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Abstract: Human gait, as a soft biometric, helps to recognize people through their walking.
To further improve the recognition performance, we propose a novel video sensor-based gait
representation, DeepGait, using deep convolutional features and introduce Joint Bayesian to model
view variance. DeepGait is generated by using a pre-trained “very deep” network “D-Net” (VGG-D)
without any fine-tuning. For non-view setting, DeepGait outperforms hand-crafted representations
(e.g., Gait Energy Image, Frequency-Domain Feature and Gait Flow Image, etc.). Furthermore, for
cross-view setting, 256-dimensional DeepGait after PCA significantly outperforms the state-of-the-art
methods on the OU-ISR large population (OULP) dataset. The OULP dataset, which includes 4007
subjects, makes our result reliable in a statistically reliable way.

Keywords: deep convolutional features; gait representation; Joint Bayesian; cross-view gait
recognition; gait identification; gait verification

1. Introduction

Biometrics refer to the use of intrinsic physical or behavioral traits in order to identify humans.
Besides regular features (face, fingerprint, iris, DNA and retina), human gait, which can be obtained
from people at larger distances and at low resolution without subjects’ cooperation has recently
attracted much attention. It also has a vast application prospect in crime investigation and wide-area
surveillance. For example, criminals usually wear gloves, dark sun-glasses, and face masks to
invalidate finger print, eyes, and face recognition. In such scenarios, gait recognition is the only useful
and effective identification method. Previous research [1,2] has shown that human gait, specifically the
walking pattern, is difficult to disguise and unique to each person.

In general, video sensor-based gait recognition methods are divided into two families:
appearance-based [3–7] and model-based [8–10]. Appearance-based methods focus on the motion
of human body and usually operate on silhouettes of gait. They extract the gait descriptors from
the silhouettes. The general framework of appearance-based methods usually consists of silhouette
extraction, period detection, representation generation, and recognition. Model-based gait recognition
focuses more on the extraction of the stride parameters of subject that describe the gait by using the
human body structure. The model-based methods usually require high resolution images as well
as being computationally expensive, while gait recognition needs to be real-time and effective at
low resolution. Our proposed work falls in the category of appearance-based methods. It differs
from the majority of contributions in the field in that the Deep Learning (DL) framework is used to
extract gait representation compared with well engineered features such as the widely used average
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silhouette representations: Gait Energy Image (GEI) [3], Gait Flow Image (GFI) [5], Gait Entropy
Image (GEnI), Masked GEI based on GEnI (MGEI) [4], and Frequency-Domain Feature (FDF) [6,7].
However, the performance of gait recognition is often influenced by several covariates such as clothing,
walking speed, observation views, and carrying bags. For appearance-based methods, view changes
are the most problematic covariates. Therefore, we propose a more discriminative appearance-based
representation, DeepGait and introduce Joint Bayesian to deal with the view change problems.
Numerous experiments were conducted for both non-view variance and cross-view settings on the
OU-ISIR large population (OULP) dataset [11] to validate the effectiveness of our proposed method.

1.1. Proposal of Deep Convolutional Gait Representation

Inspired by the deep learning breakthroughs in the image domain [12–14] where rapid progress
has been made in the past few years in feature learning, and various pre-trained deep convolutional
models [12,13,15] were made available for extracting image and video features, DeepGait was
proposed. These features are the activations of the network’s last few fully-connected layers which
perform well in the other vision tasks [14–17]. A convolutional neural network (CNN) has been
successfully demonstrated in many research fields, such as face recognition [18–20] and human action
recognition [15] which are relevant to gait recognition. However, to the best of our knowledge,
few studies have applied deep learning features in video sensor-based human gait recognition except
for [21,22]. In this paper, we proposed a novel gait representation, DeepGait based on VGG-D [12]
features using max-pooling on each gait cycle. If the gait video sequence has more than one cycle,
we just choose the first one. Our proposed DeepGait differs from [21] in two ways: (1) they first needed
to compute the traditional gait representations (GEI, FDF), and regard them as the input data while we
just used the original silhouette images; (2) their net needed to be trained on the gait dataset while
ours just used the pre-trained VGG-D model without any fine-tuning.

