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Abstract: The transesterification of waste frying oil (WFO) with methanol in the presence 

of potassium hydroxide catalyst supported on Jatropha curcas fruit shell activated carbon 

(KOH/JS) was studied. The catalyst systems were characterized by X-ray diffraction 

(XRD), scanning electron microscopy (SEM) and the Brunauer–Emmett–Teller (BET) 

method. The effects of reaction variables such as residence time, reaction temperature, 

methanol/oil molar ratio and catalyst bed height in packed bed reactor (PBR) on the yield 

of biodiesel were investigated. SEM images showed that KOH was well distributed on the 

catalyst support. The optimum conditions for achieving the conversion yield of 86.7% 

consisted of a residence time of 2 h, reaction temperature of 60 °C, methanol/oil molar 

ratio of 16 and catalyst bed height of 250 mm. KOH/JS could be used repeatedly five times 

without any activation treatment, and no significant activity loss was observed. The results 

confirmed that KOH/JS catalyst had a great potential to be used for industrial application in 

the transesterification of WFO. The fuel properties of biodiesel were also determined. 
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1. Introduction 

Due to an increase in crude oil price, environmental concern for vehicle exhaust emission, and the 

demand for the reduction of greenhouse gas emission, the development of renewable energies has 

grown dramatically over the past years. Among the applicable renewable energies, biodiesel has 

recently attracted extensive attention because it is biodegradable, non-toxic, and environmentally 

friendly [1–3]. Biodiesel is defined as fatty acid methyl ester (FAME) or fatty acid ethyl ester (FAEE) 

from vegetable oils or animal fats. The significant advantages of biodiesel over conventional  

fossil-based diesel fuels include cleaner engine emissions, its status as a renewable energy source and 

superior lubricating property, making it an excellent alternative fuel [4]. 

In general, transesterification of triglyceride (TG) to diglyceride (DG), monoglyceride (MG), 

methyl ester (ME) and glyceride (GL) can be catalyzed by bases, acids, and enzymes [5,6]. In many 

production processes for biodiesel, alkaline catalysts are typically used. The commonly used 

homogenous base catalysts are potassium hydroxide (KOH), sodium hydroxide (NaOH), and the 

corresponding potassium or sodium methoxide [7,8]. However, the use of homogeneous alkaline 

catalysts in the production of biodiesel requires acid neutralization and a washing step to remove the 

catalyst and salt from the ester phase, which generates a large amount of wastewater. In addition, it is 

difficult to separate the homogeneous catalyst from the glycerol phase [9]. In order to overcome these 

problems, the use of heterogeneous catalysts as a potential solution is preferred [10]. 

The heterogeneous catalyst process has recently become attractive as an effective biodiesel 

production process [11]. Due to their facile separation and recycled use, solid catalysts, such as 

zeolites, alkali earth oxides, alkali metals or alkali earth salts loaded on metal oxide, metallic 

complexes, and silica-alumina, have been explored as promising alternatives [12]. More recently, there 

has been an increasing development of heterogeneous catalysts, such as NaOH, KOH and a series of 

potassium catalysts supported on alumina, alkali-doped metal oxide, zeolite and activated carbon. The 

activity of these solid bases generally increases with base strength. Besides being more active than 

metal compounds, the use of solid bases requires catalytic reactions to occur under milder conditions 

than acids [13]. However, the small pore size and low surface area of these catalysts have limited their 

use in biodiesel synthesis [14]. Due to its unique properties, it is now well established that activated 

carbon can be used as a highly effective catalyst support in liquid and vapor phase reactions such as 

transesterification reactions. Not only can activated carbon be produced from a variety of raw 

materials [15], but also it has the large surface area, which allows that catalyst to be highly dispersed in 

an effective manner.  

