
applied  
sciences

Article

Novel Genetic Algorithm-Based Energy Management
in a Factory Power System Considering Uncertain
Photovoltaic Energies

Ying-Yi Hong * and Po-Sheng Yo

Department of Electrical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan;
posheng.yo@gmail.com
* Correspondence: yyhong@ee.cycu.edu.tw; Tel.: +886-3-265-1200

Academic Editors: Emanuele Giovanni Carlo Ogliari and Sonia Leva
Received: 25 February 2017; Accepted: 21 April 2017; Published: 26 April 2017

Abstract: The demand response and accommodation of different renewable energy resources are
essential factors in a modern smart microgrid. This paper investigates the energy management related
to the short-term (24 h) unit commitment and demand response in a factory power system with
uncertain photovoltaic power generation. Elastic loads may be activated subject to their operation
constraints in a manner determined by the electricity prices while inelastic loads are inflexibly fixed
in each hour. The generation of power from photovoltaic arrays is modeled as a Gaussian distribution
owing to its uncertainty. This problem is formulated as a stochastic mixed-integer optimization
problem and solved using two levels of algorithms: the master level determines the optimal states
of the units (e.g., micro-turbine generators) and elastic loads; and the slave level concerns optimal
real power scheduling and power purchase/sale from/to the utility, subject to system operating
constraints. This paper proposes two novel encoding schemes used in genetic algorithms on the
master level; the point estimate method, incorporating the interior point algorithm, is used on the
slave level. Various scenarios in a 30-bus factory power system are studied to reveal the applicability
of the proposed method.
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1. Introduction

Unit commitment (UC) for the power utility determines the states (on/off) of each thermal
generator over the scheduled time horizon. Recently, the problem of the high penetration of renewables
in power systems has become important. Bertsimas et al. proposed a two-stage adaptive robust UC
model for the security-constrained UC problem in the presence of nodal net injection uncertainty
using Benders decomposition algorithm [1]. Kalantari et al. projected all feasible generation and
demand vectors onto the demand space and reformulated the UC within this loadability set [2].
Ignoring the uncertainty, Bakirtzis et al. used a mixed integer linear programming based on different
time-resolutions to study the UC problem, considering renewables [3].

On the other hand, demand response (DR) is the change in electric usage by end-use customers
from their normal consumption patterns in response to changes in the electricity price associated with
the retail market or incentive policies [4–6]. Customer participation in the DR program is a key factor
to enhance the reliability in a modern smart grid.

Traditionally, DR has been addressed in the scheduling of household appliances for their energy
consumption in response to retail prices [7,8] or the electricity prices in the day ahead power market [9].
Yoon et al. proposed a dynamic demand response controller that changed the set-point temperature
to control HVAC loads, depending on electricity retail price, which was published each 15 min,
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and partially shifted some of this load away from the peak [10]. Tsui and Chan developed a versatile
DR optimization framework that used convex programming for the automatic load management of
various household appliances in a smart home [11]. Pipattanasomporn et al. proposed an algorithm
to manage household loads according to their preset priorities and to guarantee that total household
power consumption was below certain levels [12]. Chavali et al. proposed an approximate greedy
iterative algorithm to schedule the energy usages of appliances of end-use customers. Each customer
in the system will find the optimal start time and operating mode of each appliance in response to
varying electricity prices [13].

DR can also be achieved by alternative approaches, such as aggregated load control [14,15],
plug-in electric vehicles [16] and frequency-related control [17]. Pourmousavi et al. evaluated the
thermostat setpoint control of aggregate electric water heaters for load shifting, and for providing
a desired balancing reserve for the utility. This work also assessed the economic benefits of DR for
customers considering time-of-use pricing [14]. Salinas et al. considered a third-party’s management
of the energy consumption of a group of users, and formulated the corresponding load scheduling
problem as a constrained multi-objective optimization problem. The optimization objectives were to
minimize the cost of consumed energy and to maximize a certain utility, which can be conflicting and
non-commensurable [15]. Tan et al. investigated a market in which users have the flexibility to sell
back the energy generated by their distributed generators or the energy stored in their plug-in electric
vehicles, using a distributed optimization algorithm [16]. Chang-Chien et al. proposed an overall
frequency restoration plan that considered the DR and spinning reserve. The DR program was used
first to restore declining frequency caused by a large disturbance. The scheduled spinning reserve was
then used to raise frequency back to the pre-disturbance level [17].