1.2. Joint Bayesian for Modeling View Variance

When dealing with view change problems, several appearance-based approaches are proposed:
(1) the view transformation model (VTM) [23,24]; (2) the view-invariant feature-based approaches [21,25];
and (3) multiview gallery-based approaches [26,27]. On the OULP dataset, VTM-based methods
are widely used: [24] proposed a generative approach which is a kind of VTM-based methods and
makes use of transformation consistency measures (TCM+); [23] further proposed a quality-dependent
VTM (wQVTM). Recently, a view-invariant feature-based approach (GEINet) [21] was proposed and
achieved the best performance. We introduce Joint Bayesian [28] to model the view variance which
differs from the above approaches. For comparison, the unsupervised Nearest Neighbor classifier based
on euclidean distance (NN) is also adopted as a baseline method. In order to evaluate the compactness
of DeepGait, PCA is used to project the representation into lower dimensions. Furthermore, we choose
the right K = 256 components to strike a balance between recognition performance and computational
complexity when using Joint Bayesian.

1.3. Overview

Our contributions include: (1) introducing deep learning for gait recognition and proposal of
a new gait representation which outperforms traditional gait representations when the gallery and
probe gait sequences are from the same view (non-view setting); (2) model view variance using Joint
Bayesian when the gallery and probe gait sequences are from different views (cross-view setting);
(3) improved recognition performances on the OULP dataset for non-view and cross-view settings;
(4) making public the trained Joint Bayesian model, test codes and experimental results for
further comparison.

Figure 1 shows the overview of our method. The outline of the paper is organized as follows.
Section 2 introduces DeepGait, Joint Bayesian for identification and verification tasks, and some
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evaluation criteria. Section 3 presents the experimental results on the OULP dataset. Section 4 offers
our conclusion.

Figure 1. An illustration of the proposed gait recognition process. (C: convolution, P: max-pooling, T:
gait period).

2. Proposed Method

2.1. Deep Convolutional Gait Representation

2.1.1. Gait Period Estimation

Similar to the other appearance-based gait recognition methods, the first step for DeepGait
generation is gait period detection. As in [6,11], we calculated the Normalized Auto Correlation (NAC)
of each normalized gait sequence along the temporal axis:

NAC(N) =
∑x,y ∑Ntotal−N−1

n=0 S(x, y, n)S(x, y, n + N)√
∑x,y ∑Ntotal−N−1

n=0 S(x, y, n)2
√

∑x,y ∑Ntotal−N−1
n=0 S(x, y, n + N)2

(1)

where NAC(N) stands for the autocorrelation for the N frame shift which can quantify periodic gait
motion. Ntotal is the number of frames in each gait sequence. S(x, y, n) is the silhouette gray value at
position of (x, y) on the n-th frame. Empirically, for the natural gait period, the domain of N is set to be
[20, 40] and the gait period is estimated as:

Tgait = arg max
N∈[20,40]

NAC(N) (2)

where Tgait is the gait period. We have made the code and result (large deviations was manually
modified) public in Supplementary Materials.

2.1.2. Network Structure

In this paper, a state-of-the-art deep convolutional model (VGG-D) [12] which consists of
19 parameterized layers (16 convolutional layers and 3 fully connected layers) was adopted. Figure 1
shows its’ partial structure. VGG-D evaluated very deep convolutional networks using an architecture
with very small (3× 3) convolution filters, which achieved a significant improvement on ImageNet
Large-Scale Visual Recognition Challenge 2014 (ILSVRC-2014) [12].

2.1.3. Supervised Pre-Training

By leveraging a large auxiliary labeled dataset to train a deep convolutional model, the high-level
learned features from the pre-trained model have sufficient discrimination ability in some image-based
classification tasks [16]. To evaluate the efficacy of learned features on gait recognition task, we trained
VGG-D net using ImageNet dataset (classification annotations only) [13]. The training procedure
generally followed Simonyan et al. [12]. Namely, based on mini-batch stochastic gradient descent,
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the back-propagation algorithm is used to optimize the softmax-regression objection function [29].
In this paper, we did not fine-tune the model using any gait dataset, because deep convolution features
using the pre-trained model had already shown a significant improvement compared to traditional
hand-crafted gait representations for non-view setting.

