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Abstract: Gender recognition is trivial for a physiotherapist, but it is considered a challenge for
computers. The electromyography (EMG) and heart rate variability (HRV) were utilized in this work
for gender recognition during exercise using a stepper. The relevant features were extracted and
selected. The selected features were then fused to automatically predict gender recognition. However,
the feature selection for gender classification became a challenge to ensure better accuracy. Thus,
in this paper, a feature selection approach based on both the performance and the diversity between
the two features from the rank-score characteristic (RSC) function in a combinatorial fusion approach
(CFA) (Hsu et al.) was employed. Then, the features from the selected feature sets were fused
using a CFA. The results were then compared with other fusion techniques such as naive bayes
(NB), decision tree (J48), k-nearest neighbor (KNN) and support vector machine (SVM). Besides, the
results were also compared with previous researches in gender recognition. The experimental results
showed that the CFA was efficient and effective for feature selection. The fusion method was also
able to improve the accuracy of the gender recognition rate. The CFA provides much better gender
classification results which is 94.51% compared to Barani’s work (90.34%), Nazarloo’s work (92.50%),
and other classifiers.

Keywords: signal processing; feature selection; feature fusion; data fusion; gender recognition;
sensor fusion; Heart Rate Variability (HRV), Electromyography (EMG); Stepper

1. Introduction

Rehabilitation is a physiotherapy activity to recover partially or totally the motor abilities of
a patient. Usually, physiological devices (PDs) such as steppers, upright bicycles and treadmills are
used to assist in the rehabilitation process. One of the PDs used in this study is a modified stepper
rather than a conventional stepper. It was built using a smart material known as Magnetorheological
(MR) fluid; installed as an MR valve on the stepper. The conventional stepper machine was slightly
modified and can be controlled using the concept of MR valve (see Figure 1) for rehab applications.
The mechanical properties such as stiffness, viscosity, and hardness of the MR-based damper will
change subjected to the induced magnetic fluxes. The modified stepper is a current-induced device
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that varies the stiffness level (i.e., low, medium, high) of the damper. The characteristics of the MR fluid
require the users to make an effort to do lower limb exercise resistance from a low to high stiffness level
on the stepper. In addition, before the Ampere current is induced to the MR-based stepper, the system
interface should have the ability to identify the gender of a person using it. The main reason is that the
strength level of men and women is different [1–3]. Thus, if the same load is applied to both men and
women during exercise, it will cause unhealthy fitness, for example, it will cause them to be tired, unfit
and other similar states.

(a) (b)

Figure 1. Conventional Stepper vs Modified stepper. (a) Conventional stepper; (b) Modified stepper
(magnetorheological (MR) valve).

1.1. The Need for Gender Recognition Using Biometrics

In conjunction to that, there is a need for a system development without any human intervention,
in this case from a physiotherapist, such as automatic gender recognition. Gender recognition is
trivial for a physiotherapist or the population in general. However, it is considered very challenging
for computers. Gender recognition can be very helpful in association in terms of recognizing the
individual user’s personality. Currently, computer vision systems play imperative roles in our life with
the development of Visual Surveillance and Human-Computer Interaction (HMI) innovation. Gender
recognition, as a part of the entire computer vision system has acquired much attention in recent
decades. This is due to gender recognition systems that can be utilized in many areas such as airport
security [4], surveillance and security systems [5]. Besides, it is also very helpful in rehabilitation
whereby the computer interface can directly recognize the gender of a person, and consequently
determine and set the input of the PDs like a current input associated with the strength level of
men and women. This is considered as the visual surveillance or automated monitoring in the
rehabilitation process.

In addition, a biometric recognition provides rigorous security by recognizing an individual based
on the physiological characteristics [6]. Various biometric modalities have been explored previously
such as iris, fingerprint, face, and hand. Table 1 shows gender recognition based on the face in [7–11].
In [12–15], a gender is recognized based on human gait, and it can also be recognized based on footwear,
color information, and human speech [16–19]. Nevertheless, these biometrics are not sufficiently robust
against counterfeiting. For example, the iris can be duplicated by using contact lenses with duplicated
iris features, the fingerprint can be imitated based on latex and face can be falsified using an artificial
mask. Besides, eligible performance based on recognition accuracy can also not be provided by
this biometrics.
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Table 1. Most related works for gender identification.

