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Abstract: Flexure-based micro-motion mechanisms activated by piezoelectric actuators have a 
wide range of applications in modern precision industry, due to their inherent merits. However, 
system performance is negatively affected by model uncertainty, disturbance and uncertain 
nonlinearity, such as the cross-coupling effect and the hysteresis of the actuator. This paper 
presents an integrated learning-based optimal desired compensation adaptive robust control 
(LODCARC) methodology for a flexure-based parallel micro-motion manipulator. The proposed 
LODCARC optimizes the reference trajectory used in the desired compensation adaptive robust 
control (DCARC) by iterative learning control (ILC), which can greatly compensate for the effect of 
repetitive disturbance and uncertainty. The proposed control approach was tested on the 
flexure-based micro-motion manipulator, with the comparative results of high-speed tracking 
experiments verifying that the proposed LODCARC controller can achieve excellent tracking and 
contouring performances with parametric adaption and disturbance robustness. Furthermore, the 
iterative reference optimization can effectively accommodate the effects of unmodeled repetitive 
uncertainty from the micro-motion system. This study provides a practical and effective technique 
for the flexure-based micro-motion manipulator to achieve high-precision motion. 

Keywords: flexure-based manipulator; precision micro-motion; desired compensation adaptive 
robust control; reference optimization 

 

1. Introduction 

There are a wide variety of mechanisms such as compliant mechanism and parallel mechanism 
for high-precision positioning and motion technology [1–3]. Flexure-based compliant mechanisms, 
which transmit the motions entirely through the deformation of materials, exhibit the advantages of 
a typical micro-motion mechanism in terms of no backlash, no wear, and easy manufacturing [4]. 
Both serial and parallel structures have been adopted in flexure-based mechanisms, although most 
flexure-based stages are developed based on a parallel structure. This is due to the fact that parallel 
flexure-based stages have advantages of high rigidity and frequency, low inertia and symmetrical 
characteristics of each axis [5–7]. A piezoelectric actuator is usually adopted as the actuator of the 
flexure-based manipulator due to its merits of high-precision, fast response, high stiffness and large 
force [8]. However, some dynamical behaviors of micro-motion system are challenging from the 
perspective of control. In particular, there is inevitable model uncertainty and nonlinearity caused 
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by cross-axis coupling effects, rigidity variation in addition to the hysteresis and other nonlinearity 
of the piezoelectric actuator [9,10], which will obviously deteriorate motion accuracy, especially in 
high-speed applications. 

Therefore, the controller design plays an important role in achieving great tracking and 
contouring performance of flexure-based micro-motion manipulator. For general purposes, a simple 
proportional-integral-derivative (PID) controller is always applied in the flexure-based 
micro-motion stage [11]. However, due to increasing demands for higher speeds from the 
micro-motion manipulator, the PID controller cannot efficiently deal with the model uncertainty and 
nonlinear effect of the system, resulting in its limited performance. Subsequently, model-based 
feedforward controllers have been developed. In a previous study [12], an inversion-based 
feedforward controller combined with a PID feedback controller was utilized to compensate for the 
nonlinearity of a parallel micro-positioning stage, with good positioning and tracking performances 
having been achieved. Furthermore, different types of mathematical models, such as the 
Prandtl-Ishlinskii model [13], Presiach model [14] and Bouc–Wen model [15], have been applied for 
feedforward control in order to compensate the hysteresis of piezoelectric actuator. It is noted that, 
when the micro-motion stage is used for micro machining, the cutting forces should be considered 
for achieving smooth motion and high performance machining [16,17]. However, the dynamics of 
the system are complicated so the accuracy of the mathematical model used in feedforward control 
is always limited. Furthermore, there inevitably exists model uncertainty and perturbation. For 
repetitive tracking tasks, iterative learning control (ILC) [18] can be adopted to compensate for the 
repetitive uncertainty and disturbance by using information from previous executions. In a previous 
study [19], ILC was used to compensate for the hysteresis of the piezoelectric actuator while too 
many iteration trials had to be taken in this study to get the accurate dynamical model of the system 
and achieve excellent tracking performance, which is too long for real-world applications. In any 
case, ILC is sensitive to parametric uncertainty and uncertain disturbance [18]. One typical method 
to deal with the model uncertainty and disturbance is adaptive robust control [20–22], which is 
widely used in many industrial applications. However, the velocity measurement noise greatly 
reduces the performance of adaptive robust control, especially in flexure-based micro-motion stages 
with high rigidity where velocity measurement noise is relatively large. To reduce the effect of 
measurement noise, a desired compensation adaptive robust control (DCARC) [23,24] was 
presented. The DCARC strategy is constructed based on a dynamical model of the system with prior 
knowledge of the bounds of the parametric uncertainties and the bounds of the unmodeled 
uncertainty and nonlinearity as well as disturbance. The parameters are adjusted on-line via certain 
parameter adaptation law to achieve an improved model compensation, while the model 
uncertainty and lumped disturbance are handled by certain robust law. Thus, the DCARC possesses 
the advantages of both control methods, which has a parametric adaptation ability and guaranteed 
performance to the model uncertainty and disturbance. In addition, compared with conventional 
adaptive robust control, the adaptive model compensation part of DCARC depends on the desired 
reference trajectory instead of actual state measurements, so the effect of measurement noise is 
minimized. 