2.1.4. Feature Extraction

In order to extract deep learned features for gait representation generalization, the size of input
gait silhouette images must be compatible with VGG-D’s input size which is known as 224× 224 pixel
size. We first rescaled each image to fixed size. Features were then computed by forward propagating
a mean-subtracted and size-fixed (224× 224) gait image through 16 convolutional/pooling layers and
2 fully connected layers using Caffe, a open source CNN library [30]. According to the other vision
tasks [14–17], the first fully connected layer’s ( f c6) features outcome the other layers’ features. Unless
otherwise specified, we extracted the 4096-dimensional f c6 features as deep convolutional features for
gait representation generalization.

2.1.5. Representation Generalization and Visualization

Inspired by Gait Energy Image (GEI) which is obtained by simply averaging the silhouette
sequence over one gait period and can capture both the spatial and temporal information [3,21] ,
we make use of max-pooling method over one gait period’s f c6 features to combine the spatio-temporal
information. Another version of f c6 features with average-pooling has been tested in our experiments
and showed inferior performance, which suggests the DeepGait is valid. In the i-th gait period, if there
are T silhouette images, we can generate T f c6 features. The j-th deep convolutional gait representation
(DeepGait) element of 4096-dimensional representation can then be created from maxing the f c6
features by using Equation (3).

DeepGaiti,j =
T−1
max
k=0

f c6i,j,k (3)

Examples of the 256-dimensional DeepGait from the OULP dataset after dimension reduction (in
Section 2.2.3) and L2-normalization are shown in Figure 2.

Figure 2. Examples of the 256-dimensional DeepGait after dimension reduction under four observation
views (55◦, 65◦, 75◦, 85◦) . S1 and S2 represent two different subjects, separately. We rearrange the
vector as 16× 16 matrix for the convenience of visualization. Approximately 25% features are non-zero
values. Different colors stand for different values.

2.2. Gait Recognition

Usually, gait recognition can be divided into two major tasks: gait verification and gait
identification as in face recognition [18–20]. Gait verification is used for verifying whether two
input gait sequences (Gallery, Probe) belong to the same subject. In this paper, we calculated the similar
score (SimScore) using Joint Bayesian to evaluate the similarity of two given sequences. Euclidean
distance was also adopted as a baseline method for comparison. In gait identification, a set of subjects
are gathered (The gallery), and it aims to decide which of the gallery identities are similar to the probe
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at test time. Under the closed set identification condition [31], a probe sequence is compared with all
the gallery identities, then the identity which has the largest SimScore is the final result.

2.2.1. Gait Verification Using Joint Bayesian

Joint Bayesian [28] technique was widely and successfully used for face verification [18,19,32].
In this paper, we modeled the extracted DeepGait (after mean-subtracted) by summing two
independent Gaussian variables as:

x = µ + ε (4)

where x represents a mean-subtracted DeepGait vector. For a better performance, L2- normalization
was applied for DeepGait. µ is gait identity following a Gaussian distribution N(0, Sµ). ε stands for
different gait variations (e.g., view, clothing and carrying bags etc.) following a Gaussian distribution
N(0, Sε). Joint Bayesian models the joint probability of two gait representations using the intra-class
variation (I) or inter-class variance (E) hypothesis, P(x1, x2|HI) and P(x1, x2|HE). Given the above
prior from Equation (4) and the independent assumption between µ and ε, the covariance matrix of
P(x1, x2|HI) and P(x1, x2|HE) can be derived separately as:

ΣI =

[
Sµ + Sε Sµ

Sµ Sµ + Sε

]
(5)

ΣE =

[
Sµ + Sε 0

0 Sµ + Sε

]
(6)

