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Abstract: The ever-growing number of applications for satellites is being compromised by their
poor direct positioning precision. Existing orthoimages, such as enhanced thematic mapper (ETM+)
orthoimages, can provide georeferences or improve the geo-referencing accuracy of satellite images,
such ZY-1-02C images that have unsatisfactory positioning precision, thus enhancing their processing
efficiency and application. In this paper, a feasible image matching approach using multi-source
satellite images is proposed on the basis of an experiment carried out with ZY-1-02C Level 1 images
and ETM+ orthoimages. The proposed approach overcame differences in rotation angle, scale,
and translation between images. The rotation and scale variances were evaluated on the basis of
rational polynomial coefficients. The translation vectors were generated after blocking the overall
phase correlation. Then, normalized cross-correlation and least-squares matching were applied for
matching. Finally, the gross errors of the corresponding points were eliminated by local statistic
vectors in a TIN structure. Experimental results showed a matching precision of less than two pixels
(root-mean-square error), and comparison results indicated that the proposed method outperforms
Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), and Affine-Scale
Invariant Feature Transform (A-SIFT) in terms of reliability and efficiency.
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1. Introduction

In the application of satellite technology, high-accuracy geolocation and joint observation of
multi-source data have emerged as core issues in the fields of photogrammetry and remote sensing.
Although the positioning precision of satellites on a global scale has improved steadily, as seen with
ZY3, the overall positioning precision of some satellites is low and unstable owing to different design
purposes and hardware configuration deficiencies, restricting their application. ZY-1-02C, which is
equipped with a multispectral (MS) camera with 10 m resolution, a panchromatic (PAN) camera with
5 m resolution, and a high-resolution PAN camera with 2.36 m resolution, is a satellite that is used for
surveying land resources. The overall positioning precision of this satellite imagery, whose processing
level is aimed at sensor geometry, is approximately 100 m, and achieves only 1000 m precision under
extreme conditions. The conventional approach of manually selecting a large number of control points
cannot meet the demands of mass data processing. In contrast, an automatic control point matching
method—namely, multi-source satellite image matching—allows the combined processing of different
data, providing many possibilities for multi-source applications [1]. This study focused on the use
of multi-source image registration to compensate for the drawbacks of ZY-1-02C in positioning in
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the sensor geometry processing, resulting in a rich data source and achieving a high-utility earth
observation method.

Automatic multi-source image matching (AMSIM), which is widely used in photogrammetry
and remote sensing, has been studied for decades [2–7]. Compared to manually measuring control
points, image matching can effectively reduce workload and is appropriate for processing mass
data. Image matching can be broadly classified into two categories: area-based matching (ABM)
and feature-based matching (FBM) [8]. ABM performs a measurement using gray or phase data in a
fixed-size window from two images. The most commonly used algorithms are the methods based on
mutual information [9,10], frequency-domain correlation [11], and cross-correlation [12,13]. However,
ABM exhibits low efficiency. In contrast, FBM extracts salient features from images, can achieve
sub-pixel accuracy, and facilitates rapid processing.

Well-known feature extraction operators [14], SIFT [15], and SURF [16,17] have been widely used
in image matching. Other methods based on features, such as lines [18], edges [8], contours [19],
and shapes [20], are also used in numerous applications. Feature points have been shown to exhibit
excellent performance and have been successfully applied to various matching cases, including
AMSIM [21,22]. However, some problems remain, such as uneven precision control, mismatch,
and high cost. Frequency-domain correlation has also been applied to some AMSIM cases. Phase
correlation is known to identify integer pixel displacement. Several Fourier domain methods,
and closely-related spatial domain variations, have been proposed for estimating translational shift
with sub-pixel accuracy between image pairs [23–25]. Liu et al. proposed robust phase correlation
methods for sub-pixel feature matching, based on the singular value decomposition method [26].
Nevertheless, phase correlation algorithms may have gross errors in matching results due to minor
noise and differences between images.

Gross errors in image matching—namely, the mismatching of point pairs—need to be addressed.
Many experiments [27] have indicated that mismatching is inevitable in areas that contain repeated or
insufficient textures, clouds, or shades. Hence, gross error elimination has emerged as another key
factor in judging algorithms [28]. Conventional methods for eliminating gross errors are classified
into two categories. One method involves complex iterative computation in terms of automatic
adjustment [29]. However, it is strongly dependent on the data quality as well as being capital-intensive
and unreliable. The other method manually eliminates gross errors and is inapplicable to automatic
photogrammetry [30]. Kang et al. proposed an outlier detection method using the Triangulated
Irregular Network (TIN) structure, which was successfully applied for automatic registration of
terrestrial laser scanning point clouds [31,32]. This method effectively estimates complex distortions of
point cloud data in local areas and eliminates unapparent gross errors in the overall statistics.

When conducting AMSIM, existing satellite orthoimages provide a georeference for satellite
images that have unsatisfactory positioning precision. Enhanced thematic mapper (ETM+) images,
which are acquired from the Landsat 7 platform, have been used for remote sensing [33,34].
The Landsat 7 satellite, which was launched in 1999, is equipped with an eight-band MS camera with
a 15 m resolution. The ETM+ images captured by Landsat 7 have broad coverage and relatively high
positioning precision. Thus, Digital Orthophoto Maps (DOMs), which are also called orthorectified
imagery, of ETM+ were adopted as georeferenced images in our approach. AMSIM was conducted to
achieve high and uniform global positioning accuracy of ZY-1-02C images.