With regard to concerns about recycling and utilization of agricultural biomass resources [16], the 

effective uses of agricultural waste biomass for the production of activated carbons by  

thermo-chemical conversion has gained much attention over the last decade [17]. Jatropha curcas fruit 

shell (JS) is a promising biomass waste that can be utilized as a precursor for activated carbon. Their 

seeds also contain high oil levels and have been widely used for biodiesel production in several Asian 

countries. However, the solid residues that remain after the seed-pressing process are typically 

regarded as mere waste. Accumulation of these wastes for a long period of time often creates 

environmental problems due to its unpleasant odor. Since the fixed carbon content in JS is quite high, 

the utilization of this waste as activated carbon can minimize the environmental problem [18]. The 
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main objective of this work was to optimize the continuous process for biodiesel production from 

waste frying oil (WFO) using potassium hydroxide supported on Jatropha curcas fruit shell activated 

carbon (KOH/JS). The effects of residence time, reaction temperature, methanol/oil molar ratio, 

catalyst bed height and reusability of catalyst were systematically investigated. 

2. Experimental Section  

2.1. Materials and Reagents  

The activated carbon used in this work was prepared from JS by a chemical activation process. 

WFO samples were collected in university cafeterias without further treatment. The numerous 

fractions were blended in order to obtain waste oil. Filter papers with an average pore size of 5 µm 

were used to remove any non-oil components or impurities in WFO before used. The basic properties 

of waste oil feedstock are shown in Table 1. It was observed that the acid value (AV) of WFO was 

1.91, which did not exceed the standard values for the transesterification process. The reaction process 

can, therefore, be achieved by using a heterogeneous base catalyst [19]. All other chemicals were 

analytical grade reagents (Merck, >99% purity) and were used as received.  

Table 1. Physicochemical properties of waste oil feedstock. 

Properties Waste Oil Feedstock 

Density (g/mL @ 15 °C) 
Molecular weight (g/g mole) 

0.892 
912.4 

Saponification value (mg KOH/g oil) 188.76 
Acid value (mg KOH/g oil) 1.91 
Water content (wt%) 0.10 

2.2. Activated Carbon Preparation  

The JS was first cleaned with water to remove fines and dirt, and dried at 100 °C for 12 h. The dried 

sample was crushed with a grinder and sieved to a particle size of 1.8–2.8 mm. It was then soaked in 

phosphoric acid (H3PO4) solution with the impregnation ratio of 1.7 for 24 h at ambient temperature [20]. 

After that, it was dried in an oven at 100 °C for 12 h. The resultant sample was further activated in a 

horizontal automatic tubular furnace at 500 °C for 24 h under nitrogen atmosphere [21]. After cooling, 

the activated carbon was washed several times with distilled water until the pH became neutral. The 

washed sample was then dried at 110 °C for 12 h to obtain activated carbon as the final product, cooled 

in a desiccator and stored in glass containers.  

2.3. Catalyst Preparation  

A potassium-containing solution was prepared by dissolving KOH in distilled water. Activated 

carbon was divided in 50 g portions and placed in a beaker. 750 mL of KOH solution with initial 

concentration of 0.40 g/mL was added. Activated carbon suspended in KOH solutions was then 

agitated at ambient temperature for 24 h. The amount of adsorbed KOH was measured by a 

gravimetrical method [22].  
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2.4. Characterization of Activated Carbon and Catalyst  

The X-ray diffraction (XRD) characterization of the activated carbon and KOH/JS catalyst was 

performed on a Philips Analytical PW 3710 based generator X-ray diffractometer using Cu Kα 

radiation over a 2θ range from 5° to 100° with a step size of 0.04° at a scanning speed of 3°/min.  

To evaluate the surface area, mean pore diameter and pore volume, adsorption–desorption  

of nitrogen (N2) at 77 K was carried out by a Quantachrome instrument (Autosorb-1 Model No. 

ASIMP.VP4). Before taking adsorption data, degassing at 120 °C and a residual pressure of 300 μm 

Hg for 24 h was performed using the degas port. The surface area was calculated using the  

Brunauer–Emmett–Teller (BET) equation and the mean pore diameter and pore volume was obtained 

by applying the Barret–Joyner–Halenda (BJH) method on the desorption branch [23].  

The microstructures of the materials were observed by a scanning electron microscope (SEM). The 

SEM images of the representative sample were obtained from a Camscan-MX 2000 equipped with an 

energy dispersive spectroscope (EDS).  

2.5. Instrumentation and Catalytic Reaction Procedure  

The continuous transesterification was performed in a packed bed reactor (PBR). The scheme of the 

PBR was shown in Figure 1.  