However, the effects of unmodeled dynamics of the plant are suppressed by the robust control 
term in DCARC, so the final tracking performance is unavoidably conservative. In this paper, an 
optimization control method of DCARC, learning-based optimal desired compensation adaptive 
robust control (LODCARC) is proposed and implemented for a flexure-based parallel micro-motion 
stage. The stage is activated by piezoelectric actuators in X- and Y-axes. It has a decoupled 
symmetrical structure so the multi-input multi-output (MIMO) system can be simplified as two 
single-input single-output (SISO) sub-systems, with the proposed LODCARC being implemented in 
each sub-system. The DCARC term of the LODCARC is designed based on the dynamics of the 
micro-motion system under the consideration of parametric uncertainty and uncertain nonlinearity. 
Furthermore, the effect of measurement noise is minimized in DCARC by using the desired 
reference trajectory rather than actual state measurements. However, considering the complicated 
environment, the accurate dynamical model of flexure-based micro-motion system is difficult to 
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obtain and for micro-scale motion, many motion tasks are repetitive in a finite time. Therefore, ILC 
was used to optimize the reference trajectory used in the DCARC term to compensate for the effects 
of unmodeled repetitive uncertainty and nonlinear disturbance. The whole control scheme with the 
stability analysis is presented and comparative experimental investigation of high-speed trajectory is 
carried out, with the experimental results showing that the tracking and contouring performances of 
the flexure-based micro-motion stage are greatly improved by adopting the proposed LODCARC. 

2. Description of the Investigated Flexure-Based Manipulator  

The parallel flexure-based micro-motion manipulator investigated in this paper is 
schematically illustrated in Figure 1a and the manufactured prototype of the manipulator, which is 
monolithically milled from a block of Al-7075, is shown in Figure 1b. As shown in Figure 1b, the 
piezoelectric actuators (PSt 150/7/40, VS 12, XMT Harbin, China) adopted for the system have a 40 
μm range, while the output displacements of the terminal platform along the X- and Y-axes are 
measured by two high precision length gauges (MT-1281, Heidenhain, Bavaria, Germany). To 
realize high stiffness, high natural frequency and output decoupling characteristic of the 
micro-motion manipulator, this study used a symmetrical parallel structure composed of four 
identical limbs [25,26]. Each limb is composed of a parallelogram flexure and a fixed-fixed beam, 
which are serially connected and acted as prismatic joints. Therefore, the micro-motion stage has 
two translational degrees of freedom along the X- and Y-axes. 

(a) (b)

Figure 1. The parallel flexure-based micro-motion manipulator. (a) Schematic diagram; (b) 
Manufactured prototype. 

Due to the symmetrical structure of the micro-motion stage, it was necessary to study only the 
dynamics of the stage along the X-axis. The dynamic model of the mechanical part of the system is 
commonly treated as a second-order system according to the characteristics of its mechanical 
structure [27] and can be expressed as follows:  

( )+ ( )+ ( ) ( ) ( )e e e p dm x t c x t k x t F t f t= + + Δ   (1)

where me, ce, and ke are the moving mass, damping coefficient and stiffness of the stage, respectively; 
x is the output displacement of the terminal platform along the X-axis; Fp is the driving force of the 
piezoelectric actuator; fd is the external disturbance and Δ is the lumped uncertain of the system. As 
the power amplifier of the piezoelectric actuator has a very high bandwidth, it is reasonable to 
assume that the dynamics from the input voltage to the output displacement of the piezoelectric 
actuator can be simplified as a constant gain γ. Thus, we can note that Fp = γkinu, where kin is the input 
axial stiffness of the micro-motion stage and u is the control input voltage. 