Work Method

[7] • Sift features
[8] • Combination of gabor filters and binary features
[9] • Using hybrid of gabor filters and binary features

[10] • Face_based gender recognition performance with a fuzzy inference system
[11] • Using periocular biometric for gender classification in the wild
[12] • From gait_based using mixed conditional random field
[13] • Extraction of the hip joint data that was computed from Bio-vision hierarchical data
[14] • From gait sequences with arbitrary walking directions
[15] • Human gait based gender identification using Hidden Markov Model and Support Vector Machines
[16] • Using footwear appearance
[17] • Color information

[18,19] • Speech recognition
This research • Fusion of HRV and EMG signals during stepping exercise by stepper

1.2. Gender Recognition Using Physiological Signal

Meanwhile, other information from physiological biometrics that reflects neurological changes
such as electromyography (EMG) and autonomic behavior such as heart rate variability (HRV) can
also affect gender recognition. Gender recognition using new physiological biometrics (e.g., EMG,
ECG, and EEG) is quite complicated compared to face, iris and fingerprint physiological biometrics.
This is because the signal of ECG and EMG recordings can be changed or distorted due to the physical
status of the subject, movements, powerline interference and certain medications [20,21]. However,
the EMG and ECG biometrics information are difficult to be stolen and impossible to imitate. So, it is
well secured and confidential [22].

Much basic research on electrocardiogram (ECG) has been actively conducted. Several
suggestions proposed the feasibility of utilizing the ECG as another biometric modality for identity
identification [23,24]. The fact that the physiological differences of the heart in various people show
certain uniqueness in their ECG signals have supported why it is logical for biometric recognition [25].
Gender recognition indicated by HRV is a standout amongst the most challenging issues in individual
identification [26].

Furthermore, digital information about the physical muscles is provided by EMG. Although there
a few analysis on EMG involving the lower limb [27], a research work on gender recognition during
the stepping activity using EMG is yet to be investigated. Interestingly, there is a significant time delay
difference between genders during the step [28], which indicates that there must be some relevant
features in human muscles that help in differentiating gender.

Multimodal physiological biometrics are a combination of at least two physiological biometric
features in order to handle certain limitations of utilizing them separately. There have been some
previous attempts to fuse multiple biometrics such as combining the face, gait, fingerprint, palm print
and geometry for gender recognition [29–31]. Table 2 shows more related works for the fusion of
physiological biometrics and the gap of this study.

Table 2. Most related work for the fusion of physiological signals.

Work Physiological Signals Fusion Application

ECG EMG EEG

[32–34] X X Automatic seizure detection
[35] X X hybrid-BCI
[36] X X Epileptic event detection
[37] X X Human movement intention
[38] X X Automatic sleep stage classification
[39] X X Gait intent detection

[40,41] and this research X X Gender Identification for rehabilitation exercise
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Therefore, the bimodal physiological systems for automatic gender recognition were carried out
in this study to develop the mechanism of physiotherapy for online monitoring. To guarantee the
accurate signal of a single modality system, the fusion of two or more signals is significant to improve
the performance of the system [39,41–48]. To achieve robust and discriminative performance for gender
recognition, a fusion of EMG and HRV [40,41,49] is proposed before feeding into the interface system
in order to control the level of MR valve stiffness of the stepper before the rehabilitation exercise can
be emulated [40,41]. Two modalities ECG (HRV) and EMG are selected to be combined because both
modalities are closely related when performing exercise associated with lower limb. It seems that the
gender factor motivates people differently, in performing the regular exercise for rehab. The reduction
of cost and frequent monitoring are also the ultimate objectives in the improvement of rehabilitation
process based on the gender physiological feedback control. Hence, the automated online monitoring
system can be developed and a bimodal fusion system can be achieved.

The overview of this research is shown in Figure 2. Firstly, all the raw data are preprocessed for
artifact corrections. Next, all the features are extracted and the most relevant features are selected
based on the performance and the diversity between the two feature sets. Then, the Combinatorial
Fusion Algorithm (CFA) (Hsu et al. [50–52]) is implemented to fuse the EMG and HRV features for
automatic gender recognition during stepping which may help to isolate male and female subjects
before undergoing the rehabilitation process. Finally, the gender classification based on the feature
fusion correct rate (%) is obtained. However, the section outside the bold solid line (i.e., the interface
section, control signal section and physiological device section) is out of the scope of this study.
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Figure 2. The need for this research.