Figure 1. Schematic diagram of packed bed reactor (PBR) for continuous process for 

biodiesel production. 

 

The reactor was composed of a water-jacketed stainless steel column with an external diameter of 

60 mm and a height of 345 mm. The column was packed with KOH/JS solid-base catalyst. WFO and 

methanol were charged into the system using two separate raw material pumps. The reactants were 

mixed and preheated in a mixing tank. The mixture was fed to the inlet of reactor using a pump  

(1–3 mL/min). The reaction temperature was controlled by a heater to keep constant temperature with 

an error of ±1.0 °C. The temperature difference between the inlet and the outlet was below 1.0 °C 

during all the runs. Temperature and pressure of the system were monitored by a temperature indicator 

and pressure gauges. The sample obtained was purified by reduced pressure distillation to remove the 

excess methanol and water generated during reaction. A methanol recovery unit, which is based on 
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continuous distillation, consists of a condenser and a heater. The permeate stream containing biodiesel, 

methanol and glycerol was collected in the separator. Since the low-melting point methanol phase 

could be simply separated and recovered for reuse by evaporation and distillation, respectively, most 

biodiesel production process uses excess methanol to get high yield. Excess un-reacted methanol can 

then be separated and recycled easily by vaporization after reaction.  

The continuous production of biodiesel from WFO and methanol was carried out in a PBR at 

atmospheric pressure. The effects of residence time (1 to 3 h), reaction temperature (50 to 70 °C), 

methanol/oil molar ratio (10 to 20), catalyst bed height (150 to 300 mm) and reusability of catalyst  

(1 to 5 times) on the conversion to FAME were studied. After a certain period of time, a known 

amount of sample was taken out from the reactor for analysis. All experiments were repeated 3 times 

and the standard deviation was never higher than 7% for any point.  

2.6. Analysis of Final Product  

Composition of the FAME was analyzed with gas chromatograph-mass spectrometry (GC-MS 

QP2010 Plus, Shimadzu Corporation, Japan) equipped with a flame ionization detector (FID) and a 

capillary column 30 m × 0.32 mm × 0.25 µm (DB-WAX, Carbowax 20M). Yield of biodiesel was 

calculated by Equation (1):  

 
(1) 

where mi is the mass of internal standard added to the sample, Ai is the peak area of internal standard, 

mb is the mass of the biodiesel sample and Ab is the peak area of the biodiesel sample [24]. The 

physical and chemical properties of biodiesel including kinematic viscosity, density, flash point, cloud 

point, pour point, acid value and water content were analyzed according to ASTM methods.  

3. Results and Discussion 

3.1. Characterization of KOH/JS Catalyst  

Figure 2 shows XRD patterns of activated carbon derived from Jatropha curcas fruit shell and 

KOH/JS catalyst. It is observed that pure activated carbon exhibits broad peaks with an absence of sharp 

peaks. This reveals an amorphous nature of material, which is advantageous for well-defined 

adsorbents. The occurrence of broad peaks around 26° and 43° indicates an alignment of carbon layer 

planes [21,25]. For the KOH/JS catalyst, the existence of diffraction peaks at 2θ = 30°, 32°, 34°, 38°, 

39° and 41° refers to the potassium hydroxide phase. These results implied that the catalyst contained 

KOH as expected. It was hypothesized that KOH was coated within the highly porous structure of the 

activated carbon. The formation of the KOH phase contributes to higher basicity and catalytic activity 

for the transesterification reaction in comparison to activated carbon. The amount of adsorbed KOH 

was measured by a gravimetrical method. The total loading content of the potassium salts was 

31.3 wt% based on the weight of activated carbon. 
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Figure 2. XRD patterns of activated carbon and Jatropha curcas fruit shell activated carbon 

(KOH/JS) catalyst. 

 

The physical properties of activated carbon and KOH/JS catalyst are summarized in Table 2. The 

Jatropha curcas fruit shell activated carbon had a BET surface area of 927.85 m2/g and a pore volume 

of 0.923 cm3/g. The KOH/JS catalyst, on the other hand, exhibits lower specific surface area 

(275.83 m2/g) and pore volume (0.209 cm3/g), compared to activated carbon. The significant reduction 

in BET surface area of 33.3 wt% KOH/JS catalyst indicates the filling of KOH molecules into the 

activated carbon pores, supporting the above hypothesis [15]. In addition, it can be seen that the 

catalyst resulted in a strong increase in the active sites. This assumption is supported by the SEM images. 