Subsequently, the dynamic model of the whole stage can be derived as a second-order system. 

1 2 3 4x x x u dθ θ θ θ+ + = + +   (2)
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where θ1 = me/(γkin), θ2 = ce/(γkin), θ3 = ke/(γkin), θ4 = fd/(γkin) and d = Δ/(γkin). The unknown parameter set 
is defined as θ = [θ1, θ2, θ3, θ4]T, with an open-loop sinusoidal sweeping test subsequently being 
carried out to estimate the parameters in Equation (2). The sweeping sinusoidal signals ranging from 
1 Hz to 1500 Hz, with the sampling frequency of 20 kHz, are used as the control input to excite the 
system. The system identification tool of Matlab is used to process data and estimate the model by 
using the response data from experiments, with the parameter estimates in X- and Y-axes direction 
being θx = [6.35 × 10−7, 5.95 × 10−3, 6.23, 0]T and θy = [5.20 × 10−7, 6.10 × 10−3, 6.65, 0]T, respectively. The 
following practical assumption can be made. 

Assumption 1. The extent of the parametric uncertainties and uncertain nonlinearities are known, namely:  

min min{ : }θθ θ θ θ θ∈ Ω ≤ ≤  (3)

{ : }d dd d d δ∈ Ω ≤  (4)

where θmin = [θ1min, θ2min, θ3min, θ4min]T, θmax = [θ1max, θ2max, θ3max, θ4max]T, and δd are known. 

3. Control System Design for the Flexure-Based Manipulator 

Figure 2 depicts the whole control structure of LODCARC for flexure-based micro-motion stage 
to achieve ultra-high precision motion. The DCARC term is designed based on the system dynamics 
that aim to achieve parameter adaption and certain robustness, although in real-world practice with 
the complicated environment, there exists unavoidable tracking error, which is defined as e = x – xd. 
Furthermore, the unmodeled uncertainty and disturbance affecting the tracking performance of the 
micro-motion stage are repetitive, to a large extent. The ILC optimization term is treated as a 
trajectory optimization to alter the reference for DCARC. The optimal signal xopt of ILC is based on 
previous repetitive control information including tracking error e, which aims to compensate for the 
effects of unmolded repetitive uncertainty and disturbance. Thus, with reference optimization by 
ILC (Figure 2), the reference trajectory used for DCARC is adjusted as xa = xd + xopt, with the accuracy 
of the flexure-based micro-motion stage able to be further improved.  

 
Figure 2. Structure of the control system for the flexure-based micro-motion manipulator. 

3.1. DCARC Design in LODCARC 

As mentioned, DCARC has a parametric adaptation ability of adaptive control and having 
robust performance to the uncertainty and disturbance of robust control. The design of the DCARC 
term of the proposed LODCARC for the flexure-based system is as follows: Define θ̂  as the estimate 
of θ, then the estimation error of θ can be defined as ˆθ θ θ= − . In the DCARC term, the estimate θ̂  
of parameter is updated by using the following discontinuous projection type adaptation law:  

ˆ
ˆ Proj ( )= Γ

θθ τ  (5) 

where Γ is a diagonal positive definite matrix, which indicates the adaptation rate, and τ is an 
adaptation function. The projection mapping 

1 4

T
ˆ ˆ ˆ1 4Proj ( ) [Proj ( ), , Proj ( )]θ θ θ• = • ⋅⋅ ⋅ •  is defined by  
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max

ˆ min

ˆ0,  if  and 0

ˆProj ( ) 0,  if  and 0

,  otherwise
i

i i i

i i i i

i

θ

θ θ

θ θ

 = • >
• = = • <
•  

(6) 

It can be shown [28] that for any adaptation function τ, the projection mapping defined in Equation 
(6) guarantees 

min max

T 1
ˆ

ˆ ˆ ˆP1 { : }

P2 ( Proj ( ) ) 0,

θ

θ

θ θ θ θ θ
θ τ τ τ−

∈Ω ≤ ≤

Γ Γ − ≤ ∀




：

： . 
(7)