The organization of this paper is as follows. Section 2 describes the research steps involved in
automatic gender recognition during the stepping activity using the MR-based stepper in rehabilitation.
The steps include data acquisition and preprocessing of EMG and HRV. The HRV is quantified from the
ECG signals and both EMG and HRV features are extracted. Section 3 represents the feature selection
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using performance and cognitive diversity. The implementation of the CFA to fuse the features is
conducted in Section 4. The experimental results are analyzed and discussed in Section 4.2. Finally, the
conclusion and the recommendation of future works resulted from this paper is suggested in Section 5.

2. Methodology

The proposed young gender recognition based on the EMG and HRV biometrics is illustrated
in Figure 3. The proposed method is composed of a sequence of processing steps which are the
preprocessing of the EMG and ECG signals, feature extraction, feature selection based on the
performance and the diversity between EMG and HRV feature sets, and EMG and HRV feature
fusion process based on the Combinatorial Fusion Approach (CFA) (Hsu, Chung and Kristal [51] and
Hsu, Kristal and Schweikert [52]). In this paper, the feature selection and the feature fusion have been
focused as shown in the bold dotted line.
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Figure 3. Gender identification process based on electromyography-heart rate variability (EMG-HRV)
feature fusion. The selected features of EMG and HRV are combined using Combinatorial Fusion
Approach (CFA) to obtain the gender classification result.

2.1. Data Acquisition

The EMG and ECG data used in this study were acquired from 59 healthy, untrained young
volunteers (i.e., 23 years old on average). All the subjects were considered free from any disease and
have been briefed about the procedures involved, and informed consents have been obtained. An EMG
channel was simultaneously recorded with ECG using the Porti system from the Twente Medical
Systems International (TMSi) equipment. The Porti is a 32-channel ambulatory and stationary system
for physiological research. An EMG channel was obtained from the vastus lateralis muscle (VL), placed
according to the recommendations of Surface Electromyography for the Non-Invasive Assessment of
Muscles (SENIAM) [53]. In summary, 16 European expertise groups are working together with the
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SENIAM project for the development and applications of surface EMG (sEMG). The recommendation
of the sEMG electrode placement is partly based on simulation outputs. The sampling frequency of
raw EMG and ECG biosignals used in this study was about 2048 Hz. Higher sampling frequency was
chosen to prevent a signal loss and to avoid too much noise during the stepping exercise. Plus, it is
also to avoid jitter in the estimation of the R-wave fiducial point for ECG signal. Also, the stepper
machine was used to carry out the stepping activity. In order to get the same stepping rate among the
subjects, a metronome (i.e., 60 beats per minute) was used simultaneously with the stepping activity.
Generally, a metronome is a device used by musicians that indicate the time at a selected rate by giving
a regular tick.

2.2. Biosignals Preprocessing

ECG: The Kubios HRV software [54] is utilized for ECG preprocessing to quantify the HRV. It is
an advanced software and extremely easy to use for HRV analysis. It consists of a mechanism for
artifact correction (i.e., powerline interference, baseline wander and other noise components), trend
component removal, an adaptive QRS detection and analysis for sample selection. The QRS detection
algorithm in the Kubios HRV software was developed based on the Pan-Tompkins algorithm [55].
Figure 4a shows the patterns of the HRV.

EMG: All the EMG signals were processed using MATLAB. There was a low amplitude voltage
offset present in the hardware. The direct current (DC) power was eliminated. Then a bandpass
filter was applied to the raw data to remove any movement artifacts with 20 Hz and 300 Hz cutoff
frequencies. Since the raw EMG signal had positive and negative values [56], the full-wave rectification
was applied to make sure the raw EMG signal did not have nearly zero mean and to analyze positive
values only. The EMG signals linear envelope was then computed for further processing. Figure 4b
shows the patterns of the EMG.

(a) HRV

(b) EMG

Figure 4. The patterns of HRV and EMG.