The concepts of DR, UC and renewable energy as they pertain to a power utility were recently
integrated [18–20]. Abdollahi et al. investigated the economically driven and environmentally driven
measures of DR programs and proposed a new linearized formulation of the cost-emission-based UC
problem that was associated with DR program solved by mixed-integer programming [18]. Zhao et al.
addressed DR programs as another reserve resource to mitigate uncertainty in wind power output;
they developed a robust optimization approach to derive an optimal UC decision by maximizing total
social welfare under the joint worst-case wind power output and DR scenario [19]. Zhao and Guan
presented a unified stochastic and robust UC model by introducing weights for the components of the
stochastic and robust parts in the objective function, which was solved by a Benders’ decomposition
algorithm [20].

This paper explores the optimal DR and UC in a factory’s power system, rather than a bulk
power system or a DR at home, considering uncertain photovoltaic (PV) power generation. A factory
tends to produce more real power from its micro-turbine generators once the time-of-use electricity
price set by the utility is high or the PV power is inadequate. The factory has elastic loads, such as
production lines, which are associated with interruptible demand and fixed energy consumption in
a day. The time periods for operating these elastic loads can be determined by the time-of-use tariff,
PV generation, a capacity contract, cost of the fuel of the micro-turbine generator and other operational
constraints. The uncertainty of PV power output was addressed by many papers [21–32]. In this paper,
the uncertainty of PV power is modeled using stochastic distributions. This problem is expressed by
a stochastic mixed integer optimization formulation. The innovations of this paper are summarized
as follows:

(1) The problem is solved by a two-level method: the master level determines the optimal states
(0/1) of the generators and the elastic loads using a novel genetic algorithm; and the slave level
deals with optimal real power scheduling and power purchase/sale from/to the utility, subject
to the system operating constraints, using the interior point algorithm.

(2) Two novel encoding schemes associated with new crossover and mutation operations in genetic
algorithms are presented. These new operations make this novel GA more efficient to solve the
optimal UC and DR in a factory’s power system.
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(3) The uncertainty in the PV power generation is studied by using the point estimate method that
integrates the master level with the slave level to gain an optimal stochastic mixed-integer solution.

(4) Not only the states of micro-turbine generators in UC but also the states of elastic loads at the
production lines in DR are addressed at the same time.

The rest of this paper is organized as follows. Section 2 formulates the problem to be solved.
Section 3 then presents the methodology based on genetic algorithms. Section 4 summarizes the
simulation results of a 30-bus factory power system with PV generations. Section 5 draws conclusions.

2. Problem Formulation

As described in Section 1, the problem can be expressed as follows.

Objective Function

The problem is to minimize the expected value of following objective.

f =
T

∑
t = 1

[
G1

∑
i = 1

[
ui(t)·

(
Fi

(
P̃i(t)

)
+ Si(t)

)]]
+ pp(t)·P̃p(t)− ps(t)·P̃s(t) (1)

where f is the total cost ($) of power generations from micro-turbine generators plus that of power
purchase/sale; T denotes the total number of hours (T = 24 h herein); G1 represents the number of
micro-turbine generators; ui(t) is the unknown state (0/1) of the i-th unit at hour t; and Fi

(
P̃i(t)

)
and

Si(t) represent the fuel cost ($/h) and the start-up cost of the i-th unit at hour t, respectively. P̃i(t) and
P̃p(t)/P̃s(t) are the unknown real power generated by the i-th unit and the unknown purchased/sold
power at the point of common coupling (the swing bus) at hour t. The terms pp(t) and ps(t) are the
known time-of-use electricity tariffs (purchased/sold power) for this factory. The symbol “~” denotes
random variables.