After this, define a switching-function-quantity as  

1 1,   a a eq eq a ap e k e x x x x k e= + = − −    (8)

where ea = x – xa = x – (xd + xopt) is the adjusted tracking error; x, xd and xa are the actual output, desired 
reference and adjusted optimized reference, respectively; And k1 is a positive feedback gain. 
Differentiating Equation (8) and noting Equation (2), one can obtain 

1 1 2 3 4

T     

eqp u x x x d

u d

θ θ θ θ θ

ϕ θ

= − − − + +

= + +

  

 
(9)

where T[ , , ,1]eqx x xϕ = − − −  . Define T[ , , ,1]a a a ax x xϕ = − − −  and the DCARC control law is proposed as  

f su u u= +  (10)

where T ˆ
f au =−ϕ θ  is the adjustable model compensation term for perfect trajectory tracking. It 

should be noted here that the adjustable model compensation is decided by adjusted optimized 
reference and parameter estimations only, rather than the actual output, which has great velocity 
measurement noise. In this way, DCARC can minimize the effect of measurement noise compared 
with conventional adaptive robust control. Furthermore, us is the feedback control term, which will 
be synthesized later. Substituting Equation (10) into Equation (9) and then simplifying the resulting 
expression leads to 

T
1 1 1 2 3( )s a a ap u d k e eθ ϕ θ θ θ θ= − + + − −  . (11)

In addition, the feedback control term us in Equation (10) consists of two terms given by 

1 2 s s su u u= +  (12)

where us1 = –ks1p is used to stabilize the nominal system and us2 is a robust feedback used to attenuate 
the effect of model uncertainties. For traditional adaptive robust control, us1 is just a simple 
proportional feedback with ks being the feedback gain to stabilize the nominal system [24], while in 
this case for DCARC, ks1 in Equation (12) is required to be large enough such that the matrix A 
defined below is positive definite. 

1 2 3
1 1 1 2

3
1 2 3 1

2

2 2

s s

e

k
k k k

A
k m k

θ θθ θ

θ θ

− − − + − 
 =

− −   . 

(13)

Furthermore, us2 as a robust feedback term is designed to attenuate the effect of model 
uncertainties of parametric uncertainty and uncertain nonlinearity. As such, us2 should dissipate 
naturally so that it does not affect the adaptive function of the adaptive control part uf. Thus, noting 
Assumption 1 and part 1 of Equation (7), there is a us2 to satisfy the following constraints: 
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T
2

2

i     { }

ii    0
s a

s

p u d
pu

ϕ θ ε− + ≤
≤



 
(14)

where ɛ is a design parameter, which can be arbitrarily small. Specific form of us2 can be obtained 
using the techniques in [20]: 

2
2

1

4su h p= −
ε  (15)

where h is any function satisfying 

M d dh θ ϕ δ≥ +  (16) 

where θM = θmax – θmin. 

Theorem 1. If the adaptation function in Equation (5) is chosen as  

a pτ ϕ=  (17) 

then the DCARC control term applied in Equation (5) guarantees the following results. 

1. In general, all signals are bounded, and the positive definite function Vs defined by  

2 2 2
1 1 1

1 1

2 2s aV p k eθ θ= +
 

(18) 

is bounded above by 

exp( ) (0) [1 exp( )]s sV t V tελ λ
λ

≤ − + − −
 

(19) 

where λ = min{2ks/θ1max, k1}. 
2. If after a finite time t0, there exists parametric uncertainties only (i.e., d = 0 and ∀t ≥ t0), then zero 

final tracking error is also achieved, i.e., ea →  0 and p →  0 as t →  ∞. 

Proof. Differentiating Vs given by Equation (18) with respect to time and applying Equation (11) 
yields 

T 2
1 1 2 3 1 1{ ( ) }s s a a a a aV p u d k e e k e eϕ θ θ θ θ θ= − + + − − +    (20) 

Noting 1a ap e k e= + , we have  

T 2 3 2
2 1 1 2 1 1 2 3 1 1

T T 2 3 2
2 1 1

{ } ( ) ( )

1
{ } [ , ] [ , ]

2

s s a s a a

s a a a s a

V p u d k k p k e p k e

p u d p e A p e k p k e

ϕ θ θ θ θ θ θ

ϕ θ θ

= − + + − − + − −

= − + − − −



  (21) 

As A is positive definite, then we have  

T 2 3 2
2 1 1

1
{ }

2s s a s aV p u d k p k eϕ θ θ≤ − + − −
 

(22) 

With condition i of Equation (14) and choosing λ as λ = min{2ks/θ1max, k1}, the derivative of Vs 
becomes  

s sV Vλ ε≤ − +
 (23) 

Thus, part 1 of Theorem 1 is proved.  