2.3. Features Extraction

The features are used in order to classify the males and females during the stepping activity using
a stepper. The selected features were extracted using Kubios software [54]. The descriptions for HRV
features in the Standards of Measurement, Physiological Interpretation, and Clinical Use [57] were
utilized. For EMG features, the conventional features are the mean [58], standard deviation [58–60],
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root mean square [59–61], maximum amplitude [60], median frequency [61,62], mean frequency [62],
variance [63], skewness [64] and kurtosis [64,65]. Table 3 describes a detailed description of the
extracted features.

Table 3. Description of the 32 extracted features.

Category Number Symbol Name Units Feature Description

Time domain

HRV Feature 23

A mean_HRV ms Mean of all RR intervals.

B SDNN ms Standard deviation of all NN intervals.

C mean_HR 1/min Mean of all heart rate.

D SD_HR 1/min Standard deviation of all heart rate.

E RMSSD ms
The square root of the mean of the sum of the squares of
differences between adjacent NN intervals.

F NN50 count

Number of pairs of adjacent NN intervals differing by
more than 50 ms in the entire recording. Three variants are
possible counting all such NN interval pairs or only pairs
in which the first or the second interval is longer.

G pNN50 % NN50 count divided by the total number of all MM intervals.

H HRV triangular index
Total number of all NN intervals divided by the height of
the histogram of all NN intervals measured on a discrete
scale with bins of 7.8125 ms (1/128 s).

I TINN ms
Baseline width of the minimum square difference triangular
interpolation of the highest peak of the histogram of all
NN intervals.

Frequency domain

J VLF_peak Hz Peak of very low frequency.

K LF_peak Hz Peak of low frequency.

L HF_peak Hz Peak of high frequency.

M VLF_power ms2 Power of very low frequency range.

N VLF_percentage % Percentage power of very low frequency range.

O LF_power ms2 Power of low frequency range.

P LF_percentage % Percentage power of low frequency range.

Q LF_norm n.u. Low frequency power in normalized units.

R HF_power ms2 Power of high frequency range.

S HF_percentage % Percentage power of high frequency range.

T HF_norm n.u. High frequency power in normalized units.

U LF/HF ms2 Ratio LF (ms2)/HF (ms2).

V TP ms2 Variance of all NN intervals.

W EDR Hz Respiration frequency.

EMG Feature 9

a EMG_mean ms2 The normalized mean of the all EMG data.

b EMG_SD ms2 Standard deviation of all EMG data.

c EMG_RMS ms2 Square root of the mean over time of the square of the vertical
distance of the graph from the rest state.

d EMG_maxamp ms2 Maximum amplitude of EMG.

e EMG_MDF ms2 Median frequency of EMG.

f EMG_MNF ms2 Mean frequency of EMG.

g EMG_var ms2 Variance of EMG.

h EMG_skew ms2 Skewness of EMG.

i EMG_kurt ms2 Kurtosis of EMG.

3. Combinatorial Fusion Approach (CFA)

Combinatorial Fusion (CF) (Hsu et al. [50–52]) gives a useful piece of fusion method information
in the analysis of a set of Multiple Scoring Systems (MSS) to obtain better accuracy and higher
effectiveness of feature characteristics. Each system contains a score function, a rank function, and a
Rank-Score Characteristic (RSC) function (see Figure 5). The scoring or ranking behavior is indicated
by the RSC function and it is extremely easy to compute. Plus, the cognitive diversity of at least two
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scoring systems can be measured [52]. Furthermore, the CFA method has been widely applied in
some research areas such as visual cognition systems [66], ChIP-seq peak detection [67], video target
tracking [68] and the prediction of protein structure [69] when the result was obtained by using an
RSC graph to assess the scoring diversity [52]. Meanwhile, the CFA was implemented in this work in
order to demonstrate that the fusion performance of HRV and EMG for automatic gender recognition
during the stepping activity can be improved by fusing score or rank combinations using the RSC
function as an indicator.
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Figure 5. Rank-Score Characteristics (RSC) function.

Figure 5 illustrates the RSC function in a set of MSS. Let T = {t1, t2, ..., tn} be a set of subjects under
study. Let N = [1, n] be the integers set from 1 to n and R be the set of real numbers. Next, let A be
the scoring system. Each scoring system A is one of the q scoring systems A1, A2, ..., Aq on the set T,
contains two functions which are:

(a) a score function, sA, and
(b) a rank function, rA.

(a) a score function, sA, and
(b) a rank function, rA.