Even though the positions of the satellite platforms and sensors are rigorously controlled in
relation to satellite images from different sources, errors in rotation, scaling, and translation, relative to
the same ground target, still occur in image acquisition, [30,35]. A strong relationship exists among
these errors, which restricts image matching algorithms. The performance of image matching methods
depends on the prediction of the initial position of points to be matched and gross error elimination.
In other words, predicting initial positions and eliminating gross errors are the two crucial requirements
for stable, precise, and effective image matching methods.
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In this study, AMSIM achieved a co-registration accuracy between ZY-1-02C Level 1 images and
the DOMs of ETM+. Corresponding point pairs in image space were first obtained according to the
rational polynomial coefficients (RPCs) model. Rotation and scale variances between the images were
calculated on the basis of these image point pairs. The ZY-1-02C images were then resampled based
on the obtained rotation and scale variances. The resampled images were processed by blocking the
overall phase correlation (OPC) with ETM+ orthoimages, to generate the translation parameters of the
initial matching. The Harris detector was also applied for extracting feature points from the resampled
ZY-1-02C images. These feature points were used in image matching. Normalized cross-correlation
(NCC) and least-squares matching (LSM) were used for image matching between the resampled
ZY-1-02C image and ETM+’s DOM. Finally, the matched points were assembled to construct a triangle
network structure. According to the matched points, the local statistic vectors (LSV) of the point pairs
were obtained statistically to detect and eliminate the gross errors. The experimental results indicate
that the proposed approach can achieve stable and correct matching when the resolution difference is
not large (1:3). The matching results of the ZY-1-02C image showed a positioning precision of <10 m.

2. Methods

The two crucial requirements for an effective AMSIM method are initial matching value prediction
and matching error elimination. Our work focused on these requirements, as shown in Figure 1. Initial
matching value prediction includes two steps. In the first step, two or more object points within an
overlapping area were projected onto both images, based on the RPCs or some other direct models.
RPCs can be used to calculate the parameters of the resampling model, as the resolution of the ETM+
orthoimages is lower than the resolution of the ZY-1-02C images. In the second step, the resampled
Zy-1-02C images were processed by blocking the overall phase correlation (OPC) with the ETM+
orthoimages to generate the translation parameters, providing the shift values for NCC. Then, image
matching was conducted by NCC and LSM. Finally, according to the matched points, the LSV of the
point pairs were obtained statistically to detect and eliminate the gross errors.
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2.1. Initial Matching Point Detection

Considering image differences, the mathematical model between two satellite images can
be described based on three aspects: rotation, scale, and translation. For automatic matching of
multi-source satellite images, these aspects are usually unknown before processing.

Given the inconsistent positioning precision of RPC, directly predicting the initial value of image
matching with the RPC model is generally unreliable. In the RPC model, rotation and scale are typically
considered as systemic parameters, whereas translation represents the random parameter. The strong
correlation among these three parameters requires minimal separation processing. Image matching
should be convenient. Thus, the image to be matched is first resampled using the rotation and scale
parameters, followed by initial value prediction of the matching points with the translation parameters.
Using RPC to obtain relatively stable prediction parameters [36,37], followed by overall correlation
to determine relatively random prediction parameters, is the key to predicting the initial value of
image matching.

2.1.1. Estimation of Variation in Rotation and Scale

To address the problem of rotation and scale variances between images, establishing a uniform
space reference is crucial. Image point pairs that correspond to the same ground tie point can be
determined with RPC in the ZY-1-02C imagery and geographic information in the DOMs of ETM+ and
SRTM, which were first detected by Harris detectors. As shown in Figure 2, a uniform image coordinate
system was adopted. The coordinate system of one image was selected as the standard so variances in
rotation, scale, and translation would be reflected in the coordinates of the corresponding points.
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the two images, A is the rotation angle, and k is a scale parameter.

Figure 3 shows the model for transforming one image space to another image space. There are
four steps in this process. Step 1: Detect feature points on the DOM of ETM+ by Harris detector. Step 2:
Use geographic information to find the ground tie point (X, Y, Z). The X and Y are found in the DOM,
and Z is found in the SRTM. Step 3: Use the RPC to find the ground tie point (X, Y, Z) on the ZY1-02C
imagery with Equation (1). Step 4: The feature points create a line, where DETM+ and DZY-102c represent
the length of the line in ETM+ and ZY-1-02C imagery. Contrast the length of the line and the angle
between the lines by using Equation (2). rn = P1(Xn ,Yn ,Zn)

P2(Xn ,Yn ,Zn)

cn = P3(Xn ,Yn ,Zn)
P4(Xn ,Yn ,Zn)

(1)
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where (rn, cn) and (Xn, Yn, Zn) are the normalized coordinates of the image space and the ground
space points, respectively, and Pi(i = 1, 2, 3, 4) are the cubic polynomials that represent the rigorous
geometric sensor model of satellite imagery.
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The rotation angles of the lines were used to obtain the value of A, and the lengths of the lines
were used to obtain the value of k, as shown in Figure 2. The following equation represents a simple
and effective model for determining the relationship between the two images. To calculate the model
in Equation (2), the RPCs and the geographic information of the DOMs play important roles. As shown
in Figures 2 and 3, two or more pairs of image points should be used to connect the lines between two
image spaces. These statistical points can calculate the value of A and k, which is the preparation work
for image matching. {

A = ∑(Al−Ar)n
n

k = ∑(Dl/Dr)n
n

(2)

where Al and Ar are the rotation angles of the lines in the two images, Dl and Dr are the lengths of
the lines in the two images, A is the rotation angle, k is a scale parameter, and n is the number of
statistical samples.

Owing to the inconsistent positioning precision, these point pairs may be non-correspondent or
far away. However, the relative relationship in ZY-1-02C imagery space between the point pairs tends
to be consistent, regardless of whether the geographical positioning is accurate or not. For instance,
the distances and angles of lines between two groups of point pairs could highlight the rotation and
scale variances between images. In this study, the lengths and angles of lines, consisting of image point
pairs with identical geographic coordinates, were calculated to determine the relationship between
images in terms of rotation and scale.
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2.1.2. Estimation of Variation in Translation

OPC is a nonlinear frequency-domain correlation technique that is based on the Fourier shift
property, which is the shift in the spatial coordinate frame of two functions that results in a linear phase
difference in the frequency domain of the Fourier transforms (FTs) of the two functions, as shown in
the following equations:

g2(x, y) = g1(x − x0, y − y0) (3)

F2(u, v) = F1(u, v)e−j(ux0+vy0) (4)

where g1 and g2 are the two image functions of the spatial coordinate frames, F1 and F2 are the
corresponding image functions of the frequency domain of the FTs, and x0 and y0 are the parameters
of the shift [25].