Considering the situation in part 2 of Theorem 1, i.e., d = 0 and ∀t ≥ t0, choose a positive definite 
function Vθ as 
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T 11

2sV Vθ θ θ−= + Γ 
 

(24) 

From Equation (22), the derivative of Vθ satisfies 

T 2 3 2 T 1
2 1 1

1 ˆ{ }
2s a s aV p u d k p k eθ ϕ θ θ θ θ−≤ − + − − + Γ    (25) 

As d = 0 and ∀t ≥ t0, we have  

T 1 2 3 2
ˆ2 1 1

1
( Proj ( ) )

2s s aV pu k p k eθ θθ τ τ θ−≤ + Γ Γ − − −  (26) 

From condition ii of Equation (14) and part 2 of Equation (8), Vθ
  satisfies  

2 3 2
1 1

1

2s aV k p k eθ θ≤ − −
 

(27) 

Let 2 3 2
1 1

1

2s ak p k e M− − = −θ . Therefore, V Lθ ∞∈  and 1M L∈ . As all signals are bounded, it is easy to 

check that M  is bounded, thus making M uniformly continuous. By Barbalat’s lemma, M → 0 as t 
→ ∞, resulting in zero final tracking error being achieved. 

3.2. Reference Optimization in LODCARC 

The proposed DCARC term in Section 3.1 is designed to track xa = xopt + xd as accurately as 
possible, which also means if xopt = 0, DCARC term can track the desired reference xd as accurately as 
possible. Furthermore, Theorem 1 reveals the stability of the result, even resulting in a zero tracking 
error. However, in real-world applications, tracking error is inevitable (i.e., ea = x – xa cannot be zero) 
and in practice, there exists residual tracking error of the practical motion control system ea. As ea = x 
− (xopt + xd) = e − xopt, we have  

a opte e x= +  (28) 

Thus, if the optimal input signal xopt could capture the characteristics of −ea (i.e., xopt → ea), the 
actual tracking error e could achieve e → 0. Therefore, iterative learning control (ILC), which can 
improve tracking performance by using information from previous executions to compensate for the 
repetitive uncertainty and perturbation, is used to capture the characteristics of the residual tracking 
error. As shown in Figure 2, the ILC term is used to generate the optimal input signal for adjusting 
the desired reference of DCARC. Denote the dynamics of the closed-loop of DCARC with the 
flexure-based plant as P(s), then the whole control system can be derived as  

,(s) (s)[ (s) (s)]i opt i dX P X X= +  (29) 

where subscript i denotes the iteration trial number, while the optimal input signal Xopt,i is generated 
by a iterative learning law as  

,i , 1 1(s) (s)( (s) (s) (s))opt opt i iX Q X L E− −= +  (30) 

where Ei–1 is the tracking error in the (i − 1)th iterative process, Q is a low-pass Q-filter which is 
utilized to enhance the system robustness and suppress the noise in the iterative process, while L is 
the learning function. It is noted that a low-pass filter may cause a phase shift, although the phase 
shift can be eliminated by filtering the signal back and forth [29]. Many types of learning functions 
have been developed for ILC [18], while PD-type learning function is a typical, simple and tunable 
ILC learning function. PD-type learning function was chosen for this paper and it is written as  

( ) p dL s K K s= +  (31) 



Appl. Sci. 2017, 7, 406  8 of 14 

Following this, asymptotic stability and monotonic convergence in the iteration domain of the 
iterative law can be guaranteed under certain conservative conditions, which are presented in [18] as 
the following Lemma. 