Table 2. The physical properties of activated carbon and KOH/AC (AC = Activated Carbon) catalyst. 

Physical Property 

Material 

Activated Carbon KOH/JS Catalyst 

BET surface area (m2/g) 927.85 275.83 
Pore volume (m3/g) 0.923 0.209 
Mean pore diameter (A°) 44.86 93.71 

The porous nature of activated carbon and KOH/JS catalyst is illustrated by SEM images, as shown 

in Figure 3. The results showed that the metal loading affected the partial metal coverage on the 

activated carbon surface [26]. Figure 3(b) shows a good dispersion of potassium species on the entire 

surface of activated carbon. Based on previous research, good catalytic activity is enabled by 

preservation of the support material after catalyst preparation. In addition, the metal species must be 

highly distributed upon the surface of the support [22]. 
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Figure 3. (a) SEM micrograph of activated carbon; (b) SEM micrograph of KOH/JS catalyst. 

(a) (b) 

3.2. Influence of Various Parameters on the Yield of Biodiesel  

The conditions used for the preparation of biodiesel in the continuous reactor were a reaction 

temperature of 60 °C, methanol/oil molar ratio of 16, catalyst bed height of 250 mm and pressure of 

1 atm. The impurities and non-oil components of WFO were removed by filtration before use. Flow 

rate of reactant is one of the key parameters during the continuous transesterification carried out in the 

PBR. Residence time was controlled by changing the flow rate of the feedstock chemical [27]. The 

corresponding yield of biodiesel with the residence time is shown in Figure 4. The yield of methyl 

ester increased from 61.1 to 86.7% with an increase of residence time from 1 to 2 h. However, a slight 

increase in the yield was observed for an increase in residence time from 2 to 3 h. This might be 

because when the residence time is too long, the transesterification reaction between WFO and 

methanol could be reversible. The hydrolysis reaction of FAME can then be strengthened to generate 

more free fatty acid (FFA) and alcohol. From an economical point of view, it is therefore not necessary 

to spend a long time to increase the conversion of waste oil, when the yield of FAME has been nearly 

optimized to avoid saponification and hydrolysis reaction in transesterification reaction [28].  

Figure 4. Effect of residence time on the yield of biodiesel in PBR. 
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The catalytic effect of reaction temperature on transesterification was investigated from the 

percentage of WFO conversion to methyl ester. From Figure 5, the yield of biodiesel was obviously 

raised from 66.8 to 85.6% with an increase in reaction temperature from 50 to 70 °C. The effect of 

reaction temperature on promoting transesterification can be explained by endothermic reaction 

aspects, in which higher temperature would lead to higher reaction rate [29,30]. The highest yield rate 

was obtained at the reaction temperature of 60 °C. However, when the reaction temperature continued 

to increase over 60 °C or above the boiling point of methanol, the conversion was decreased. Due to 

the fact that the evaporation of methanol leads to the reduced ratio of methanol/oil in the reaction, the 

result is a decline in the transesterification activity [31]. In general, the transesterification reaction 

temperature should be below the boiling point of alcohol in order to prevent the alcohol evaporation. 

The range of optimal reaction temperature may vary from 50 to 60 °C, depending upon the oils or  

fats used. 

Figure 5. Effect of reaction temperature on the yield of biodiesel in PBR. 

 

Figure 6. Effect of methanol/oil molar ratio on the yield of biodiesel in PBR. 

 

The effect of methanol/oil molar ratio was investigated from 10 to 20. It is shown that the yield of 

biodiesel rapidly increases with increasing molar ratio of methanol/oil (Figure 6). Since biodiesel 

production by transesterification is a reversible reaction, the production yield could be elevated by 

introducing an excess amount of the reactant methanol to change the equilibrium. When the ratio is 
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less than 16, the molar ratio of methanol/oil has a significant effect on the catalytic activity. According 

to the Le Chatelier’s principle, when the methanol amount is increased, the backward reaction is less 

favored over the forward reaction, and therefore higher product yield is observed [32]. The increase in 

transesterification became slower upon further increase in methanol/oil molar ratio to 18 and 20. 

