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Abstract: Wind turbine power curves are calibrated by turbine manufacturers under requirements
stipulated by the International Electrotechnical Commission to provide a functional mapping
between the mean wind speed v and the mean turbine power output P. Wind plant operators
employ these power curves to estimate or forecast wind power generation under given wind
conditions. However, it is general knowledge that wide variability exists in these mean calibration
values. We first analyse how the standard deviation in wind speed σv affects the mean P and the
standard deviation σP of wind power. We find that the magnitude of wind power fluctuations scales
as the square of the mean wind speed. Using data from three planetary locations, we find that
the wind speed standard deviation σv systematically varies with mean wind speed v, and in some
instances, follows a scaling of the form σv = C × vα; C being a constant and α a fractional power. We
show that, when applicable, this scaling form provides a minimal parameter description of the power
curve in terms of v alone. Wind data from different locations establishes that (in instances when this
scaling exists) the exponent α varies with location, owing to the influence of local environmental
conditions on wind speed variability. Since manufacturer-calibrated power curves cannot account
for variability influenced by local conditions, this variability translates to forecast uncertainty in
power generation. We close with a proposal for operators to perform post-installation recalibration
of their turbine power curves to account for the influence of local environmental factors on wind
speed variability in order to reduce the uncertainty of wind power forecasts. Understanding the
relationship between wind’s speed and its variability is likely to lead to lower costs for the integration
of wind power into the electric grid.
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1. Introduction

The wind turbine power curve relates the speed of wind blowing past a turbine to the power
generated by the turbine. Wind plant operators forecast the power they expect to generate by feeding
wind speed forecasts from numerical weather models to these power curves [1,2]. The power curves
are supplied to operators by turbine manufacturers, who calibrate them under standards specified
by the International Electrotechnical Commission (IEC) [3]. The IEC standard considers the average
behaviour between the mean wind speed v (x being the time-average of a time-varying quantity x(t))
and mean power output P, and hence does not locally hold in time for instantaneous measurements.
Indeed, instantaneous values of wind speed v(t) and wind power P(t) exhibit significant scatter about
the mean profile (Figure 1). Several studies [4–8] have focused on the factors contributing to this
variability, including turbulent fluctuations, wind shear, directional shear, directional fluctuations, etc.,
with the aim of accurately modeling the “mean” profile of the wind turbine power curve [9–12].

In this article, we first establish that the wind turbine power curve has features that are sensitive
to local environmental factors. We then employ a combination of theory and empirical results to
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self-consistently account for this dependence on local factors. Our proposed approach was especially
developed within the framework of IEC standard 614001-12-1 to ensure its easy adoption by wind
plant operators. In particular, we present a minimal parameter description of wind speed variability

σv =
√
(v(t)− v)2 and wind power variability σP =

√
(P(t)− P)2 in terms of the mean wind speed

v. Our objective here is to remain faithful to the IEC standard [3] that prescribes the power curve with
mean wind speed v as its only parameter. We present empirical evidence that the standard deviation
in wind speed σv systematically varies with mean wind speed v. At least in some instances, this
monotonic variation follows algebraic scaling of the form σv = C × vα, where C is a constant and α is
a fractional power. This scaling form—which we attribute to residual signal correlations that remain
post-averaging—then affords a description of mean wind power P and its standard deviation σP in
terms of v alone.

Figure 1. Instantaneous power P(t) versus instantaneous wind speed v(t) (solid grey circles) and
time-averaged power P versus time-averaged wind speed v (solid red circles) for the Howard data
set (Table 1). Considerable scatter in P(t) versus v(t) occurs about the time-averaged power curve.
The scatter increases with mean speed v, as qualitatively shown with blue arrows at v = 5, 7, and 9 m/s.