Equality Constraint

At hour t, the objective is subject to

P̃p(t)− P̃s(t) +
G1

∑
i = 1

ui(t)·P̃i(t) +
G2

∑
j = 1

P̃Vj(t) = Pin(t) +
L

∑
` = 1

v`(t)P`
el(t), t = 1, 2, . . . , T (2)

where G2 is the number of PV arrays; P̃Vj(t) is the known power generation from PV array j at hour t,
modeled by a stochastic distribution. v`(t) is the unknown state (0/1) of the P`

el(t) at hour t. Pin(t) and
P`

el(t) are the known inelastic and known maximum elastic loads (MW) at the `-th production line at
hour t, respectively, ` = 1, 2, . . . , L. If an elastic load is activated (v`(t) = 1), then maximum power is
consumed (that is, P`

el(t)); otherwise (v`(t) = 0), the power consumption is zero.

Inequality Constraints

At hour t, the powers generated by each micro-turbine generator and each PV array must be
within the following limits.

Pi
min ≤ P̃i(t) ≤ Pi

max, i f ui(t) = 1, i = 1, 2, . . . , G1 (3)

PVj
min ≤ P̃Vj(t) ≤ PVj

max j = 1, 2, . . . , G2 (4)

where Pi
min (PVi

min) and Pi
max (PVi

max) denote the minimum and maximum of Pi (PVi). The
micro-turbine generators can ramp up and down to higher and lower outputs. The ramp rate (MW/h)
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is the maximum change in levels (Rup
i and Rdown

i ) between two consecutive hours (if the unit is on at
time t − 1 and t) [33].

Pi(t)− Pi(t− 1) ≤ Rup
i (5)

−Rdown
i ≤Pi(t)− Pi(t− 1) (6)

The i-th micro-turbine generator should be operated with a minimum up time Mon
i and a minimum

down time Mo f f
i [33]. The total elastic load at the `-th production line in a day is fixed because the

amount of requested products is firmed.

T

∑
t = 1

v`(t)·P`
el(t) = P`

total` = 1, 2, . . . ,L (7)

3. Proposed Method

The problem expressed by Equations (1)–(7) consists of T× (G1 + L) unknown binary variables and
T × (2 + G1) unknown random variables. In this paper, G1 = 4, L = 5 and T = 24. This problem may be
solved by binary linear programming or dynamic programming [33–35] in the case that no probability
density function is involved. The genetic algorithm (GA), on the other hand, randomly produces many
chromosomes, which represent solutions, and selects the fittest one. However, the computational
burden of the GA becomes large if the binary bit length of a chromosome and the number of functional
constraints is large [36–38]. Thus, this work proposes an enhanced GA to deal with UC and DR.

The proposed method includes two levels of calculations: the master and slave levels. On the
master level, two novel methods for encoding generators and elastic demands are presented to
overcome the above limitations of the GA and to improve the genetic operations. The GA on the master
level solves the problem formulated as Equations (1)–(7) and the constraints of a minimum up time Mon

i

and a minimum down time Mo f f
i for each micro-turbine generator. When the states of the generators

and elastic loads are determined, the remaining problem is to determine P̃i(t), P̃p(t) and P̃s(t) on the
slave level, taking into account uncertain PV generation. The interior point method, which incorporates
the point-estimation method, is used to solve the problem on the slave level.

3.1. Novel Encoding of Generator States

The traditional GA may encode the on/off states (u(t)) of each generator using binary bits (0 or 1),
according to Equations (1)–(3). For example, the grey and white parts in a chromosome denote the on
and off states, respectively, of a generator in one hour period over 24 h, as shown in Figure 1a.
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Figure 1. (a) On (grey) and off (white) states of a generator over 24 h; and (b) new encoding.