Sµ and Sε are two unknown covariance matrices which can be learned from the training set using
the Expectation Maximization (EM) algorithm. During the testing phase, the likelihood ratio (r(x1, x2))
is regarded as the similar score (SimScore):

SimScore(x1, x2) = r(x1, x2) = log
P(x1, x2|HI)

P(x1, x2|HE)
(7)

r(x1, x2) is efficiently obtained with the following closed-form process:

r(x1, x2) = xT
1 Ax1 + xT

2 Ax2 − 2xT
1 Gx2 (8)

where A and G are two final result models, which can be obtained by using simple algebra operations
between Sµ and Sε. Please refer to [28] for more details. We also make public our trained model (A and
G) and testing codes in Supplementary Materials for further comparison.

Euclidean distance is also adopted as a baseline method for comparison and the similar score
(SimScore) can be calculated as:

SimScore(x1, x2) = −||
x1

||x2||
− x1

||x2||
|| (9)

Finally, SimScore is compared with a threshold value to verify whether x1 and x2 belong to the
same subject.

2.2.2. Gait Identification

For gait identification, the probe sample xp is classified as class i, if the final SimScore with all the
gallery (xi) is the maximum as shown in Equation (10).

i = arg max
i∈[0,Ngallery−1]

SimScore(xi, xp) (10)
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where Ngallery is the number of training subjects. In the experiments, we just used the first period of
the gait sequence.

2.2.3. Dimension Deduction by PCA

The dimension of DeepGait is relatively large (4096) which makes the training process of
Joint Bayesian computationally expensive. In order to compute efficiently and evaluate the
compactness of DeepGait, we used PCA to project the representation into lower dimensions. PCA can
capture the principle components of the origin space. Among all the gallery dataset, we calculated
a transformation matrix (EPCA) using singular value decomposition for its within-class scatter matrix.
The transformation matrix’s dimension is M× K, where M is DeepGait’s origin dimension, and K is
the number of components.

After PCA, for baseline method (euclidean distance), the SimScore is calculated as:

SimScore(x1, x2) = −||
EPCAx1

||EPCAx1||
− EPCAx2

||EPCAx2||
|| (11)

For Joint Bayesian, the SimScore is calculated as:

SimScore(x1, x2) = log
P(EPCAx1, EPCAx2|HI)

P(EPCAx1, EPCAx2|HE)
(12)

2.3. Evaluation Criteria

The recognition performance was evaluated using four metrics: (1) Cumulative Match
Characteristics (CMC) curve; (2) rank-1 and rank-5 identification rates; (3) the Receiver Operating
Characteristic (ROC) curve of False Acceptance Rates (FAR) and Ralse Rejection Rates (FRR); and
(4) Equal Error Rates (EERs). CMC curve, and rank-1/rank-5 identification rates were used for the
identification task while ROC curve and EERs were used for the verification task.

3. Experiment

The proposed method was evaluated on the OU-ISIR large population (OULP) dataset which
has over 4000 subjects and contains high-quality silhouette images with view variations [11].
The experiments were conducted with two main settings: non-view setting and cross-view setting.
For the first setting, all the subjects were used to evaluate the performance of our proposed DeepGait,
so that the result could be reliable in a statistical manner. For the second setting, we used a subset
of the OULP dataset following the protocol of [21,23,24] for comparison. For further comparison,
experimental results, learning models, and test codes are released in Supplementary Materials.

3.1. Comparisons of Different Gait Representations for the Non-View Setting

In this section, we aimed at comparing the performance of our proposed DeepGait with some
state-of-the-art gait representations (e.g., GEI, FDF, MGEI, GEnI and GFI) in a statistically reliable
manner. The unsupervised whole dataset (NN) classifier was chosen for the sake of all the subjects
being used for testing. When we exchanged the gallery and the probe, 2-fold cross validation was
adopted. Based on the video sensor’s recorded view (55◦, 65◦, 75◦, 85◦), we reported the results of
comparison in Table 1.
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Table 1. Comparison of rank-1 (%) and rank-5 (%) identification rates with different gait representations
on the whole dataset (NN). GEI: Gait Energy Image; MGEI: Masked GEI based on GEnI; GEnI: Gait
Entropy Image; FDF: Frequency-Domain Feature; GFI: Gait Flow Image.