Our analysis of wind data obtained from three different planetary locations (Table 1) reveals that
in instances when the above scaling form is satisfied, the power-law exponent α varies with geographic
location, and hence must reflect local environmental factors not captured by manufacturer-supplied
calibration power curves. Consequently, when these calibration power curves are applied to forecast
wind power, wind speed variability transforms into power forecast uncertainty. Since the variability
always increases in tandem with mean speed, the resulting forecast error is multiplicative, so it
substantially increases uncertainty in wind power forecasts. We conclude with a proposal that wind
plant operators should recalibrate turbine power curves at the plant location to properly account for
variability arising from local environmental factors. This will help to reduce the uncertainty of wind
power forecasts.

At first sight, the monotonic increase in wind speed variability σv with mean speed v seems
at odds with the general belief that the turbulence intensity I = σv

v decreases with speed. In many
instances, one observes that fluctuations σv exhibit non-monotonic behaviour with steady increase
in mean speed v (and Reynolds number Re) [13]. In particular, frictional losses with the walls cause
loss of pressure head in water flow down a river or pipe. This in turn causes loss in mean speed



Appl. Sci. 2016, 6, 262 3 of 9

(v), but fluid shear with the wall can increase fluctuations and eventual transition to turbulence [14].
Atmospheric flows close to the Earth’s surface share close correspondence with pipe and river flows,
in that the Earth’s surface behaves like a rough wall, but the flow is unbounded from above, where
a second confining wall is absent. Fluctuations σv (and therefore turbulence intensity I) will vary
non-monotonically with mean speed v close to Earth’s surface. However, within the range of wind
speeds between the cut-in and cut-out speed of a turbine, this variation should exhibit monotonic
increase in σv with a concomitant rise in v.

Whereas the IEC standard considers only mean quantities, as we show below, both mean power
output (Equation (5)) and its standard deviation (Equation (7)) strongly depend upon wind speed
variability σv, in addition to mean wind speed v. Strong local environmental dependence of wind
speed fluctuations naturally affects both the mean profile of the power curve and its variability. When
not properly accounted for, this increases forecast uncertainty, which in turn adds costs to renewable
energy production [15,16]. Understanding the source of variability and utilising it appropriately
therefore brings tangible benefits to the global renewable energy community.

Table 1. Details of data sets analysed in the present study.

Name Location Coordinates Elevation Terrain Duration Sampling Rate

Howard, New York 42.339693◦, −77.569523◦ 605 m farm land 20 Days 0.2 Hz
Big Bear Lake, California 34.25836◦, −116.92125◦ 2085 m forested 12 Days 1 Hz

Atacama, Chile −23.01667◦, −67.75◦ 5080 m desert 13 Days 1 Hz

2. Influence of Wind Speed Variability on Wind Power

The starting point of our analysis is the instantaneous kinetic energy flux p(t) in wind with air
density ρ, blowing past a hypothetical turbine of cross-sectional area A:

p(t) =
1
2
ρAv(t)3 (1)

Here v(t) is the time-varying streamwise component of velocity blowing past the turbine. We
ignore directional fluctuations merely in the interest of keeping our arguments accessible (as also
recently explained by Hedevang [8]), but the subsequent analysis can be easily extended to include
directional fluctuations [4].

Performing Reynolds decomposition on the time-varying velocity v(t) = v + ṽ(t) into a
time-independent mean speed v and a time-varying fluctuation ṽ(t) whose long-time average ṽ(t) ≡ 0
by definition, and substituting it in Equation (1), we obtain:

p(t) =
1
2
ρA[v + ṽ(t)]3 =

1
2
ρA[v3 + 3v2ṽ(t) + 3vṽ(t)2 + ṽ(t)3] (2)

Owing to the turbine experiencing a drag force, it does not extract all the energy available in the
wind. Indeed, the power P(t) generated by the turbine is given by:

P(t) = K[v3 + 3v2ṽ(t) + 3vṽ(t)2 + ṽ(t)3] (3)

where K ≤
(

16
27

) (
1
2

)
ρA and

(
16
27

)
is the efficiency factor representing the theoretical upper bound

for power conversion. We now take the long-time average of Equation (3) to obtain the mean power
extracted by the turbine, which upon performing an appropriate time-average of each term on the
right-hand side (RHS) yields:

