy, which is the percentage of the predicted correct sample in the
total sample.

3.2. Parameter Adjustment Experiment

The first test is the proposed grape leaf diseases identification network based on the
Fourier domain adaptation with a single scale on the source domain: 956 images of each
category → target domain; 239 images of each category. In order to experiment with better
performance of the model, we choose different hyper-parameter configurations (learning
rate, batch size, and epochs) to adjust the identification performance of the model. The
learning rate is selected as 0.0001, 0.0005, 0.001, and 0.01, the batch size is selected as 4, 8,
16, and 32, and the epoch is selected as 50, 100, and 200. The experiment is divided into
two parts. Firstly, two groups with higher accuracy are selected through the combination
of learning rate and batch size. They are a learning rate of 0.005 and batch size 8 as well
as a learning rate of 0.01 and batch size 4. All networks use Alexnet, shown as in Table 3.
Then, we used these two sets of parameters to train on the three classical networks of CNN,
combined with epochs selected as 50, 100, and 200. In addition, three kinds of β were
selected for experiments.

Table 3. Parameter adjustment experiment.

Learning Rate Batch_Size Accuracy

0.0001

4 65%
8 45.5%
16 27.0%
32 33.3%

0.0005

4 79.8%
8 88.1%
16 65.4%
32 60.4%

0.001

4 81.9%
8 78.7%
16 76.4%
32 65.7%

0.01

4 93.2%
8 91.4%
16 92.6%
32 91.4%

When β is selected as 0.01, 0.05, and 0.09, the experimental process is shown in
Tables 4–6. After 54 experiments, the final results are as follows: when β = 0.01, Vgg13
network is selected for training, epochs = 100, learning rate = 0.0005, epoch = 8, and the
accuracy is the highest, which can reach 96.2%. When β = 0.05, select the Vgg13 network
for training, set epochs = 200, learning rate = 0.0005, epoch selection 8, and the highest
accuracy can also reach 96.2%. When β = 0.09, the Vgg13 network is selected for training.
When epochs = 100, learning rate = 0.01, epoch 4 is selected, the accuracy is the highest,
and the highest accuracy can be achieved, which is 96.7%.
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Table 4. The experimental process when β = 0.01.

Learning Rate Epochs Models Accuracy

0.0005

50
Alexnet 90.9%
Vgg13 95.8%
Resnet101 90.8%

100
Alexnet 88.1%
Vgg13 96.2%
Resnet101 83.8%

200
Alexnet 92.1%
Vgg13 95.5%
Resnet101 84.5%

0.01

50
Alexnet 94.7%
Vgg13 95.5%
Resnet101 90.7%

100
Alexnet 93.2%
Vgg13 95.5%
Resnet101 89.0%

200
Alexnet 92.5%
Vgg13 93.6%
Resnet101 89.7%

Table 5. The experimental process when β = 0.05.

Learning Rate Epochs Models Accuracy

0.0005

50
Alexnet 89.8%
Vgg13 94.6%
Resnet101 88.6%

100
Alexnet 91.6%
Vgg13 93.3%
Resnet101 91.8%

200
Alexnet 90.7%
Vgg13 96.2%
Resnet101 90.7%

0.01

50
Alexnet 93.7%
Vgg13 95.7%
Resnet101 87.4%

100
Alexnet 91.6%
Vgg13 93.4%
Resnet101 90.1%

200
Alexnet 91.8%
Vgg13 93.4%
Resnet101 88.7%

Table 6. The experimental process when β = 0.09.

Learning Rate Epochs Models Accuracy

0.0005

50
Alexnet 91.1%
Vgg13 95.1%
Resnet101 88.8%

100
Alexnet 89.1%
Vgg13 94.3%
Resnet101 91.2%

200
Alexnet 94.6%
Vgg13 94.4%
Resnet101 87.0%

0.01

50
Alexnet 90.4%
Vgg13 96.5%
Resnet101 90.0%

100
Alexnet 94.0%
Vgg13 96.7%
Resnet101 90.1%

200
Alexnet 91.5%
Vgg13 93.2%
Resnet101 90.8%
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3.3. Contrast Test

The grape leaf disease identification model based on the Fourier domain adaptation
was compared with the method without Fourier domain adaptation, using the same
identification network. This experiment uses the same number of source domain datasets
and target domain datasets. The network selects Vgg13 and other parameters are shown in
Table 7. From Table 7, we can see that the prediction results of our model are better.

Table 7. Contrast Test.

Model β Learning Rate Batch_Size Epochs Accuracy

Model without FDA
0.01 0.005 8 100

86.9%
Model with FDA 96.2%

Model without FDA
0.05 0.005 8 200

90.7%
Model with FDA 96.2%

Model without FDA
0.09 0.01 4 100

92.6%
Model with FDA 96.7%

In order to further analyze the recognition effect of the Fourier domain adaptation method
proposed in this chapter on grape leaf diseases, this experiment uses the confusion matrix
to compare and analyze the recognition effect of the grape leaf disease recognition model
with Fourier domain adaptation and the grape leaf disease recognition model without Fourier
domain adaptation on grape leaf diseases, mainly analyzing the recognition accuracy of the
three diseases, when β = 0.09, learning rate = 0.01, batch_size = 4, and epoch = 100.