Rank-1/Rank-5 Dataset #Subjects DeepGait GEI MGEI GEnI FDF GFI

rank-1

View-55 3,706 90.6 85.3 79.3 75.1 83.1 61.9
View-65 3,770 91.2 85.6 83.2 77.3 84.7 66.6
View-75 3,751 91.2 86.1 84.6 79.1 86.0 69.3
View-85 3,249 92.0 85.3 83.9 80.7 85.6 69.8

Mean 92.3 85.6 82.8 78.1 84.9 66.9

rank-5

View-55 3,706 96.0 91.8 89.3 85.5 91.0 75.5
View-65 3,770 96.0 92.3 91.5 87.7 92.3 79.5
View-75 3,751 96.1 92.2 92.0 88.8 92.5 81.3
View-85 3,249 96.5 92.6 91.9 89.3 92.3 81.9

Mean 96.2 92.2 91.2 87.8 92.0 79.6

As result, DeepGait, using the simple classify method (NN), retained powerful discrimination
even over large population condition and outperforms other famous representations. From the four
observed views’ result, the performance of Deep Gait, GEI and FDF is nearly the same under different
observation view. Our proposed DeepGait is independent of view change.

3.2. Results for the Cross-View Setting

In the following two subsections, we chose 1912 subjects containing two gait sequences (Gallery,
Probe), and the subset was further divided into two groups of the same number of subjects, one for
training while the other one for testing. Following the protocol of [21,23,24] (publicly available at
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/dataset/GaitLP/Benchmarks.html), five 2-fold
cross validations were performed. During each training phase, 956 × (956-1) = 912,980 intra-class
samples and 956 × 1 = 956 inter-class samples were used for training Joint Bayesian. Due to the
limited space, the gallery dataset are fixed at three views (55◦, 65◦, 75◦) when we show the CMC and
ROC curves.

3.2.1. Number of Components Selection for Joint Bayesian

As we know, the dimension of DeepGait is 4096, and high dimension means that more training
data are needed for model learning when Joint Bayesian [28] is used for gait recognition. In fact,
number of training samples is often limited in gait recognition, therefore, the dimension of DeepGait
needs to be reduced. Due to the powerful discrimination of our proposed DeepGait, we can achieve
a competitive performance even in a low dimension after PCA. Experiments of different number of
components were performed with Joint Bayesian, so that we could choose the right K components,
where K is the number of components, to strike a balance between recognition performance and
computational complexity. Figure 3 shows the results of different K components under different
combinations of Gallery and Probe views.

http://www.am.sanken.osaka-u.ac.jp/BiometricDB/dataset/GaitLP/Benchmarks.html
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(a) (b)

(c) (d)

Figure 3. Rank-1 identification rates of different number of components after PCA under different
Gallery-view and Probe-view combinations. (JB). (a) Probe-55; (b) Probe-65; (c) Probe-75; (d) Probe-85.

We can see that K = 2048, achieved the worst performance due to under-fitting. The training
samples are insufficient when Joint Bayesian was used with high dimension. When dealing with the
lowest dimension (K = 64), our proposed method still achieved competitive performances among
three cross-view combinations (55:65, 65:75, 75:85). Further, we found that ’K = 256’ achieved almost
the same result with ’K = 512’ under all the cross-view conditions while ’K = 256’ has half the number
of components. For the best balance of performance and computing cost, we finally set K = 256 when
Joint Bayesian is used in the following experiments.

3.2.2. Comparisons with the State-of-the-Art Methods

The proposed method is further compared with other state-of-the-art methods [21,23,24] in
cross-view gait recognition. Muramatsu et al. [23,24] proposed the evaluation criteria and five 2-fold
cross validations were performed to reduce the effect of random grouping in their experiments.
Ref. [24] proposed a generative approach which is a View Transformation Model (VTM) based on
transformation consistency measures (TCM+). Ref. [23] further proposed a quality-dependent VTM
(wQVTM). Shiraga et al. [21] designed a convolutional neural network for cross-view gait recognition.
They reported two kinds of results which mainly differ in input data (GEI, FDF), and the two methods
are referred to as GEINet and w/FDF, respectively [21].