When the number of generators is large and traditional encoding is used, the length of
a chromosome becomes very long. Consequently, this work proposes a pair-based encoding, in which
the first and second slots (genes) in a pair represent the starting and ending hours in a period,
respectively. Hence, each slot contains integer. Figure 1b shows the new encoding of the chromosome
that corresponds to Figure 1a. With this new encoding, the length of a chromosome is much reduced
and variable.
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Crossover Operation

The crossover operation in this new encoding comprises three steps using a given crossover rate,
as follows.

Step A1: Identify the overlapping hours in which states of two selected chromosomes are on,
as shown in Figure 2. The proto-offspring becomes (3,4)-(6,9)-(13,19).
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Mutation Operation

A mutation rate for the mutation operation is specified. When a slot is identified, its corresponding
integer is mutated to a value that is between those of its neighbors. Figure 4 presents an example: the
slot with “11” is identified and mutated to the value of “17”, which is between 9 and 19.
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3.2. Novel Encoding of States of Elastic Load

The encoding of elastic loads should differ from that of generators because each elastic load must
satisfy the required amount of production daily. This novel encoding is based on the well-known
knapsack problem [36].

For example, the grey and white parts in a chromosome denote hours when the state of an elastic
load is on or off, respectively, over 24 h, as shown in Figure 5a, using the traditional encoding.
The proposed encoding employs several slots (genes) to represent consecutive periods of on, off, on,
off and so on states. Restated, the odd and even slots denote the periods where the load is in the on or
off state, respectively. Figure 5b shows the results (with respect to Figure 5a) that are obtained by the
novel encoding. Notably, the sum of all integers equals 24.
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corresponding to that in 5a.

Crossover Operation

The crossover operation is performed using the following three steps.
Step B1: Identify a pair of slots (on and off states) in parent 2. The identified pair is inserted in

a position between the off and on slots. Figure 6a gives an example in which the total number of hours
after insertion is 35.

Step B2: Compute the overvalue (35 − 24 = 11).
Step B3: Trim the integers in the slots to make the total sum 24, as shown in Figure 6b.
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Mutation Operation

The mutation operation is carried out by identifying a pair of slots (on and off hours) according to
a given mutation rate. The integers in these two slots are mutated to other integers but their sum is
unchanged. Figure 7 displays an example in which (7,2) is mutated to (1,8).
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3.3. Point Estimation Method

Once the states of micro-turbine generators and elastic loads have been determined on the master
level, the remaining problem becomes a stochastic optimization problem, which is solved on the slave
level. The uncertain PV generation is estimated using the point estimation method [39,40], as follows.
Let the expected values, standard deviation and skewness coefficient of each uncertain PV generation
(i.e., P̃Vj) be µPVj , σPVj and, λPVj , respectively, where j = 1, 2, . . . , G2.

Step C1: Set the first and second moments of the P̃i(t) at the i-th generator, P̃p(t) and P̃s(t) to zero
where i = 1, 2, . . . , G1.

E
(

P̃1
i (t)

)
= 0, E

(
P̃2

i (t)
)
= 0, E

(
P̃1

p(t)
)
= 0, E

(
P̃2

p(t)
)
= 0, E

(
P̃1

S(t)
)
= 0, E

(
P̃2

S(t)
)
= 0 (8)

where the symbol E stands for the expectation operator.
Step C2: Compute the two perturbations:

ξ j,1(t) =
λPVj(t)

2
+

√
G2 +

(
λPVj(t)

2

)2

, j = 1, 2, · · · , G2; t = 1, 2, ..., T (9)
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ξ j,2(t) =
λPVj(t)

2
−

√
G2 +

(
λPVj(t)

2

)2

, j = 1, 2, · · · , G2; t = 1, 2, ..., T (10)

In addition, compute the two weighting factors:

ωj,1(t) = −
ξ j,2(t)

G2
(
ξ j,1(t)− ξ j,2(t)