Between the resampled ZY-1-02C image and the DOM of ETM+, the OPC results produce only the
overall translation parameters, i.e.,

(
x0, y0

)
. A high level of accuracy is not required. Considering the

complex matching conditions, the 20-pixel accuracy of OPC can meet the image-matching requirements
for NCC. Given the large size of the scene images, (the size of a ZY-1-02C image scene is approximately
12,000 × 12,000 pixels), OPC is conducted in several image blocks of one image scene to improve its
efficiency. Each block has a group of translation parameters for image matching.

2.2. Improving Matching-Point Location Estimation by NCC and LSM

With the translation parameters obtained by OPC, the position of the conjugate points was
predicted. The conjugate points can be searched for in a relatively small window around the predicted
position. For remote sensing image matching with small rotation and scale variances and initial
matching values with good quality, Harris-supported NCC and LSM methods have been shown to
be highly efficient and precise [38]. Thus, in our approach, feature extraction based on the Harris
detector and matching based on NCC and LSM were adopted for precise image matching [14,39].
The Harris detector is known for its high speed and stability. We used this detector to extract apparent
features and refine feature points to the sub-pixel level by using the Förstner operator. To extract an
appropriate number of evenly distributed feature points, the image was segmented into 50 by 50 pixel
grids. The features with the strongest Harris value in each grid were then extracted. To enhance
the positioning precision of the ZY-1-02C by image matching, the feature points needed to correlate
with the original ZY-1-02C image. In this study, feature points with positions that corresponded to
those of the original image were extracted from the resampled ZY-1-02C image. The corresponding
points were then searched from the ETM+ orthoimage. Thus, extracting feature points from the
resampled ZY-1-02C images, which were connected to the original ZY-1-02C images, and searching for
the corresponding points in DOMs of ETM+, was a good approach for the case study. After feature
extraction, the coordinates of the corresponding points on DOMs of the ETM+ images were estimated
using the following equation: {

xETM = xZY + x0

yETM = yZY + y0
(5)

where (xETM, yETM) is the point on the DOMs of the ETM+ images, (xZY, yZY) is the feature point in
the resampled ZY-1-02C images, and (x0, y0) represents the translation parameters.

A small search window was needed around the estimated position to find the conjugate points,
which ensured high efficiency and reliability of the matching results when an NCC-based approach
is used. To achieve sub-pixel matching precision, the corresponding points obtained by NCC were
used as the initial values for LSM. Proposed by Ackermann [40], LSM uses adequate information in
the image window that used a second-degree polynomial model for the adjustment calculation.
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2.3. Finalizing the Matching Process by LSV

The different imaging timing and undulating terrain in ZY-1-02C images and DOMs of ETM+ can
cause errors in image matching. Such error matches must be eliminated before the images can be used
to refine the RPCs of ZY-1-02C. However, elimination is difficult when a mathematical model is used to
directly describe the image relationships. In most cases, the effects of the differences can be minimized
when the judging area is reduced to a relatively small area [27]. In this case, local image relationships
could be accurately approximated on a small surface, as shown in Figure 3. A transformation vector
that is consistent with statistical laws can be fitted with the coordinate differences between correct
matches on the small surface.

Figure 4 shows that the relationship between the corresponding points, which are organized by
Triangulated Irregular Network (TIN), must be analogous when the judging area is limited to a small
local part. The median lines of the triangles in TIN are used to build the LSV,

[
Lp, Ap, wp

]
, where Lp

is the length of the triangle median lines, Ap is the angle of the triangle medians with the horizontal,
and wp is the parameter of the distance weights. The LSV of each triangle, where the point to be
determined in the local facet center is located, can be calculated according to the corresponding point
pairs in the triangle network. Reliability coefficients are obtained by the statistical results of the points
to be determined in the triangle networks of the left and right images. The positions of the points with
gross errors are eliminated on the basis of a given reliability coefficient threshold.
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In this situation, a similarity comparison is conducted for the corresponding points one at a time.
The vector differences of the correct matches can be fitted well between the two images, in contrast
to those of the error matches. Weighting and voting strategies were designed for connecting the
surrounding points with the judging point, as shown in Equation (6). The process of determining the
judging point as a gross error to be eliminated is shown in Equation (7).

Q =
n
∑

i=1

(
[Lp ,Ap]l
[Lp ,Ap]r

∗ wp

)
wp =

∣∣∣Dl
p_h − Dr

p_h

∣∣∣ (6)

where
[
Lp, Ap

]
l is the vector of the left images,

[
Lp, Ap

]
r is the vector of the right images, wp is the

absolute value of the length difference of the vertical segment through the judging point, and Q is the
judging value. {

Q ≥ QT , correct matches
Q < QT , error matches

(7)

where QT is the threshold for determining if the point is a gross error. This threshold is usually set as
three times the root-mean-square error (RMSE) of Q.
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Based on the preceding analysis, error matches could be eliminated effectively by the statistics with
LSV. The proposed error elimination method is as follows: (1) A TIN, based on the divide-and-conquer
approach, was constructed using the coordinates of the matching points, and the points in the TIN
were judged individually in the following steps. (2) Several nearest neighboring points around the
current judging point were collected based on the TIN structure. All these points, which were collected
as candidate points, were selected according to the distance from the judging point. Extremely long
distances of more than 300 pixels were disregarded. (3) The LSV of the left and right images were
calculated in a small local area, which was based on the selected matching points in Step 2. Through
Equation (5), the statistics were initiated. The judging of the current point was estimated using
Equation (6) until every point pair had been judged. (4) After traversing all the points in TIN, Step 1
was repeated to reconstruct a new TIN by using the remaining points. The process continued until the
residual errors of all the points met the requirements.