A. Comparisons for identification task

The performance of our proposed method, 256-dimensional DeepGait with Joint Bayesian
(DeepGait + JB) was firstly evaluated in identification task. 4096-dimensional DeepGait with nearest
neighbor classifier based on euclidean distance (DeepGait + NN) is also adopted as a baseline method.
We summarize the rank-1 and rank-5 identification rates in Table 2. CMC curves are also shown in
Figure 4.
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As a result, DeepGait + JB significantly outperformed the three state-of-the-art methods for all the
view combinations. Even with simple classifier NN, DeepGait still achieved competitive performances
for four side litter view difference combinations (65:75, 75:85).

Table 2. Comparison of rank-1 (%) and rank-5 (%) identification rates with other existent methods in
different cross-view settings.

Rank-1 [%] Rank-5 [%]Gallery View Method 55 65 75 85 55 65 75 85

55

GEINet (94.7) 93.2 89.1 79.9
w/FDF (92.7) 91.4 87.2 80.0
TCM+ 79.9 70.8 54.5 91.7 87.1 79.3

wQVTM 78.3 64.0 48.6 90.6 82.2 73.9
DeepGait + NN (92.7) 51.5 8.2 2.9 (97.2) 74.1 21.1 9.3
DeepGait + JB (97.4) 96.1 93.4 88.7 (99.2) 99.1 98.6 97.1

65

GEINet 93.7 (95.1) 93.8 90.6
w/FDF 92.3 (93.9) 92.2 88.6
TCM+ 81.7 79.5 70.2 92.1 90.2 86.8

wQVTM 81.5 79.2 67.5 91.9 90.2 84.8
DeepGait + NN 48.5 (94.4) 73.7 34.3 70.2 (97.6) 88.8 56.9
DeepGait + JB 97.3 (97.6) 97.2 95.4 99.5 (99.5) 99.3 99.2

75

GEINet 91.1 94.1 (95.2) 93.8
w/FDF 88.8 92.6 (93.4) 91.9
TCM+ 71.9 80.0 79.0 88.1 91.4 90.3

wQVTM 70.2 80.0 78.2 87.1 91.4 89.9
DeepGait + NN 7.5 76.3 (94.5) 89.2 18.7 92.3 (97.6) 96.6
DeepGait + JB 93.3 97.5 (97.7) 97.6 99.1 99.3 (99.4) 99.1

85

GEINet 81.4 91.2 94.6 (94.7)
w/FDF 80.9 88.4 92.2 (93.2)
TCM+ 53.7 73.0 79.4 79.6 87.9 91.2

wQVTM 51.1 68.5 79.0 75.6 85.7 91.1
DeepGait + NN 2.8 37.2 90.5 (94.8) 9.9 60.9 96.5 (97.8)
DeepGait + JB 89.3 96.4 98.3 (98.3) 98.3 99.3 99.1 (99.1)

(a) (b)

Figure 4. Cont.
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(c) (d)

(e) (f)

(g) (h)

(i)

Figure 4. Cummulative Match Characteristics (CMC) curves under different cross-view settings.
(a) G-55:P-65; (b) G-55:P-75; (c) G-55:P-85; (d) G-65:P-55; (e) G-65:P-75; (f) G-65:P-85; (g) G-75:P-55;
(h) G-75:P-65; (i) G-75:P-85.
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B. Comparisons for verification task

We used the same protocol as the identification task and summarize the EERs for verification task
in Table 3. We also referred DeepGait based on euclidean distance as DeepGait + NN for the sake of
consistency.