Lemma 1. The iterative learning law defined in Equations (30) and (31) acting on the system P(s) is 
monotonically convergent i.e., 

1(s) (s) (s) (s)i iE E E Eα∞ + ∞∞ ∞
− < − , where α is the convergence rate, if  

(s)(1 (s) (s)) 1Q L P α
∞

− < <  (32) 

Based on Lemma 1, the optimal input signal xopt generated by ILC control can capture the characteristics of 
residual tracking errors caused by unmodeled repetitive uncertainty. If the convergence of ILC is guaranteed, 
the optimal input signal xopt will be determined and then according to Theorem 1, the stability of the whole 
control system can be guaranteed. Furthermore, as mentioned, zero tracking error is achieved if there are only 
parametric uncertainties so P(s) can be considered as P(s) = 1 theoretically. After this, the convergence 
conditions can be obtained by substituting Equation (31) into Equation (32) to obtain  

(s)(1 ) 1p dQ K K s
∞

− + < <α  (33) 

Obviously, if Kp + Kds = 1 (i.e., Kp = 1 and Kd = 0), then we could obtain α = 0 in theory, which means the ILC 
term will reach a converged error value after one iteration. 

4. Experimental Verification  

4.1. Experiment Setup 

To validate the proposed control method, the comparative experiments were carried out on the 
flexure-based micro-motion manipulator as depicted in Figure 1, while the whole experimental 
system is established as depicted in Figure 3. The two actuators are controlled by a modular 
piezo-servo controller (XE500/E50, XMT Harbin, China). A dSPACE processor board DS1007 
equipped with a 16-bit ADC card (DS2102) and a 6-channel high resolution incremental encoder 
interface card (DS3002) is utilized to output the excitation voltage of the piezo servo controller and 
capture the real-time data for the length gauges. Since the piezoelectric actuator is made up of 
multiple piezoelectric layers glued together, it is sensitive to the pulling force, which may bring 
damage to the actuator. Therefore, preloading forces were applied on the two piezoelectric actuators 
by tightening the bolts to guarantee their operational safety. 

 
Figure 3. Experiment setup. 

To show the effectiveness of the proposed LODCARC sufficiently, three more controllers, 
namely the PI, ILC and DCARC controllers, were implemented for comparison. A traditional PI 
controller, as a typical kind of PID controller, consists of a proportional term and an integral term, 
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which is simple and widely-used. On the other hand, an individual ILC controller uses the same 
learning function in the proposed learning-based optimal DCARC controller as discussed above in 
Section 3.2. It was noted that a second order low-pass with the expression of 

2

2 2
(s)

2
n

n n

Q
s s

ω
ζω ω

=
+ +

 is used 

for the Q-filter in an ILC controller, where ζ is damping ratio and ωn is the crossover frequency. In 
this case, ζ = 0.7 and ωn = 5026.55 rad/s. The PD-type learning function of ILC controller, as 
mentioned in Equation (31), was chosen as Kp = 4.5 and Kd = 3.0. As for the DCARC controller, the 
boundaries for the variation in parameters in the X-axis were chosen as θxmin = [6.13 × 10−7, 5.90 × 10−3, 
6.10, –2]T and θxmax = [6.38 × 10−7, 6.10 × 10−3, 6.55, 2]T, while the boundaries for the variation in 
parameters in the Y-axis are chosen as θymin = [5.15 × 10−7, 5.90 × 10−3, 6.50, –6]T and θymax = [5.29 × 10−7, 
6.20 × 10−3, 6.80, 6]T. The diagonal positive definite matrix Γ, which indicates the adaptation rate in 
Equation (5) is chosen as Γ = diag [1.50 × 10−16, 5.00 × 10−9, 5.00 × 10−3, 1.75 × 10−1]. It was noted that the 
DCARC term of the proposed learning-based optimal DCARC controller and the DCARC controller 
introduced above were the same. In addition, to make sure that the comparative experiments were 
accurate and fair, the proposed LODCARC controller used the same control parameters as a DCARC 
controller and the same filter parameters as an individual ILC controller. 

4.2. Experimental Results 

4.2.1. High-Speed Circular Contouring Trajectory 

A high-speed circular contouring trajectory with a radius of 5 μm and a frequency of 200 Hz 
was chosen to test the effectiveness of the proposed control method first. To get a circular trajectory, 
sinusoidal signals were adopted as input signals in the X- and Y-axes with the phase quadrature. As 
each axis tracks a sinusoidal trajectory when the micro-motion stage tracks a circular trajectory, the 
tracking performance in one direction was considered first. Figure 4 shows the tracking errors in the 
X-axis over 0.2 s using four control methods. In addition, two performance indexes, namely the root 
mean square value of the tracking error (eRMS) and the maximum value of the tracking error (eRMS), 
were introduced to evaluate the performances of different controllers mentioned above, with the 
performance indexes of the tracking error in Figure 4 being compared in Table 1. 