3. Experiments and Results

3.1. Description of Test Data

To evaluate the performance of the proposed approach, three datasets from ZY-1-02C and DOM
of ETM+ were used in the experiments. The first experiment evaluated the applicability of the
matching method. A PAN image of ZY-1-02C was down-sampled and matched with the original
image. The matching results were then evaluated. Dataset 1, for an urban area, was used. The second
experiment evaluated the accuracy of AMSIM between the ZY-1-02C image and the DOM of ETM+.
Datasets 2 and 3, which mainly featured mountainous terrain in Northeast China, were used. The
DOM of ETM+ was corrected via scan line correction using UTM-WGS84, which was obtained from
the website of the USGS, Chinese Academy of Sciences. In the experiment, the ZY-1-02C image was a
PAN image, and the ETM+ image was a Band 8 (PAN) image. The datasets are described in Table 1.

Table 1. Overview of test datasets.

Dataset
ID

Latitude/
Longitude Terrain Sensor Image Size

(pixel)
Resolution

(m)
Image
Level

Acquired
Time

1 120.2/30.2 City ZY-1-02C PAN
(0.51–0.85 µm) 4200 × 2100 5.0 Level 1 19 February

2012

2 117.0/40.8 Mountains ZY-1-02C PAN
(0.51–0.85 µm) 12,000 × 12,000 5.0 Level 1 19 February

2012

3 116.5/40.5 Mountains ETM+
(0.52–0.90 µm) 15,321 × 14,921 15.0 DOM 28 January

2003

3.2. Applicability Analysis of Methodology

According to the proposed strategy, image resampling was a key step in the AMSIM case study.
A match between the original and sub-sampled images was crucial for evaluating the accuracy and
reliability of the method. Dataset 1 was used for this work. Considering the resolution of the ETM+
images, the ZY-1-02C image was down-sampled to resolutions of 15 and 30 m. For image matching, the
down-sampled images were resampled to the same ground sampling distance (GSD) of the ZY-1-02C
original image. Figure 5 shows the matching results of these two pairs of images. Table 2 summarizes
the matching parameters of the experiment.
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Figure 5a,b,d,f,h,j presents the resampled images of ZY-1-02C. The GSDs of Figure 5a,d,f are 15 m,
the GSDs of Figure 5b,h,j are 30 m. Figure 5c,e,g,i shows the original images of ZY-1-02C, where the
GSDs are 5 m. The textures of Figure 5a,b,d,f,h,j are much fuzzier than that of the original images.
Thus, the feature points in Figure 5c,e,g,i, for the most part, do not match the corresponding points
in Figure 5d,f,h,j. Given that the matching image was actually the same image, the image translation
was set as 15 × 15 pixels. The approximate parameters of image transformation were detected using
the initial value prediction model, as shown in Table 2. The grid size used in our approach to extract
the Harris feature points was 50 × 50 pixels, the template window size was 13 × 13 pixels, the search
window size was 21 × 21 pixels, and the threshold of the correlation coefficient was 0.9. The total
matches were few when matching the original image with the 30 m down-sampled image. Hence,
fuzzier original images were more difficult to match.

Table 2. Chart of matching parameters.

Group ID Parameters of Transformation
between Images Number of Feature Points Total Number of Matches

1 A = 0◦, k = 3,
x0 = 15 pixels, y0 = 15 pixels. 3124 456

2 A = 0◦, k = 6,
x0 = 15 pixels, y0 = 15 pixels. 3124 36

A method was used for directly calculating the accuracy of the matching experiment. In the image
coordinate space, ∆xi =

∣∣xorg − xdown
∣∣ and ∆yi =

∣∣yorg − ydown
∣∣ were defined to describe the matching

and resampling error. The RMSE and mean values of ∆x and ∆y were used to evaluate the matching
accuracy, as shown in Table 3.



Appl. Sci. 2017, 7, 1066 10 of 18

Table 3. Statistics of the matching errors, expressed in pixels.

Group ID Mean of ∆x Mean of ∆y RSME of ∆x RSME of ∆y

1 0.229 0.234 0.208 0.202
2 0.555 0.899 0.494 0.789

As the down-sampled images originated from the original images, ∆x and ∆y were the real
errors in the matching. Table 3 shows the matching errors of the two groups of matching results.
With an increase in the resolution difference, the errors gradually increased, and the correct matches
decreased. The experimental results indicate that the ETM+ images with a 15 m resolution are efficient
candidates to match the ZY-1-02C 5 m resolution images and obtain good matching results. Thus,
the ETM+ images can be used as georeference images to improve the global positioning accuracy of
ZY-1-02C images.

3.3. Accuracy Analysis of Matching between ZY-1-02C Images and ETM+ Images

The second experiment used Datasets 2 and 3 to conduct a case study on AMSIM. Matching
Level 1 images and the DOM was difficult, because of large topographic variations. The method for
solving the problems of the initial value prediction model and gross error elimination in matching
was applied. The case study on ZY-1-02C and DOM of ETM+ was a method to improve the direct
georeferencing accuracy of the ZY-1-02C images. After processing, the RPCs of these ZY-1-02C images
were redefined via matching points.

3.3.1. Results of Initial Matching Value Prediction

According to Sections 2.1 and 2.2, Table 4 shows the initial matching value parameters of Dataset 3.
Fourteen tie points were used to connect 13 lines for calculating the rotation angle (A) and scale
variance (k). Given the large image size, blocking technology was used in OPC; the overlapped regions
were divided into 16 blocks of small images of the same size, to enhance the precision of detecting
translation parameters and the operating efficiency. Table 4 shows the results of the image blocks.

Table 4. Parameters of transformation between images.