P = K[ v3︸︷︷︸
Term I

+ 3v2ṽ(t)︸ ︷︷ ︸
Term II

+ 3vṽ(t)2︸ ︷︷ ︸
Term III

+ ṽ(t)3︸ ︷︷ ︸
Term IV

] (4)



Appl. Sci. 2016, 6, 262 4 of 9

Term I in RHS of Equation (4) represents the turbine’s mean power output under steady
(time-independent) wind speed conditions. Term II is zero, since ṽ(t) ≡ 0 by definition. ṽ(t)3

can take both positive and negative values, owing to its being an odd function of time t. Consequently,
Term IV on the RHS of Equation (4) takes a very small but non-zero value, and will be neglected
in the foregoing analysis. Term III captures wind speed variability, and ṽ(t)2, being quadratic (an
even function in time t), is always positive. Indeed, ṽ(t)2 ≡ (v(t)− v)2 ≡ σ2

v, the quantity of specific
interest to our present analysis. As a point of comparison, a 20 day long-time average for the Howard
dataset (Table 1) yielded the values v3 = 299.85 m3/s3 for term I, 3vṽ(t)2 = 192.26 m3/s3 for term

III, and ˜v(t)3 = 23.06 m3/s3 for term IV. We are therefore justified in keeping term III (64% of term I)
and dropping term IV (only 8% of term I). Dropping terms II and IV and re-arranging terms I and III,
Equation (4) can be re-expressed as:

P = K
[
v3 + 3vṽ(t)2

]
= Kv3

[
1 + 3I2

]
(5)

where I = σv
v is the turbulent intensity, or alternatively the coefficient of variation in wind speed.

The presence of a second fluctuation term in Equation (5) requires a comparison of its strength
relative to the mean term (v3). When the turbulent intensity is low (I � 1), wind conditions
are close to steady, and the mean power follows the standard P ∼ v3 relation. If the fluctuation
magnitude is a significant fraction of mean speed (I . 1), then 3I2 ∼ 1. Two scenarios must then be
considered: one where the standard deviation of wind speed σv remains constant or decreases with
increasing mean wind speed v, and the second where σv increases with v. A consideration of the two
scenarios becomes important, because a constant σv leads to additive variability, whereas σv increasing
with v leads to multiplicative variability, which in turn has implications for the error. Our analysis of
wind data presented below always shows an increase in σv with v, hence we discuss only the case of
multiplicative variability.

The standard deviation of power σP ≡
√
(P(t)− P)2 can also be computed as a function of

v and σv. Defining instantaneous power as P(t) = P + P̃(t), where P̃(t) is the fluctuation about
the time-independent mean P, whose long time average is zero by definition (P̃(t) ≡ 0), and using
Equations (3) and (4):

P̃(t)2 ≡ (P(t)− P)2 = K2[(v + ṽ(t))3 − v3 − 3vṽ(t)2 − ṽ(t)3]2 (6)

An algebraic expansion of Equation (6) followed by a long-time average of individual terms yields:

P̃(t)2 = K2[9v4ṽ(t)2 + 15v2ṽ(t)4 + ṽ(t)6 + 18v3ṽ(t)3

+6vṽ(t)5 − 9v2(ṽ(t)2)2 − 6vṽ(t)3 ṽ(t)2 − (ṽ(t)3)2]

Keeping only the leading order term and ignoring all higher order terms, we arrive at a first order
approximation for the standard deviation of wind power:

σP =

√
P̃(t)2 = 3Kv2

√
ṽ(t)2 = 3Kv2σv (7)

From Equation (7), we see that σP scales linearly with σv, but is amplified by a factor of 3Kv2.
More importantly, we see that the magnitude of wind power fluctuations scales quadratically with
mean wind speed (σP ∼ v2). We note that the functional form for σP in Equation (7) is expected to
apply between the cut-in and rated speeds.