The rA are derived by sorting the sA. A Rank-Score Characteristics (RSC) function, f A was defined
(see [51,52]) as: f A: N→ R while a score function, sA, and a rank function, rA are shown in Figure 5.
There are two distinct forms of procedures that can be applied to integrate a set of q scoring systems
namely:

(a) Score Combination, sc.
(b) Rank Combination, rc.

and the equations are defined as follows:

ssc(ti) =
q

∑
j=1

(sAj(ti))/q (1)

src(ti) =
q

∑
j=1

(rAj(ti))/q (2)

where ti is in T.
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Moreover, the diversity between A and B, for a pair of two scoring systems, d(A, B) is defined as
d(f A, f B), between RSC functions f A and f B (see [51,52]).

3.1. Feature Selection Using Performance and Cognitive Diversity

The features from the EMG and HRV are viewed as a scoring system. The performance and
the diversity between the feature sets in MSS have been carried out to select the relevant and
non-redundant features, which can yield a better result when the features are fused. Thus the
combination of the MSS can improve the result when the features of each of the individual scoring
systems have relatively high performance and high diversity [52]. Therefore the aim of our feature
selection is to find the features with relatively good performance as well as relatively high diversity.

In our experiment, there are 32 features in total and 59 possible values for each feature. The correct
rate is calculated to measure the performance and to make comparisons between the machine learning
classifiers (see Figure 6). The classifiers used in this work are Naïve Bayes (NB), k-Nearest Neighbors
(k-NN with k = 1, 3, 5), and Decision Tree (J48). As shown in Figure 6, the highest average correct rate
is J48 classifier with 72.19% of accuracy.
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Figure 6. Average Correct rate comparison among classifiers.

After that, the final performance of each feature from the J48 classifier is sorted in decreasing order
as illustrated in Figure 7. It can be seen that the highest correct rate with a rate of 86.44% is generated
from feature O (LF_power (ms2)) and feature d (maximum amplitude of EMG (ms2)) generates the
lowest correct rate of with a rate of 66.1%. From previous work in [70], there are significant gender
differences (p < 0.05) in the LF in male subjects compared to females. This implies that the male subjects
are more active and dominant than the female subjects. Therefore, this is particularly suitable to be
used to isolate male and female subjects in developing the rehabilitation devices, control system, and
rehabilitation engineering.
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Figure 7. Single feature performance of J48 Classifier.

3.1.1. The Diversity between MSS

Generally, the diversity of a feature pair {F1, F2} can be derived as in Equation (3), where f1 and
f2 are the RSC function represented for F1 and F2 respectively in which they can be calculated based
on the equation denoted in Figure 5. Both functions f1 and f2 have n score values in total and a rank
sequence ranging from 1 to n.

d(F1, F2) =
n

∑
i=1
| f1(i)− f2(i)|/n (3)

The diversity of feature sets D = {F1, F2, ..., Fn} is generated as in Equation (4). C(n, 2) depicts the
total number of the combination of two features in the feature set D.

d(D) = ∑
FiεD,FjεD

d(Fi, Fj)/|C(n, 2)| (4)

In addition, the diversity between the two feature sets D1 and D2 is derived as in Equation (5).
Generally, |D1| and |D2| are the cardinal number of D1 and D2.

d(D1, D2) = ∑
FiεD,FjεD

d(Fi, Fj)/|D1|.|D2| (5)

3.1.2. Feature Selection Approach

The approach for feature selection based on the performance and the diversity between the two
features (Deng, Wu, Chu, Zhang, and Hsu [46]) is illustrated in Figure 8.
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Figure 8. Feature selection approach (FSA).

Figure 9 illustrates the modalities, performance, and diversity of the features. All 32 features are
divided into two modalities according to the corresponding sensor types which are EMG and ECG.
The feature performance in each of the EMG and ECG physiological signals is sorted in decreasing
order. 15 features with a bold font demonstrated in the figure is selected for further process and is
denoted as the top features. While a number above the horizontal link between two modalities is
denoted as the diversity between the two feature sets. Besides, a number above the curve within
a node of the modality is the average of a feature set diversity. Generally, a better fusion performance is
produced when the diversity between two modalities is larger [46]. Apart from that, better individual
feature performance also provides a better combination result [46]. However, only two modalities
were utilized in this work but the comparison of the diversity of the two modalities is not required.
In this work, the diversity between EMG and HRV generates a better diversity of a feature set and the
diversity between two feature sets. Hence, a better combination performance can be achieved.
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Figure 9. Feature classification using diversity and performance in two modalitites.