Quick View of Dataset 3
Resampling Parameters of Dataset 3

A = 11.715◦, k = 2.98
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Block 1 x0 = –187, y0 = 645
Block 2 x0 = –183, y0 = 638
Block 3 x0 = –185, y0 = 642
Block 4 x0 = –184, y0 = 635
Block 5 x0 = –183, y0 = 632
Block 6 x0 = –184, y0 = 647
Block 7 x0 = –186, y0 = 653
Block 8 x0 = –187, y0 = 650
Block 9 x0 = –185, y0 = 631

Block 10 x0 = –180, y0 = 645
Block 11 x0 = –183, y0 = 648
Block 12 x0 = –184, y0 = 650
Block 13 x0 = –185, y0 = 647
Block 14 x0 = –183, y0 = 643
Block 15 x0 = –184, y0 = 638
Block 16 x0 = –187, y0 = 644
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3.3.2. Results of Image Matching

After resampling, the size of the overlap area in the images of Datasets 2 and 3 was approximately
10,741 by 6202 pixels. Each image block (1–16) detected a pair of translation parameters. The data
was then matched through NCC. The grid size used in our approach to extract the Harris feature
points was 100 × 100 pixels, the template window size was 13 × 13 pixels, the search window size
was 55 × 55 pixels, and the threshold of the correlation coefficient was 0.9. Figure 6 shows some of the
matched conjugate points.
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Figure 6. Results of image matching between ZY-1-02C and ETM+. (a,c,e,g,i) show the Digital
Orthophoto Maps (DOM) of enhanced thematic mapper (ETM+), while (b,d,f,h) show the Level 1
image of ZY-1-02C.

3.3.3. Error Elimination

A total of 5458 Harris feature points were extracted, and 2324 pairs of points were successfully
matched in the image matching. For error elimination, all the matched points were manually checked.
Thirty-two pairs of points were excluded as false matches; however, the algorithm of error elimination
through LSV determined that 54 pairs of points were error matches, of which 32 pairs were real errors
and 22 pairs were not. Although the algorithm has some incorrect judging problems, as some correct
matches were judged as errors, it was generally effective in automatic error elimination. Figure 7
shows three sample error matches of the experiment, and Table 5 summarizes the statistics of these
error matches.
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Table 5. Statistics of the error matches.

Point ID Triangle ID Ll
p/Lr

p Al
p/Ar

p wp

1

1_1 1.12 0.76 24
1_2 1.22 0.87 31
1_3 0.85 1.21 42
1_4 0.74 1.32 53

2

2_1 0.53 1.31 72
2_2 0.42 1.42 63
2_3 0.44 1.33 115
2_4 1.48 0.84 132
2_5 1.43 0.92 68
2_6 1.39 0.98 93

3

3_1 0.93 1.24 128
3_2 0.86 1.11 45
3_3 1.17 0.93 35
3_4 1.25 0.97 113
3_5 1.42 0.82 107
3_6 0.79 1.03 41
3_7 0.81 1.02 43

3.3.4. Accuracy Analysis of Image Matching

The RPC of the ZY-1-02C images was modified using the matched points with the DOM of
ETM+. To clarify the necessity for image matching, 20 checkpoints that were evenly distributed on
the reference image were manually measured. The coordinate differences of the checkpoints between
the input and modified images, which were calculated by RPCs, were analyzed. Figure 8 shows the
checkpoints in the images.
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The coordinates of both image points were then used to calculate the differences, i.e., ∆xgeo and
∆ygeo, as follows: {

∆xgeo = XZY_M − XZY
∆xgeo = YZY_M − YZY

(8)

where (XZY_M, YZY_M) is the coordinate of the checkpoint in the modified image, and (XZY, YZY) is
the coordinate of the checkpoint in the original image.

Figure 9 shows the comparative results of the checkpoints. The revised image exceeds the original
image in positioning precision by 100 m, in general, but differs from specific points. The refinement of
point position after matching is significant compared to the original image.
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Directly clarifying the geo-referencing accuracy of ZY-1-02C Level 1 images and the DOM of
ETM+ was difficult because of the topographic variations. Thus, after the processing, the RPCs of these
ZY-1-02C images were modified by using matching models. To clarify the geo-referencing accuracy
of the modified RPC, ZY-1-02C imagery must generate the DOMs by SRTM 90. Then, checkpoints
were used to confirm the geo-referencing accuracy between ZY-1-02C and ETM+. Figure 10 shows
the comparative results of the checkpoints on the DOMs of both ZY-1-02C and ETM+. The maximum
value was less than three pixels, which indicates that the matching accuracy is typically eight meters
in object space. Given the differences in terrain elevation, variances were bound to exist between
different checkpoints.
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4. Comparison with Other Methods

Experiments were conducted using a personal computer with the following basic parameters:
the CPU was Intel® Core™ i3, M380 @ 2.53 GHz. RAM: 4 GB. The operating system was Windows 7,
32-bit, and the software compiler was Visual C++ 6.0.

A comparison of SIFT, A-SIFT, and SURF algorithms is shown in Table 6. Dataset 2, with a size
of 12,000 × 12,000 pixels, and Dataset 3 with a size of 15,321 × 14,921 pixels, were used for image
matching. When an affine relationship in images exists in SIFT and SURF, in situations where rotation,
scale, and translation exist simultaneously in images to be matched, the stability and accuracy of these
methods decrease. A-SIFT performs better under this condition; however, it has the longest processing
time. Our method showed the best performance in the experiment. The mismatched points were partly
caused by the variation in ground objects and by wrong matching. The algorithm for matching gross
error elimination proposed in this paper detected and eliminated mismatched point pairs effectively.

Table 6. Comparison of computational cost and matching results.

Method Time Cost
(seconds)

Number of Total
Matches

Number of Error
Matches

SIFT 354.2 1897 525
A-SIFT 1252.4 2458 59
SURF 261.5 1763 147

Our Method 217.8 2324 32

5. Discussion

An AMSIM method with high precision and efficiency was proposed and applied to a case study
on ZY-1-02C and ETM+ images. The advantageous characteristics of the proposed method include
relatively independent initial matching value prediction models and an effective method to eliminate
gross errors.
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5.1. Image Matching and Error Elimination

Related studies have presented two representative problems to realize an AMSIM case.
One problem is solving the correlation among rotation, scale, and translation in image matching.
For multi-source images, the transformation between images is too complex for reliable image matching
to be implemented. Numerous approaches, such as SIFT, SURF, and A-SIFT, have been used to perform
multi-source image matching. However, they not only consume excessive memory and time but also
are unreliable; these are the technological bottlenecks for fully automatic image processing.