In Figure 1, we plot the power curve (P vs. v, solid red circles) with the instantaneous power
against speed (P(t) vs. v(t), solid grey circles) overlaid on top of the power curve for a 2.05 MW
REPower MM92 turbine (cut-in speed: 3 m/s, rated speed: 11.2 m/s, cut-out speed: 24 m/s,
rated power: 2050 kW) located at a wind farm operated by EverPower Wind Holdings in Howard,
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NY (Table 1). The solid blue arrows marking the scatter in instantaneous wind speed values at v = 5,
7, and 9 m/s qualitatively demonstrate the monotonic increase in wind speed variability with mean
speed; i.e., the case of multiplicative variability.

Before proceeding, we note a nuance concerning the time-average for P and v. IEC standard
61400-12-1 [3] requires that each value of v and P in the power curve be determined by averaging
a 10 min time record (sampled at 1 Hz or higher) of v(t) and P(t), respectively. This translates to
an average over 600 s × 1 Hz = 600 samples—at least—for each time-averaged value in the power
curve. Since the Howard data set (see Table 1) was sampled at 0.2 Hz, a pertinent question to ask is
whether 600 s × 0.2 Hz = 120 samples are sufficient to achieve statistical convergence of the mean.
We performed a bootstrap protocol [17] for the Howard time series to generate ten different time
series by randomly shuffling values of the originally measured time series for v(t) and p(t). We then
measured the mean for each bootstrap time series as a function of increasing sample size for wind
speed and wind power. Figure 2 shows how the mean wind speed (Figure 2a) and mean wind power
(Figure 2b) converge as a function of increasing sample size. Since each sample is measured 5 s
apart in our data set, 120 samples equate to a 10 min interval prescribed by the IEC standard. As is
evident from Figure 2, asymptotic statistical convergence of the mean values is achieved only at
about 400 samples. Following from this statistical convergence test, we constructed the power curve
in Figure 1 by averaging over 400 samples (i.e., a 33.3 min time record for each value of v and P).
We emphasise that the bootstrap protocol tests for statistical convergence in the absence of correlations.
The successive values in the measured time series are correlated; i.e., the nth value will lie within a
certain band relative to the (n − 1)th and (n + 1)th values, depending upon correlation strength and
correlation time. When this measured series is randomly shuffled to generate a synthetic series for the
bootstrap test, the correlations between successive values in the time series are lost. On the other hand,
when using the actual time series for v(t) and P(t) in constructing the power curve from averages,
such correlations persist and reveal themselves in the variability, as we discuss below.

a)                                              b)

Figure 2. Statistical convergence of (a) mean wind speed; and (b) mean wind power versus number of
samples contributing to the average. Each trace represents a separate data set generated with a bootstrap
protocol by randomly shuffling values of the original Howard time series (Table 1). The averages
approach asymptotic convergence around 400 samples.

3. Results and Discussion

We analysed three data sets (Table 1), one (Howard) containing both wind speed and wind power
time series, and the other two (Big Bear Lake and Atacama) containing only wind speed time series.
Figure 3a plots the standard deviations of wind speed σv and wind power σP versus mean wind speed
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v and wind power P, respectively, for the Howard data set. The standard deviation of wind speed σv

(solid red circles in Figure 3a) scales algebraically relative to the mean wind speed v with a power-law
fit that follows the form σv = 0.25 × v0.73 (solid line in Figure 3a). The standard deviation of wind
power fluctuations σP (solid blue squares in Figure 3a) also exhibits algebraic scaling, albeit shallower
than wind speed, with a power-law fit of the form σP = 3.9 × P0.49 (dashed line in Figure 3a). Wind
speed standard deviation σv for the Big Bear Lake data set plotted in Figure 3b (red solid circles)
exhibits a similar algebraic scaling, but with a different power-law exponent (σv = 0.4 × v0.6, solid
black line in Figure 3b) from the Howard data set. Finally, for the Atacama data set, although σv

exhibits a systematic increase with v (solid blue squares in Figure 3c), we find that the scatter is
too high to make a conclusive determination of power-law scaling. We do include a power-law fit
(dashed line in Figure 3c), but one should not derive any inferences from this fit. Be that as it
may, the fact that σv exhibits monotonic increase with v for all data sets establishes the scenario of
multiplicative variability.