We find that our proposed method also achieved the best EERs in all cases, especially in cases with
large view variance. More specifically, our proposed method improved from 2.5% to 1.9% compared
to the best method (GEINet) where the probe view was 85◦ and gallery view was 55◦. Under the
exchanged view condition, EERs improved from 2.4% to 1.6%. When comparing DeepGait + NN
with DeepGait + JB, we can conclude that Joint Bayesian well models the view variance while simple
euclidean distance can not well deal with cross-view test in verification task. Figure 5 shows more
details of ROC curves.

Table 3. Comparison of EERs (%) with other existent methods under different cross-view settings.

Gallery View Method 55 65 75 85

55

GEINet (1.3) 1.4 1.7 2.5
w/FDF (1.9) 2.0 2.3 2.9
TCM+ 3.2 4.0 5.7

wQVTM 3.6 4.8 6.5
DeepGait + NN (2.9) 7.9 21.6 29.4
DeepGait + JB (0.8) 1.0 1.3 1.9

65

GEINet 1.2 (1.0) 1.3 1.6
w/FDF 1.7 (1.4) 1.7 2.2
TCM+ 3.0 3.4 4.2

wQVTM 3.5 3.4 5.1
DeepGait + NN 7.2 (3.1) 5.1 10.6
DeepGait + JB 0.8 (0.6) 0.7 1.2

75

GEINet 1.5 1.2 (1.2) 1.4
w/FDF 2.0 1.5 (1.6) 1.7
TCM+ 4.0 3.4 3.8

wQVTM 4.7 3.7 3.8
DeepGait + NN 19.9 4.6 (2.7) 3.4
DeepGait + JB 1.1 0.8 (0.8) 1.0

85

GEINet 2.4 1.6 1.2 (1.1)
w/FDF 2.5 1.9 1.6 (1.4)
TCM+ 5.5 4.4 3.7

wQVTM 6.5 4.9 3.7
DeepGait + NN 28.5 10.0 3.4 (2.3)
DeepGait + JB 1.6 0.9 0.9 (1.0)

(a) (b)

Figure 5. Cont.
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(c)

(d) (e)

(f)

(g) (h)

(i)

Figure 5. Receiver Operative Characteristics (ROC) curves under different cross-view settings.
(a) G-55:P-65; (b) G-55:P-75; (c) G-55:P-85; (d) G-65:P-55; (e) G-65:P-75; (f) G-65:P-85; (g) G-75:P-55;
(h) G-75:P-65; (i) G-75:P-85.
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4. Conclusions

In this paper, we have proposed a new video sensor-based gait representation, DeepGait, for
gait recognition and the performance is evaluated on the OU-ISIR large population dataset. For the
same view setting, DeepGait has been reported to achieve significantly better performance than
previous hand-crafted gait representations (GEI, MGEI, GEnI, FDF, GFI) even with NN classifier
based on euclidean distance. The results are reported in a statistically reliable manner, due to a large
number in the dataset. Furthermore, Joint Bayesian is used for model the view variance for cross-view
setting. We also find DeepGait in 256-d after PCA best balances performance and computing cost
with Joint Bayesian. For the cross-view setting, our proposed method significantly outperformed the
state-of-the-art methods for both verification and identification tasks. Even with large view variance,
our proposed method achieved the best rank-1 identification rate of 88.7%/89.3% and the best EERs of
1.9%/1.6% with (G-55: P-85)/(G-85: P-55), respectively.

For future research, we will evaluate our proposed method against other variances (e.g., clothing,
carrying bags and a wider view variation).

Supplementary Materials: The experimental results and diffferent gait representations are available online at
Zenodo DOI:10.5281/zenodo.321246 (https://doi.org/10.5281/zenodo.321246).
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Abbreviations

The following abbreviations are used in this manuscript:

DeepGait Gait representation based on deep convolutional features
GEI Gait energy image
MGEI Masked gait energy image based on gait entropy image
GEnI Gait entropy image
GFI Gait flow image
FDF Frequency-Domain feature
CMCs Cumulative match characteristics
ROC Receiver operating characteristic
JB Joint Bayesian
NN Nearest neighbor classifier based on euclidean distance
OULP the OU-ISIR large population dataset
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