) (11)

ωj,2(t) =
ξ j,1(t)

G2
(
ξ j,1(t)− ξ j,2(t)

) (12)

G2

∑
j = 1

ωj,1 + ωj,2 = 1 (13)

Step C3: Estimate the two location parameters:

PVj,k(t) = µPVj(t) + ξ j,k(t)·σPVj(t), k = 1, 2; j = 1, 2, · · · , G2; t = 1, 2, ..., T (14)

Step C4: Let m be 1 where m denotes a moving index given for the PV arrays.
Step C5: Let k be 1. Start to apply the positive perturbation using Equation (9) for the m-th

PV array.
Step C6: Find the optimal Pi(t), Pp(t) and Ps(t) where t = 1, 2, . . . , T.

Min f =
T

∑
t = 1

∑
i∈C1(t)

[Fi(Pi,mk(t)) + Si(t)] + pp(t)·Pp,mk(t)− ps(t)·Ps,mk(t) (15)

subject to

Pp,mk(t)− Ps,mk(t) + ∑
i∈C1(t)

Pi,mk(t)+ ∑
j∈G2,j 6=m

µPVj(t) + PVm,k(t) = Pin(t) + ∑`∈C2(t) P`
el(t)

t = 1, 2, . . . , T
(16)

Pi
min ≤ Pi,mk(t) ≤ Pi

max, i ∈ C1(t) (17)

and the constraints on ramp rate that are expressed in Equations (5) and (6). The symbols C1(t) and
C2(t) are the set of generators and elastic loads in the on state.

Step C7: Let k = k + 1. If k = 2, then start to conduct the negative perturbation using Equation (10)
for the m-th PV array and go to Step C6; else go to Step C8.

Step C8: m = m + 1. If m > G2, then go to Step C9; else go to Step C5.
Step C9: Compute the mean and standard deviation of Pi(t), i = 1, 2, . . . , G2, t = 1, 2, . . . , T.

E(Pi(t)) =
G2

∑
m = 1

2

∑
k = 1

ωj,k(t)× Pi,mk(t) (18)

σPi(t) =
√

E
(

P2
i (t)

)
− (E(Pi(t)))

2 (19)

The calculations of the means and standard deviations of P̃p(t), P̃s(t) and cost are similar and
omitted here.

Solving the problem in Step C6 becomes easy because it is a quadratic programming problem.
This work employs the interior point method in MATLAB to solve this problem [41].
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3.4. Overall Flowchart of Algorithmic Steps

The schematic concept of the master–slave iterations can be illustrated as Figure 8. Overall
algorithmic steps for the proposed method based on the master–slave iterations are described as
follows. Figure 9 illustrates the flowchart of the proposed method. First, specify the elastic loads with
their must-run durations and the 24 h inelastic loads; input generator parameters, which are the ramp
rate, minimum up-time, minimum down-time and cost coefficients. In addition, the forecasted 24 h PV
power generations in terms of means, standard deviations and skewness coefficients are given.

In the proposed GA, both generator units and elastic demands are initialized to be feasible
chromosomes. In the master-level calculation, Pi(t) and Ps(t) where t = 1, 2, . . . , T, are determined
using Step C1–C9 on the slave level. Please note that if any of the constraints (such as minimum up-time
Mon

i and minimum down-time Mo f f
i and Equation (7) is violated for a chromosome, its corresponding

penalty term is added to the fitness, Equation (1). In the proposed GA, the better chromosomes are
selected using the roulette wheel.