Moreover, a higher molar ratio of methanol/oil could cause a separation problem during recycling [33]. 

Therefore, the optimal molar ratio of methanol/waste oil of 16 is preferable. 

The catalyst bed height in the PBR is associated with the residence time during continuous 

transesterification. The influence of catalyst amount on the conversion is illustrated in Figure 7. The 

yield of FAME was greatly dependent on the amount of catalyst applied. The yield increased rapidly 

from 62.0% to 89.9% with the increase of the catalyst bed height from 150 to 300 mm. It demonstrates 

that a high catalyst bed height provides a longer reaction time and more active sites to promote the 

reaction between waste oil and methanol at a given flow rate [27]. However, when the catalyst bed 

height exceeded 250 mm, the rate of reaction increased slightly. Therefore, the optimum catalyst bed 

height for biodiesel production in this research is found to be 250 mm. 

Figure 7. Effect of catalyst bed height on the yield of biodiesel in PBR. 

 

Reusability is very important for the economical application of KOH/JS as a heterogeneous catalyst 

for biodiesel synthesis. It is important to ensure that the active species are not leached from the solid 

support of the catalyst. If the leaching of the active species is too high, the active species could act as a 

homogeneous catalyst, and thus, the process advantages of the heterogeneous catalyst could be  

lost [13]. The reusability was checked by using the catalyst without any further purification and 

activation. KOH/JS catalyst was collected after adding the reaction and fresh reactants. The yield of 

FAME, determined after each catalyst collection, was employed to evaluate the reusability. The 

optimal operating conditions: a residence time of 2 h, reaction temperature of 60 °C, methanol/oil 

molar ratio of 16 and catalyst bed height of 250 mm, were determined by the operational parameters 

employed in the PBR. Under these conditions, a high yield of biodiesel was obtained (Figure 8). WFO 

conversions exhibited no apparent decrease and exceeded 80% in each of 5 consecutive runs. The 

contents of KOH on JS after the reaction of biodiesel production were 29.2 wt%. This heterogeneous 
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catalyst showed high stability and reusability for transesterification without loss of its catalytic activity 

during reaction. Small loss of the catalyst is an important factor for good catalyst reusability [24]. 

Figure 8. Effect of repetition time on the yield of biodiesel in PBR. 

 

3.3. Characterization and Fuel Properties of Biodiesel  

The fuel properties of biodiesel obtained in this work are summarized in Table 3. It can be seen that 

most of its properties are in the range of fuel properties as described in the latest standards for 

biodiesel [34–36].  

Table 3. The fuel properties of biodiesel derived from waste frying oil (WFO). 

Fuel Properties Biodiesel in This Work 

Kinematic viscosity (mm2/s @ 40 °C) 
Density (g/mL @ 15 °C) 

4.9 
0.874 

Flash Point (°C) 
Cloud Point (°C) 
Pour Point (°C) 

166 
11 
7 

Acid value (mg KOH/g oil) 0.80 
Water content (%) 0.03 

4. Conclusions  

In this study, agricultural waste biomass can be utilized as a catalyst support for the continuous 

process of biodiesel production. KOH/JS heterogeneous catalyst was successfully used in the 

transesterification reaction of WFO into FAME. The optimum conditions, which yielded a conversion 

of WFO of nearly 87%, were residence time of 2 h, reaction temperature of 60 °C, methanol/oil molar 

ratio of 16 and catalyst bed height of 250 mm with pressure of 1 atm in PBR. The experimental results 

showed that KOH/JS had excellent activity and stability during transesterification. The catalyst was 

used five times, and no apparent activity loss was observed. However, this catalyst can cause 
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saponification of the feedstock with high FFA. The obtained fuel properties of the biodiesel meet all 

biodiesel standards. As a solid catalyst, KOH/JS can decrease the cost of biodiesel and the steps of 

purification. It has potential for industrial application in the transesterification of WFO to FAME.  
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