 
Figure 4. Axis tracking errors of circular trajectory in the X-axis. 

Table 1. Tracking performance indexes of circular trajectory in the X-axis  

Controller 1 PI ILC DCARC LODCARC
eRMS (μm) 6.048 0.223 0.139 0.088 
eM (μm) 8.499 0.436 0.341 0.217 

1 PI: proportional-integral controller; ILC: iterative learning control controller; DCARC: desired compensation 
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It can be observed from Figure 4 that the tracking performance of PI controller in the X-axis is 
the worst, due to the phase lag problem of PI controller under high-speed motion conditions. In 
comparison, the other controllers can achieve good tracking performances. However, the dynamics 
of the stage in X- and Y-axes are identical theoretically due to the symmetrical structure of the 
micro-motion stage. As a result, the phase lag in two directions is the same for the circular trajectory, 
which will lead to a relatively good contouring performance. As for the other three controllers, the 
eRMS of the ILC and DCARC controllers were above 0.13 μm, while the eRMS of the proposed 
LODCARC controller is around 0.08 μm. It also can be seen from the eM in Table 1 that the proposed 
LODCARC controller performs best. 

Following this, the contouring performance of the micro-motion stage for tracking circular 
trajectory was analyzed. The contour tracking results during one circular motion period are depicted 
in Figure 5, with the corresponding contouring errors over 0.2 s being illustrated in Figure 6. The 
experimental results in terms of performance indexes are given in Table 2, where εRMS is the root 
mean square value of the contouring error and εM is the maximum value of the contouring error. 

(a) (b)

(c) (d)

Figure 5. Contouring performances of circular trajectory using (a) PI (proportional-integral) 
controller, (b) ILC (iterative learning control) controller, (c) DCARC (desired compensation adaptive 
robust control) controller and (d) LODCARC (learning-based optimal desired compensation 
adaptive robust control) controller. 

Table 2. Contouring performance indexes of circular trajectory. 
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Figure 6. Contouring errors of circular trajectory. 
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(c) (d)

Figure 7. Contouring performances of diamond-shaped trajectory using (a) PI controller, (b) ILC 
controller, (c) DCARC controller, and (d) LODCARC controller. 

The results in Figure 7 show that there are significant contouring errors when the PI controller 
and the ILC controller are adopted; the contouring performance of the PI controller is especially 
poor at the corners of the diamond-shaped trajectory. As shown in Figure 8, the contouring errors of 
the DCARC controller and the LODCARC controller are very small, while for LODCARC, the 
reference trajectory optimization compensate the effect of repetitive disturbance and uncertainty, so 
the contouring performance of LODCARC is greatly improved. It is clearly shown in Table 3 that 
both the εRMS and εM of the proposed LODCARC are the smallest, the εRMS of the proposed 
LODCARC controller is 33% of the εRMS of the DCARC controller, and the εM of the proposed 
LODCARC controller is 39% of the εM of DCARC controller, which also verifies the effectiveness of 
the proposed LODCARC control strategy. 

 
Figure 8. Contouring errors of diamond-shaped trajectory. 
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5. Conclusions 

In this paper, we present a learning-based optimal desired compensation adaptive robust 
control (LODCARC) for guaranteeing the performance of a flexure-based micro-motion 
manipulator. The dynamics of the flexure-based system were studied first, with proposed control 
strategy then being designed based on the dynamics of the system. The proposed LODCARC control 
algorithm possesses good parametric adaptation ability and robustness for nonlinear uncertainty, 
measurement noise and disturbance. This is especially the case with the help of a reference 
optimization method based on ILC, resulting in an effective reduction in the negative effects of 
repetitive unmodeled uncertainty and disturbance. Comparative experiments have been conducted 
on the flexure-based system, with the experimental results showing that the proposed control 
strategy can greatly reduce the tracking and contouring errors. Thus, our study demonstrates that 
the proposed LODCARC control strategy can provide a great technology for flexure-based stages to 
achieve excellent high-speed tracking and contouring performances. 
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