3.2. Feature Selection Performances

In the feature selection process, the top-15 features which are O, V, A, F, C, G, M and I from the
HRV and a, b, c, e, f, g, and i from the EMG are selected. All of these top-15 features are selected
because of their performance and the diversity is higher than the other features. A total of four
5-feature sets (A), four 7-feature sets (C), four 9-feature sets (D) and four 11-feature sets (E) are then



Appl. Sci. 2017, 7, 348 12 of 21

generated. Plus, four 5-feature sets (B) are also randomly selected from 32 extracted features for
comparison of their performances. The average performance and average diversity of selected features
are demonstrated in Table 4.

Table 4. Feature selection results.

Feature Group Feature Symbols Average Performance Average Diversity

(A)

A(5,1) O,V,A,F,a 0.81 2.39

5-feature set

A(5,2) O,V,A,b,c 0.79 2.61
A(5,3) O,V,F,a,b 0.78 2.58
A(5,4) O,V,A,F,b 0.81 2.41

(B)

B(5,1) I,P,U,c,d 0.70 0.10

5-feature set

B(5,2) E,H,R,a,h 0.70 0.09
B(5,3) H,I,J,c,d 0.71 0.12
B(5,4) I,Q,S,d,i 0.70 0.10

(C)

C(7,1) O,V,C,G,M,f,i 0.78 2.06

7-feature set

C(7,2) O,V,A,F,I,b,e 0.79 2.10
C(7,3) O,A,F,C,G,c,e 0.79 1.85
C(7,4) O,V,A,F,G,e,g 0.79 2.11

(D)

D(9,1) V,C,G,M,I,c,e,g,i 0.75 0.85

9-feature set

D(9,2) V,A,G,M,I,a,e,f,g 0.75 0.97
D(9,3) O,V,C,G,M,a,c,e,f 0.76 1.84
D(9,4) O,V,F,M,I,a,f,g,i 0.76 1.92

(E)

E(11,1) O,V,A,F,G,M,a,b,c,e,g 0.76 2.46

11-feature set

E(11,2) O,V,F,C,G,M,I,a,b,c,e 0.76 2.16
E(11,3) O,V,A,F,G,M,I,b,c,f,g 0.77 2.47
E(11,4) O,V,A,F,C,G,I,a,b,f,g 0.77 2.48

4. CFA for EMG and HRV Feature Fusion

In the feature fusion process, the score combination for all 20 selected features resulting from
Table 4 is performed one-by-one according to Equation (1).

4.1. Fusion Results in 5-Feature Sets

The feature’s fusion correct rate using the score combination of CFA for both of 5-feature sets (A)
and (B) are illustrated in Figures 10 and 11.

(a) A(5,1)

Figure 10. Cont.
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(b) A(5,2)

(c) A(5,3)

(d) A(5,4)

Figure 10. Performance of the combination of 5-features sets (A group) using CFA.
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(a) B(5,1)

(b) B(5,2)

(c) B(5,3)

Figure 11. Cont.
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(d) B(5,4)

Figure 11. Performance of the combination of 5-feature sets (B group) using CFA.

With reference to Figures 10 and 11, the dotted lines show the average of 26 combined features.
In this paper, the combined features that have the correct rate over an average of 26 combined features
will be the better selected combined features for the automatic gender identification. In Figure 10a,
the average correct rate is 95.49%, and it possesses the top-13 combined features which are OV, OA,
OVA, OVF, OF, VA, OVAF, OAF, VF, VAF, AF, OVAa, and OVAFa. Next, in Figure 10b, the average
correct rate is 93.53% and it possesses the top-13 combined features which are OV, OA, OVA, VA,
OVAb, OVAc, OVb, OVc, OAb, OAc, VAb, VAc, and OVAbc. Then, in Figure 10c, the average correct
rate is 93.73% and it possesses the top-13 combined features which are OV, OVF, OF, VF, OVFa, OVa,
OVFb, OVb, OFa, OFb, VFa, Oa, and OVFab. Lastly, in Figure 10d, the average correct rate is 95.27%
and it possesses the top-13 combined features which are OV, OA, OVA, OVF, OF, VA, OVAF, OAF,
VF, VAF, AF, OVAFb, and OVAb. Thus, in short, all four 5-feature sets (A) have their own top-13
combined features that contribute to automatic gender identification during the stepping activity using
the stepper.