A rough estimation of the transformation between images was achieved via geographic
information and OPC-based matching. The most important finding was that the geographic
information of images could be used to search for tie points. Tie points were obtained in Datasets 2
and 3 to calculate A and k (Table 4). The transformation parameters between the images that were
calculated in this way were not very accurate, which we attribute to large topographic variations, image
resampling, and processing noise. Given that the viewpoints changed drastically between ZY-1-02C
and the DOM of ETM+, the relief parameters were available for the initial matching value prediction.
After OPC-based matching, the search region was narrowed. The experimental results proved that the
method can solve the problem of transformation between images. Thus, numerous evenly distributed
corresponding points could be rapidly obtained and efficiently based on NCC and LSM. The results
shown in Figure 5 imply that sufficient conjugate points were obtained. In Section 3.3.4, the matching
accuracy was proven to be improved with this image matching strategy. The first experiment also
showed that high accuracy matching between ZY-1-02C and ETM+ could only be obtained when the
resolutions of the two images were 5 and 15 m.

The other problem in image matching is error elimination. In most engineering practices, an image
matching result contains gross errors. Conventional processing of gross errors is generally categorized
into two types: automatic and complex iterative computation in block adjustment [41] and artificial
error processing, which are obviously unsuitable for automation in photogrammetry. To solve the
problem of automatic elimination of gross errors in image matching, a local statistical estimation,
which differs from the approaches reported in most studies, was adopted in this study. Calculating the
LSV of the judging points ensured that false matches were detected correctly from the matching results.
In the second experiment, the false matches detected in Datasets 2 and 3 were evidently greater in
number than the real errors because of the processing noise. Further, the false matches were eliminated
in all the results. The high matching precision, which is shown in Figure 10, confirmed the accuracy
and practicability of the proposed gross error elimination method.

Unlike related AMSIM approaches [7,42], this approach has two different designs for the matching
method. Image resampling based on RPCs was first applied to data with uncertain resolution. Second,
the matching strategy based on OPC aimed to solve the RPC that contained a positioning error.
The main purpose of this study was to obtain a high level of global positioning accuracy for the
ZY-1-02C images with the DOM of ETM+ images as georeferences. However, the proposed method
also has limitations. Between the input and reference images, the DOM could not handle significant
landscape changes or large resolution differences above a ratio of 1:6. Indeed, when satellite images
exhibit small differences in positioning accuracy, NCC and LSM can be performed directly, and the
corresponding points can be easily searched on the basis of the geographic information of the images.

5.2. Accuracies, Errors, and Uncertainties

In the first experiment, different resolution discrepancies, where the ratio of original image to
down-sampled image was 1:3 and 1:6, were selected for the matching tests. Comparative analysis
revealed that our method proves that images with a higher resolution difference are more difficult
to match. In the second experiment, 20 checkpoint pairs were manually selected for image matching
accuracy analysis. The original positioning precision, which was around 100 m, was enhanced to
within eight meters by the image matching results. Our method is more precise and efficient than
conventional SIFT, SURF, and A-SIFT.
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The matching error in this study is mainly attributed to four factors. First, the error may be
generated because of the different acquisition dates of the two images. Second, the error may be caused
by bad results of error estimation. The estimation based on local statistics may be insufficient when
the matching points contain numerous errors above 20%. Third, the error may be caused by image
resampling. The bilinear interpolation adopted in our approach may also produce errors. Fourth,
the differences in the levels of image rectification and the effects of projection error of the terrain may
lead to mismatches.

In the proposed method, the matching accuracy is significantly determined by checkpoints.
The maximum resolution discrepancy in our test datasets was approximately three times. The first
experiment proved that such a discrepancy is uncertain if the proposed approach can ensure accuracy
with high differences in resolution. We are also uncertain about the georeference accuracy of DOM of
ETM+, which uses uncertain DEM for geometric correction.

6. Conclusions

The essence of image matching lies in the prediction model for the corresponding points and the
elimination of matching gross errors. In contrast to related studies, we performed special processing
to address both problems. The relatively independent calculation model parameters of rotation,
scale, and translation can provide stable prediction results. Applying RPC to obtain the rotation
and scale parameters led to satisfactory image positioning precision. The translation parameters
generated by OPC exploit the stability of the overall correlation. While performing matching gross
error elimination, the local facet vectors of points to be determined can be obtained statistically.
Consequently, local properties and overall statistics were considered, thereby avoiding the problem of
large-scale adjustment calculation failure due to the strong correlation of the observed values.

The proposed method can achieve precise matching even when the resolution of one image is
three times higher than that of the other image, as shown in the first experiment. The accuracy and
efficiency of this method was compared to those of SIFT, SURF, and A-SIFT; the proposed method
fully met application requirements. Research data indicated that SIFT and SURF matching have
more mismatched points and lower efficiency than our method. In contrast, the A-SIFT results are
satisfactory; however, this method is time-consuming, which makes it unsuitable for automated
processing. The matching results obtained by the proposed method enhanced the direct positioning
precision from 100 m to under 8 m. Using the reference image for comparison, the position error of
checkpoints in the x direction was between 2.7 and 6 m, whereas that in the y direction was between
1 and 3.5 m. The research results verified the effectiveness of our matching strategy. The proposed
method has several limitations that require further investigation. First, the error elimination procedure
through TIN could be simplified to enhance processing efficiency. Second, during image resampling,
the model for calculating tie points has many drawbacks that might introduce excessive noise. Future
studies will focus on solving these problems.