Big Bear Lake

Figure 3. (a) log–log scale: The standard deviation of wind speed fluctuations σv (red solid circles)
versus mean wind speed v and the standard deviation of wind power fluctuations σP (blue solid
squares) versus mean wind power P for the Howard data set. Power-law fits to the data provided
σv = 0.25 × v0.73 (solid line) and 3.9 × P0.49 (dashed line); (b) Whereas σv vs. v for Big Bear Lake
(red solid circles) exhibits power-law scaling with a fit value of 0.4 × v0.6 (solid line); and (c) the
Atacama data set (blue solid squares) reveals a monotonic increase in σv vs. v. Although we include a
power-law fit σv = 0.31 × v0.68 (dashed line) for illustrative purposes, the scatter in the data does not
permit one to place any confidence in the fit value of the exponent.

The observed scaling for power fluctuations (σP = 3.9 × P0.49) is significant given that
Calif et al. [18] have recently reported the same σP ∼ P0.5 scaling for a single turbine as well as
for wind farms at various planetary locations. They interpreted this scaling within the context of
the “Taylor Rule” [19] (not to be confused with Taylor’s Hypothesis in turbulence theory [20]), also
called “Fluctuation Scaling” [21] in physics, where the 1/2 scaling exponent forms one of two limiting
cases. However, based on additional empirical evidence for wind speed fluctuations and calculations
resulting in Equation (7), we proffer an alternative interpretation for this scaling.

Consider a time-varying signal x(t) with a signal correlation time τ0. The mean x and standard
deviation σX become truly time-independent when the average is taken over several multiples of the
correlation time τ0. Instead, if the averaging interval τ < τ0, residual correlations persist in xτ and σxτ

(subscript τ now denotes the averaging interval) which vary with averaging time τ. Wind speed (and
therefore wind power) fluctuations which reflect atmospheric turbulence possess long time correlations
extending up to 24 h timescales [22–26], whereas the IEC standard [3] specifies a 10 min time average
for calculation of v and P. Even our bootstrap protocol specifically tests for statistical convergence in
the absence of temporal correlations; generating a new randomised time series from the original time
series destroys temporal correlations in the signal. Consequently, v and σv retain residual correlations,
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which are revealed as systematic variation in σv relative to v (the same applies to σP and P). Such
relative scaling between moments of a distribution is well known via Extended Self Similarity (ESS)
scaling [27], and was fruitfully exploited to accurately estimate deviations from scalings predicted by
the Kolmogorov theory of turbulence [28]. Our observed scalings between the mean and standard
deviation of wind speed follow in the same spirit. One cannot escape the residual correlations—and
hence the power-law relationship between σv and v—unless the averaging time is increased from the
IEC-stipulated 10 min to the signal correlation time of order 24 h. A 24 h averaging time for each
point on the power curve calls for several months worth of data collection effort, and hence is clearly
impractical. A more tractable—and still quantitatively defensible—approach is to incorporate the
power-law scaling between σv and v to self-consistently account for residual correlations in the power
curve and its variability, as we show below in Equation (8).

We can now substitute the scaling form σv = C × vα in Equations (5) and (7) to obtain:

P = Kv3
[

1 +
σ2

v

v2

]
= Kv3[1 + C2v2(α−1)] (8a)

σP = 3Kv2σv = 3CKv(2+α) (8b)

Equation (8) therefore provides a minimal parameter description of P and σP as a function of v
alone, thereby keeping our analysis in accord with the requirements of IEC standard 61400-12-1 [3].
Even when a scaling form for σv is unavailable (e.g., the Atacama data set), one can still exploit the
monotonic variation in σv versus v and numerically input v and σv into Equation (7) and calculate
σP to establish confidence intervals around P for forecast projections. Failing this, the wind speed
variability feeds into and amplifies wind power variability, and σP transforms into forecast uncertainty.