Moreover, in Figure 11a, the average correct rate is 78.36% and it possesses the top-12 combined
features which are IP, IU, IPU, Ic, IPc, IPUc, IUc, PU, IPd, IPUd, Pc, and PUc. Next, in Figure 11b,
the average correct rate is 77.75% and it possesses the top-12 combined features which are HR, HRa,
Ha, Ra, HRh, HER, HRah, EHRa, Hh, EH, Hah, and EHRh. Then, in Figure 11c, the average correct
rate is 80.34% and it possesses the top-12 combined features which are HI. HIJ, IJ, HJ, HIc, HIJc, IJc, Ic,
HJc, HIJd, Hc, and HId. Lastly, in Figure 11d, the average correct rate is 77.85% and it possesses the
top-12 combined features which are OV, IQ, IS, IQS, QS, IQi, IQSi, Ii, ISi, IQSd, IQd, ISd, and Id. Thus,
all the four 5-feature sets (B) have their own top-12 combined features.

All the figures from Figures 10 and 11, shows that the four 5-feature sets (A) have higher correct
rate compared to the four 5-feature sets (B). Thus, the overall performance of the 5-feature sets (A) is
considerably better than that of the 5-feature sets (B) for automatic gender identification during the
stepping activity.

Besides that, the fusion of t-feature sets where t = 7, 9 and 11 is also calculated. 7-feature sets
have 120 combined features, 9-feature sets have 502 combined features and 11-feature sets have
2036 combined features in total. Since the total combination is large, the results were only listed in
Table 5 in Section 4.2.

4.2. Fusion Results Comparison

For the feature fusion evaluation, six feature fusion algorithms which are Naïve Bayes (NB),
k-Nearest Neighbors (k-NN with k = 1, 3, 5), Decision Tree (J48) and Support Vector Machine (SVM)
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are implemented. The comparisons of the correct rates for different 20 feature sets found in the fusion
methods are shown in Table 5. The average correct rate of all the combinations’s results for all the
selected feature sets is denoted as the overall correct rate of CFA for automatic gender recognition
during stepping.

Table 5. Comparison of performance among fusion method.

Feature Group
Fusion Method NB (%) 1-NN (%) 3-NN (%) 5-NN (%) J48 (%) SVM (%) CFA (%)

(A) A(5,1) 81.36 79.66 79.66 77.97 86.44 74.58 95.49

5-feature A(5,2) 81.36 77.97 83.05 86.44 84.75 74.58 93.53

set A(5,3) 76.27 76.27 76.27 81.36 84.75 72.88 93.73
A(5,4) 83.05 76.27 77.97 79.66 84.75 74.58 95.27

Average 80.51 77.54 79.24 81.36 85.17 74.16 94.51

(B) B(5,1) 64.41 69.49 69.49 69.49 74.58 67.8 78.36

5-feature B(5,2) 81.36 77.97 74.58 77.97 77.97 79.67 77.75

set B(5,3) 84.75 86.44 83.05 77.97 72.88 74.58 80.34
B(5,4) 62.71 71.19 77.97 76.27 74.58 67.8 77.85

Average 73.31 76.27 76.27 75.43 75.00 72.46 78.58

(C) C(7,1) 83.05 79.66 86.44 86.44 77.97 74.58 91.80

7-feature C(7,2) 81.36 77.97 74.58 79.66 79.66 72.88 93.22

set C(7,3) 83.05 76.27 79.66 84.75 76.27 77.97 92.92
C(7,4) 81.36 72.88 76.27 81.36 77.97 74.58 92.99

Average 82.21 76.70 79.24 83.05 77.97 75.00 92.73

(D) D(9,1) 84.75 76.27 83.05 88.14 72.88 72.88 89.50

9-feature D(9,2) 79.66 77.97 79.66 83.05 72.88 74.58 90.28

set D(9,3) 79.66 77.97 79.66 88.14 77.97 72.88 91.33
D(9,4) 81.36 81.36 79.66 74.58 76.27 71.19 90.49