According to Figures 5 and 6, the number of correct recognitions of black measles
fungus, black rot fungus, and leaf blight fungus by the recognition model without Fourier
domain adaptation is 184, 185, and 187, respectively. After adding Fourier domain adap-
tation, the number of correct recognitions is 195, 193, and 194. It can be seen from the
confusion matrix that the recognition accuracy of various grape leaf diseases based on
the adaptive recognition method in the Fourier domain adaptation has been significantly
improved and the recognition accuracy of black measles fungus has been improved the
most, indicating that the domain adaptive effect of black measles fungus is the best.
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3.4. FPS for FDA

In previous experiments, we used a single image to perform Fourier transform. In
order to reduce the contingency of the method, we use the farthest point sampling method
to take the features of the image as input and obtain three images with unrelated features.
Then, they are adapted to the Fourier domain with the source domain images, respectively,
and 1912 style-transformed images are obtained and then put into the network for training.
The parameters used are Learning rate = 0.005, batch size = 8, epochs = 100, respectively.
The results are compared with the proposed method, as shown in Table 8. At the same
time, the random sampling method is also used to select any three images to perform the
same experiment and the results are shown in Table 8.

Table 8. Comparison of FDA’s results with other methods using a random sampling method.

β Model Accuracy

0.01
FPS for FDA 89.7%
random sampling for FDA 93.7%
FDA 96.2%

0.05
FPS for FDA 92.5%
random sampling for FDA 83.8%
FDA 96.2%

0.09
FPS for FDA 91.2%
random sampling for FDA 90.2%
FDA 96.7%

4. Discussion

Fourier domain adaptation is a promising approach for identifying grape leaf diseases
and has the potential to improve the precision and robustness of disease detection in a
wide range of environments and grape varieties. This discussion explores the impact,
advantages, possible problems, and future associated with the use of the FDA.

FDA may be able to extract more discriminating characteristics from grape leaf images
by exploiting the Fourier domain, thereby allowing a more precise diagnosis of the disease
than conventional approaches. The ability to detect minute changes in the spectrum related
to disease increases the sensitivity and specificity of detection. FDA’s intrinsic adaptability
makes it possible for this model to be extended to all types of wine and environments.
This robustness is critical in agricultural environments where variations in lighting, soil
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composition, and grape varieties are common. Traditionally, a large number of supervised
learning methods are based on tagged data. FDA’s Domain Adaptive Ability allows for
less reliance on large-scale annotation datasets in the destination field, which can be used
in real-world situations that might be difficult or costly to acquire.

However, FDA’s effectiveness depends on obtaining high-quality and sufficient diver-
sity of data in the origin and destination areas. The provision of representative datasets
covering different disease phases, environment, and varieties of wine is crucial for robust
model performance. While FDA solves the problem of domain displacement, it is difficult
to adapt to the underlying domain, especially when there are significant domain differ-
ences. It is necessary to optimize the adaptive intensity in order to avoid over-fitting to the
features of the source domain but also to keep the key data of the object domain. While
FDA’s models are effective, they tend to be a black box, which presents a challenge to
the interpretation of acquired representations and decision making. It is crucial to make
the model transparent and readable, especially in the field of agriculture when interested
parties are looking for workable ideas and interpretations.

Furthermore, future work could concentrate on enhancing the granularity of disease
detection within grape leaves. Specifically, researchers could aim to identify and segment
individual disease spots or lesions on the leaf surface. This would involve advancing
techniques beyond simple disease detection to achieve instance segmentation, where each
distinct disease spot is identified and delineated separately. By moving toward instance
segmentation, the FDA approach can provide more detailed and precise information about
the distribution and severity of diseases on grape leaves.

In the future, research of Fourier domain adaptation, exploring the influence of dif-
ferent color spaces, can help to select a color space with the best performance. By compre-
hensively utilizing the advantages of different color spaces, researchers can optimize the
performance of disease recognition systems and improve the accuracy and reliability of
different diseases.

In addition to disease-specific advancements, integrating the FDA with state-of-the-
art image processing methods such as semantic segmentation holds promise. Semantic
segmentation enables the labeling of each pixel in an image with its corresponding class,
facilitating a more comprehensive understanding of the spatial distribution of diseases
on grape leaves. By leveraging these advanced image processing techniques alongside
the FDA, researchers can further refine disease detection capabilities, enhance model
interpretability, and ultimately contribute to more effective and robust disease management
strategies in viticulture.

In summary, the FDA demonstrates tremendous potential in the field of plant disease
detection due to its capability to detect the presence of different regions. Future directions
include expanding datasets to encompass a wider range of disease types and classes,
advancing toward instance-level disease spot identification and integrating with state-of-
the-art image processing techniques like semantic segmentation. These directions not only
expand the applicability of the FDA but also have the potential to lead innovation in crop
disease diagnosis and management practices.

5. Conclusions

A grape leaf disease recognition model with strong generalization ability is proposed
based on Fourier domain adaptation. By exchanging the low-frequency amplitude of the
source image spectrum with the low-frequency amplitude of the target image spectrum,
the Fourier transform designed in this study is applied to the adaptive method of grape
leaf disease recognition in different domains, which does not require any large amount of
calculation and complex model and improves the generalization ability of the recognition
model. The results showed that the accuracy of the model trained by the selected three
β values to identify grape leaf diseases in the target domain can reach 96.2%, 96.2%,
and 96.7%.
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In the research of agricultural disease image classification, how to improve the gen-
eralization ability of image classification conveniently is still a difficult problem. Fourier
domain adaptation can solve this problem in some cases. The low-level statistical data of
the image can change greatly without affecting the underlying scene. This preprocessing
can replace complex architecture or laborious data enhancement, so as to solve some prob-
lems in image recognition of grape leaf diseases and improve the recognition generalization
ability. In the future, it is hoped that this method can be applied to actual production.
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