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China under
Project No. 41701531. It was also supported in part by the Natural Science Foundation of Jiangsu Province under
Project No. BK20170782, and by the Open Research Fund of State Key Laboratory of Tianjin Key Laboratory
of Intelligent Information Processing in Remote Sensing under grant No. 2016-ZW-KFJJ-01. We would also
like to convey our heartfelt gratitude to the reviewers and members of the editorial team for their comments
and contributions.

Author Contributions: Bo Wang, Jiefei Peng and Jianwei Bao conceived and designed the study. Bo Wang and
Jiefei Peng performed the experiments and analyzed the corresponding results. Bo Wang, Jianwei Bao and
Xiaojie Wu wrote the paper jointly.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2017, 7, 1066 17 of 18

References

1. Rupert, M.; Thomas, K.; Mathias, S.; Peter, R. Automated Georeferencing of Optical Satellite Data with
Integrated Sensor Model Improvement. Photogramm. Eng. Remote Sens. 2012, 78, 61–74.

2. Zhang, Z.; Zhang, J.; Liao, M.; Zhang, L. Automatic Registration of Multi-Source Imagery Based on Global
Image Matching. Photogramm. Eng. Remote Sens. 2000, 66, 625–629.

3. Yu, L.; Zhang, D.; Eun-Jung, H. A Fast and Fully Automatic Registration Approach Based on Point Features
for Multi-Source Remote-Sensing Images. Comput. Geosci. 2008, 34, 838–848. [CrossRef]

4. Hirschmuller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern
Anal. Mach. Intell. 2008, 30, 328–341.

5. Behling, R.; Roessner, S.; Segl, K.; Kleinschmit, B.; Kaufmann, H. Robust automated image co-registration
of optical multi-sensor time series data: Database generation for multi-temporal landslide detection.
Remote Sens. 2014, 6, 2572–2600. [CrossRef]

6. Yan, L.; Roy, D.P.; Zhang, H.; Li, J.; Huang, H. An automated approach for sub-pixel registration of Landsat-8
Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. 2016,
8, 520. [CrossRef]

7. Chen, Q.; Wang, S.; Wang, B.; Sun, M. Automatic Registration Method for Fusion of ZY-1-02C Satellite
Images. Remote Sens. 2013, 6, 157–179. [CrossRef]

8. Wang, P.; Qu, Z.; Wang, P.; Ying, H.; Zhen, K. A Coarse-to-Fine Matching Algorithm for FLIR and Optical
Satellite Image Matching. IEEE Geosci. Remote Sens. Lett. 2012, 9, 599–603. [CrossRef]

9. Loeckx, D.; Slagmolen, P.; Maes, F.; Vandermeulen, D.; Suetens, P. Nonrigid Image Matching Using
Conditional Mutual Information. IEEE Trans. Med. Imaging 2010, 29, 19–29. [CrossRef] [PubMed]

10. Skakun, S.; Roger, J.C.; Vermote, E.F.; Masek, J.G.; Justice, C.O. Automatic sub-pixel co-registration
of Landsat-8 Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase
correlation and machine learning based mapping. Int. J. Digit. Earth 2017, 1–17. [CrossRef]

11. Wong, A.; Clausi, D.A. ARRSI: Automatic Matching of Remote-Sensing Images. IEEE Trans. Geosci.
Remote Sens. 2007, 45, 1483–1493. [CrossRef]

12. Ma, J.; Chan, J.C.W.; Canters, F. Fully Automatic Subpixel Image Matching of Multiangle CHRIS/Proba Data.
IEEE Trans. Geosci. Remote Sens. 2010, 48, 2829–2839.

13. Bunting, P.; Labrosse, F.; Lucas, R. A Multi-Resolution Area-Based Technique for Automatic Multi-Modal
Image Matching. Image Vis. Comput. 2010, 28, 1203–1219. [CrossRef]

14. Harris, C.; Stephens, M. A Combined Corner and Edge Detector. In Proceedings of the 4th Alvey Vision
Conference, Alvey, UK, 31 August–2 September 1988; pp. 147–151.

15. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

16. Mikolajczyk, K.; Schmid, C. A Performance Evaluation of Local Descriptors. IEEE Trans. Pattern Anal.
Mach. Intell. 2005, 27, 1615–1630. [CrossRef] [PubMed]

17. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Imag. Underst.
2008, 110, 346–359. [CrossRef]

18. Al-Ruzouq, R.I. Data Fusion of Multi-Source Imagery Based on Linear Features Matching. Int. J. Remote Sens.
2010, 31, 5011–5021. [CrossRef]

19. Yang, Y.; Gao, X. Remote Sensing Image Matching Via Active Contour Model. AEU-int. J. Electron. Commun.
2009, 63, 227–234. [CrossRef]

20. Huang, L.; Li, Z. Feature-Based Image Matching Using the Shape Context. Int. J. Remote Sens. 2010, 31,
2169–2177. [CrossRef]

21. Wang, B.; Lu, Q.; Li, Y.; Li, F.; Bai, L.; Lu, G.; Lai, R. Image Matching Method for Multimodal Images.
Appl. Opt. 2011, 21, 1861–1867.

22. Sima, A.A.; Buckley, S.J. Optimizing SIFT for Matching of Short Wave Infrared and Visible Wavelength
Images. Remote Sens. 2013, 5, 2037–2056. [CrossRef]

23. Stone, H.S.; Orchard, E.; Chang, C. A Fast Direct Fourier-based algorithm for sub-pixel registration of image.
IEEE Geosci. Remote Sens. Lett. 2001, 39, 2235–2243. [CrossRef]