As described in the beginning of Section 3, G1 = 4, L = 5 and T = 24. In a day-ahead scheduling
problem, T = 24 is always true. Moreover, the number (30 herein) of buses in a factory, which is
addressed to consider both UC and DR, is actually large. Considering G1 = 4 and L = 5 is reasonable in
a large factory power system. This studied problem is not the same as the traditional UC problem,
which is defined in the transmission system and may include many buses and generators. Moreover,
traditional DR is concerned in the distribution system or at home; however, the DR is emphasized
herein in the end-user’s factory power system. The proposed GA is very efficient to deal with the
operational constraints, such as Equation (7), for the studied problem.Appl. Sci. 2017, 7, 438  9 of 18 
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4. Simulation Results

A 30-bus factory power system, as shown in Figure 10, is used to illustrate the results of the
simulation. The micro-turbine generators are at buses 3–6. Table 1 presents the cost coefficients and
MW limits of these generators. Table 2 presents the other operational parameters of these generators.
The solar PV generations from 7:00 a.m. to 6:00 p.m. at buses 7–10 are modeled using Gaussian
distributions, as shown in Figure 11. The standard deviation is set to 3% of the mean value (see page 17
in [42]); that is, the range of PV generation can be estimated approximately to be (the mean value)
× (1 ± 3 × 3%), which covers 99.73% of possible PV generation cases. The maximum sizes of these
four arrays are 450, 350, 400 and 500 kW. This factory purchases/sells power from/to the utility in
a manner determined by the time-of-use prices, as shown in Table 3. In addition to inelastic loads,
this factory has five production lines with elastic loads at buses 6, 16, 18, 20 and 26, as shown in Table 4.
For example, the total energy consumption of the production line at bus 6 must be 75 MWh (10 × 7.5)
daily to produce the required amount of products. Other bus data are given in Appendix A.

A personal computer with Intel (R) Core (TM) i5-2500 CPU @ 3.3 GHZ and 8 GB RAM was used
to develop a MATLAB (R2011a, The Mathworks Inc., Natick, MA, USA) code to study the problem.
Many scenarios (experimental designs) were studied: PV consideration (see Sections 4.1 and 4.2),
different electricity tariffs, Mon

i and Mo f f
i , ramp rates, and must-run hours (see Section 4.3). For each

scenario, the MATLAB code was run 20 times and the best fitness in these 20 results was considered as
the optimal solution. It was found that the proposed novel GA always converges in a finite iterations.
Section 4.5 gives the statistics of convergence performance of the proposed method.
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Table 1. Cost coefficients and MW limits of generators.

Bus No. Pmin (MW) Pmax (MW)
Cost Coefficients

ai ($/h) bi ($/MWh) ci ($/MWh2)

3 0.5 4 151.28 87.87 0.14
4 0.6 3.5 125.21 67.82 0.65
5 0.9 4.5 89.21 31.37 1.1
6 1.1 3 35.48 17.6 0.1416

Table 2. Operational parameters of generators.

Bus No. Ramp Rate (MW/h) Start Up Cost ($) Minimum Up Time, Mon
i (h) Minimum Down Time, Moff

i (h)

3 2.5 161.84 4 2
4 2.0 122.53 3 2
5 3.5 175.34 3 1
6 2.0 148.63 4 2

Table 3. Time-of-use pricing.

Periods Prices ($/MWh)

0:00 a.m.–8:59 a.m. 65
9:00 a.m.–8:59 p.m. 131

9:00 p.m.–11:59 p.m. 65

Table 4. Parameters of elastic loads.

Bus Must-Run Hours Maximum Loads (MW)

6 10 7.5
16 6 2.0
18 7 2.5
20 6 2.5
26 5 2.5

4.1. Optimal Solutions Obtained by Proposed Method

The proposed method is applied to find the optimal unit commitment and demand response
considering the data described above. The convergence criterion is that 10 consecutive iterations yield
the same solution. The studied problem consists of 216 unknown binary variables and 144 unknown
random variables.

The optimal solution takes 46 master–slave iterations and 106.99 s to converge. The expected
value of total cost is $23,737.68. Table 5 shows the expected values of optimal power injections obtained
by the interior point method on the slave level. Table 6 illustrates the expected values of optimal
demand responses that are obtained on the master level. The following comments can be made.