Average 81.36 78.39 80.51 83.48 75.00 72.88 90.40

(E) E(11,1) 83.05 76.27 83.05 84.75 76.27 72.88 90.50

11-feature E(11,2) 79.66 76.27 84.75 86.44 76.27 74.58 90.10

set E(11,3) 81.36 79.66 81.36 88.14 76.27 74.58 88.60
E(11,4) 86.44 77.97 83.05 86.44 77.97 77.97 91.20

Average 82.63 77.54 83.05 86.44 76.70 75.00 90.10

With reference to Table 5, it can be seen that for the feature sets selected using our method,
the combinatorial fusion can result in better performance than the other six fusion algorithms.
CFA generates a higher value of an average correct rate for all the 5-feature set (A), 5-feature set
(B), 7-feature set (C), 9-feature set (D) and 11-feature set (E). Over all, for automatic gender recognition
during the stepping exercise, CFA gives a better performance than the other six fusion methods.

From Table 5, it can be seen that when using the combinatorial fusion, the highest average
correct rate is 95.49% for feature set A(5,1), 93.22% for feature set C(7,2), 91.33% for feature set D(9,3)
and 91.20% for feature set E(11,4). Thus, the correct rate decreases when the number of features
increases. The reason is the more features we have, the more irrelevant and redundant features
will cause decreases in accuracy. However, all the selected feature sets outperformed the other six
fusion algorithms.

Meanwhile, the best performance of the randomly selected 5-feature set (B) is 86.44%, produced
using the 1-NN method on B(5,3) feature set. The highest performance using CFA is 80.41% which
is also on the same feature set. However, the average performance of CFA is 78.64% which is lower
than 86.44%. Yet, it is better than the average performance of 5-feature set (B) using 1-NN and also
the highest average correct rate of the four 5-feature set (B) which is 76.27%. Therefore, in conclusion,
the CFA is better compared to six fusion methods for the feature group of the 5-feature set (B).

Other than that, to evaluate the proposed method, the results of the proposed method are
compared with the work done in [8] and [9] and are shown in Table 6. Barani’s and Nazarloo’s used
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a face biometric and Hybrid Gabor filters and binary features of an image for gender recognition.
Table 6 shows that our proposed method outperformed the work done in [8,9].

Table 6. Correct Rate (%) comparison of proposed method with previous work of gender recognition.

Approach Correct Rate (%)

Proposed Method 94.51
[8] 90.34
[9] 92.50

5. Conclusions and Future Work

In this paper, the function of CFA [51,52] was described for both features’ selection and fusion
in order to automatically recognize gender during the stepping exercise. The performance results
demonstrated that the CFA provided a promising solution compared to other machine learning
methods in combining relevant features from physiological biosignals. The CFA also provided a much
better correct rate compared to Barani’s [8] and Nazarloo’s work [9]. Generally, when the performance
and diversity between the selected two features are relatively high, a better correct rate of the feature
fusion can be attained.

The main contributions of this work are the physiological biometrics used for automatic gender
recognition during stepping using stepper which are EMG and HRV, a feature selection technique
based on the performance and the diversity between the feature sets, feature fusion technique using
CFA, a comparison of CFA with another five machine learning classifiers, and a comparison of our
proposed method with previous research for gender recognition. Our work demonstrated that the
CFA is a good and efficient method for the feature fusion.

In future, the HRV features will be combined with bi-channel EMG features based on CFA.
In addition, the decision level combination using CFA will be considered.
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The following abbreviations are used in this manuscript:

ECG Electrocardiogram
EMG Electromyogram
EEG Electroencephalogram
HRV Heart Rate Variability
HR Heart Rate
CFA Combinatorial Fusion Algorithm
PDs Physiological Devices
MR Magnetorheological
NB Naïve Bayes
SVM Support Vector Machine
J48 Decision Tree
kNN k-Nearest Neighbor
MSS Multiple Scoring Systems
BCI Brain-Computer Interaction
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HMI Human-Computer Interaction
RSC Rank-Score Characteristics
SC Score Combination
RC Rank Combination
VL Vastus Lateralis
RRi RR Interval
DAQ Data Acquisition
RMS Root Mean Square
SD Standard Deviation
VLF Very Low Frequency
LF Low Frequency
HF High Frequency
LBP Local Binary Pattern
DC Direct Current
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