24. Foroosh, H.; Zerubia, J.B.; Berthod, M. Extension of Phase Correlation to Sub-pixel Registration. IEEE Trans.
Image Processing 2002, 11, 188–200. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.cageo.2007.10.005
http://dx.doi.org/10.3390/rs6032572
http://dx.doi.org/10.3390/rs8060520
http://dx.doi.org/10.3390/rs6010157
http://dx.doi.org/10.1109/LGRS.2011.2176102
http://dx.doi.org/10.1109/TMI.2009.2021843
http://www.ncbi.nlm.nih.gov/pubmed/19447700
http://dx.doi.org/10.1080/17538947.2017.1304586
http://dx.doi.org/10.1109/TGRS.2007.892601
http://dx.doi.org/10.1016/j.imavis.2009.12.005
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/TPAMI.2005.188
http://www.ncbi.nlm.nih.gov/pubmed/16237996
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1080/01431160903193505
http://dx.doi.org/10.1016/j.aeue.2008.01.003
http://dx.doi.org/10.1080/01431161003621585
http://dx.doi.org/10.3390/rs5052037
http://dx.doi.org/10.1109/36.957286
http://dx.doi.org/10.1109/83.988953
http://www.ncbi.nlm.nih.gov/pubmed/18244623


Appl. Sci. 2017, 7, 1066 18 of 18

25. Balci, M.; Foroosh, H. Inferring Motion from the Rank Constraint of the Phase Matrix. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, USA,
18–23 March 2005; Volume II, pp. 925–928.

26. Liu, J.G.; Yan, H. Phase Correlation Pixel-to-Pixel Image Co-Registration Based on Optical Flow and Median
Shift Propagation. Int. J. Remote Sens. 2008, 29, 5943–5956. [CrossRef]

27. Gruen, A. Development and Status of Image Matching in Photogrammetry. Photogramm. Record. 2012, 27,
36–57. [CrossRef]

28. Li, D.; Yuan, X. Error Processing and Reliability Theory; Wuhan University Press: Wuhan, China, 2002;
pp. 240–255.

29. Chunli, S.; Peng, H.; Chengyi, H.; Qi, P. The Expatiation of Delaunay Algorithms and a Promising Direction
in Application. Sci. Surv. Mapp. 2004, 29, 68–71.

30. Zhang, Y.; Wang, B.; Duan, Y. An Algorithm of Gross Error Elimination in Image Matching for Large Rotation
Angle Images. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 1135–1138.

31. Kang, Z.; Zlatanova, S. A New Point Matching Algorithm for Panoramic Reflectance Images. In Proceedings
of the International Symposium on Multispectral Image Processing and Pattern Recognition, Wuhan, China,
15–17 November 2007.

32. Kang, Z.; Li, J.; Zhang, L.; Zhao, Q.; Zlatanova, S. Automatic Registration of Terrestrial Laser Scanning Point
Clouds Using Panoramic Reflectance Images. Sensors 2009, 9, 2621–2646. [CrossRef] [PubMed]

33. Warren, B.C.; Thomas, K.M.; Stith, T.G.; David, P.T. An improved strategy for regression of biophysical
variables and Landsat ETM+ data. Remote Sens. Environ. 2003, 84, 561–571.

34. Ali, E.A.; Khidir, S.O.E.; Babikir, I.A.A.; Abdelrahman, E.M. Landsat ETM+7 Digital Image Processing
Techniques for Lithological and Structural Lineament Enhancement: Case Study Around Abidiya Area,
Sudan. Open Remote Sens. J. 2012, 5, 83–89. [CrossRef]

35. Zhang, Y.; Wang, B.; Yu, J. Technologies and System for Automatic Generation of Advanced Geo-spatial
Products with Chinese Satellite Imagery. In Proceedings of the 18th Chinese Photogrammetry and Remote
Sensing, Wuhan, China, 28–30 October 2012.

36. Fraser, C.S.; Hanley, H.B. Bias compensation in rational functions for IKONOS satellite imagery. Photogramm.
Eng. Remote Sens. 2003, 69, 53–57. [CrossRef]

37. Jabari, S.; Zhang, Y. RPC-Based coregistration of VHR imagery for urban change detection. Photogramm. Eng.
Remote Sens. 2016, 82, 521–534.

38. Zhang, Y.; Xiong, J.; Hao, L. Photogrammetric Processing of Low-Altitude Images Acquired by Unpiloted
Aerial Vehicles. Photogramm. Rec. 2011, 26, 190–211. [CrossRef]

39. Förstner, W.; Gülch, E. A Fast Operator for Detection and Precise Location of Distinct Points, Corners and
Centres of Circular Features. In Proceedings of the ISPRS Intercommission Conference on Fast Processing of
Photogrammetric Data, Interlaken, Switzerland, 2–4 June 1987.

40. Ackermann, F. Digital Image Correlation: Performance and Potential Application in Photogrammetry.
Photogramm. Rec. 1984, 11, 429–439. [CrossRef]

41. Li, D.; Yuan, X. Error Processing and Reliability Theory; The Publishing House of Wuhan University: Wuhan,
China, 2002.

42. Morel, J.; Yu, G. ASIFT: A New Framework folr Fully Affine Invariant Image Comparison. J. Imaging Sci.
2009, 2, 438–469. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01431160802144195
http://dx.doi.org/10.1111/j.1477-9730.2011.00671.x
http://dx.doi.org/10.3390/s90402621
http://www.ncbi.nlm.nih.gov/pubmed/22574036
http://dx.doi.org/10.2174/1875413901205010083
http://dx.doi.org/10.14358/PERS.69.1.53
http://dx.doi.org/10.1111/j.1477-9730.2011.00641.x
http://dx.doi.org/10.1111/j.1477-9730.1984.tb00505.x
http://dx.doi.org/10.1137/080732730
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Initial Matching Point Detection 
	Estimation of Variation in Rotation and Scale 
	Estimation of Variation in Translation 

	Improving Matching-Point Location Estimation by NCC and LSM 
	Finalizing the Matching Process by LSV 

	Experiments and Results 
	Description of Test Data 
	Applicability Analysis of Methodology 
	Accuracy Analysis of Matching between ZY-1-02C Images and ETM+ Images 
	Results of Initial Matching Value Prediction 
	Results of Image Matching 
	Error Elimination 
	Accuracy Analysis of Image Matching 


	Comparison with Other Methods 
	Discussion 
	Image Matching and Error Elimination 
	Accuracies, Errors, and Uncertainties 

	Conclusions 