Equation (8) applies between the turbine’s cut-in and rated speeds. Furthermore, we emphasize
the fact that Equation (8b) is only a leading order approximation for wind power variability between
the cut-in and rated speeds. Between the rated and cut-out speeds, mean power decouples from
mean speed, and the turbine acts to rectify wind power fluctuations, thereby suppressing any increase
in power variability. When wind power fluctuations are considered as a whole between the cut-in
and cut-out speeds, σv should follow a shallower scaling than would be suggested by Equation (8b).
Given that the range of speeds between the rated and cut-out speeds is roughly half the entire operating
range of wind speeds for any given turbine, it may explain why σP ∼ P0.5 seems to hold universally.

It is, however, revealing that the Howard and Big Bear Lake data sets do not share the same scaling
exponent α, despite sharing the same averaging duration. This suggests that environmental factors
local to the measurement location strongly influence wind dynamics, thereby controlling the value of
the scaling exponent α. A clue to this effect is revealed by the strongly anomalous behaviour of the
Atacama data set, which does not exhibit as clear a scaling (Figure 3c) as the other two. The Atacama
location (Chajnantor, Chile) differs significantly from Howard and Big Bear Lake in at least two
respects. Firstly, Howard, NY and Big Bear Lake, CA are at 605 m and 2085 m elevations, respectively,
whereas Chajnantor in Atacama has an elevation of 5080 m above sea level. This strong disparity in
elevations translates to difference in air density and wind profiles, which must certainly affect wind
speed variability.

Second, Big Bear Lake is adjacent to forested mountain ridges that rise several hundred meters
above the lake. The rural farmland in Howard, NY has interspersed forest and cultivated land.
On the other hand, the Chajnantor location in the Chilean Andes is a desert. The influence of
surface roughness on the atmospheric boundary layer is well known in the environmental sciences,
where internal atmospheric boundary layers are associated with the horizontal advection of air across
a discontinuity in some surface property [29]. Identification of the precise environmental factors
will require field observations, and cannot be achieved with wind speed data alone; hence, this lies
beyond the scope of the current work. Furthermore, the sub-linear power-law scaling of σv relative to
mean speed v points to the existence of a hidden length scale, either in the atmospheric flow or in the
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planetary surface roughness. This hidden length scale—if identified through extensive observational
measurements—could potentially extend the phenomenology of flow within the shear boundary
layer beyond mean wind profiles to include fluctuations. Such a phenomenology would of course
mark an advancement in geophysical fluid dynamics, but would also benefit the wind engineering
community. High time-resolution wind data sets that extend over several days are few, and are prized
by researchers. The generation of such data sets in several locations would be a worthy goal for
national research agencies.

4. Summary

Before closing, we observe that collective interactions between turbines in a wind plant also
change the local flow field in the plant’s vicinity [30,31], in turn compromising plant efficiency [32,33].
Decomposing plant-induced variability from natural environmental factors is often complicated [30,34].
The methods we employ are agnostic to the source of variability, hence can account for both
natural (environmental) and artificial (plant-induced) sources of variability, while working within the
framework of IEC standard 61400-12-1 [3].

In summary, we have explained the functional dependence of P and σP in terms of v and σv.
From empirical evidence, we exploited systematic variation of σv with v to recast expressions for P and
σP solely in terms of v, thus keeping in accord with IEC standard 61400-12-1 [3]. Given the dependence
of the fluctuation scaling exponent α on local environmental factors, we propose that wind operators
should recalibrate their turbine power curves post-installation at the site to accurately account for the
site’s multiplicative variability. We believe that doing so, and including confidence intervals for wind
power variability about the mean power curve profiles, would reduce wind power forecast uncertainty.
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