(a) A positive expected value of power injection at the swing bus (P̃sw(t)) indicates that the factory
purchases power (P̃p(t)) while a negative sign implies that the factory sells power (−P̃s(t)) to the
utility. The factory sells power to the utility at hours 8:00 a.m.–2:00 p.m., 8:00 p.m. and 9:00 p.m.
because the tariff during these periods is high (131$/MWh). In total, 46.1 MWh from the factory
is sold to the utility.

(b) Most of the generated PV power is consumed in the factory rather than imported into the utility
power system.

(c) Since the tariff for purchasing power from the utility is low during 1:00–8:00 a.m., the elastic
loads consume almost all of energy during this period. To fulfill the total demand constraints
(75 MWh), the production line at bus 6 also consumes energy during 3:00–7:00 p.m.



Appl. Sci. 2017, 7, 438 13 of 19

Table 5. (a) Expected values of real power injections (MW) during 1:00 a.m.–12:00 p.m. (b) Expected
values of real power injections (MW) during 13:00 p.m.–24:00 a.m.

(a)

t 1 2 3 4 5 6 7 8 9 10 11 12

Psw(t) 15.38 13.44 14.19 12.57 12.33 5.31 1.10 −1.62 −6.05 −6.89 −6.41 −6.32
P3(t) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 3.00 4.00 4.00 4.00
P4(t) 1.15 3.15 2.05 3.50 3.50 1.50 0.60 0.60 2.60 3.50 3.50 3.50
P5(t) 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50
P6(t) 1.59 1.10 1.16 1.10 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b)

t 13 14 15 16 17 18 19 20 21 22 23 24

Psw(t) −6.45 −6.53 1.73 2.04 2.23 2.25 2.27 −5.29 −0.54 5.10 5.01 4.88
P3(t) 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 1.50 0.50 0.50 0.50
P4(t) 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 1.50 1.27 1.17 1.05
P5(t) 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 0.00 0.00 0.00
P6(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6. Expected values of optimal demand response (MW) in a day.

t 1 2 3 4 5 6 7 8–14 15 16 17 18 19 20–24

P6
el(t) 7.5 7.5 7.5 7.5 7.5 0.0 0.0 0.0 7.5 7.5 7.5 7.5 7.5 0.0

P16
el (t) 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P18
el (t) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P20
el (t) 2.5 2.5 2.5 2.5 2.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P26
el (t) 2.5 2.5 2.5 2.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.2. Optimal Solutions without Considering PV Arrays

This section considers the same condition as considered in Section 4.1 but excluding the PV arrays.
In this case, only Step C6 in Section 3.3 was implemented on the slave level. The optimal solution is
found in 69 master–slave iterations. The total cost is increased to $24,333.87 because no PV arrays
are utilized to support the demand. Tables 7 and 8 depict the optimal real power injections Psw(t)
and demand response during 24 h. The factory sells energy to the utility from 7:00 a.m. to 4:00 p.m.
Generally, the power system outside the factory has heavy loads during this period, so the demand
response in this factory can mitigate the stress of the utility.

Table 7. (a) Real power injections (MW) during 1:00 a.m.−12:00 p.m. (b) Real power injections (MW)
during 13:00 p.m.−24:00 a.m.

(a)

t 1 2 3 4 5 6 7 8 9 10 11 12

Psw(t) 16.37 15.39 14.50 13.67 13.90 1.06 −1.89 −3.25 −3.92 −3.18 −2.92 −2.81
P3(t) 0.50 0.50 0.50 0.50 0.50 1.58 1.08 0.58 1.02 1.51 1.97 2.47
P4(t) 0.06 1.20 1.80 2.40 3.00 3.50 3.48 2.88 3.48 3.50 3.42 3.50
P5(t) 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.02
P6(t) 1.14 1.10 1.10 1.10 0.0 1.16 0.0 0.0 0.0 0.0 0.0 0.0

(b)

t 13 14 15 16 17 18 19 20 21 22 23 24

Psw(t) −4.21 −5.01 −4.35 −4.28 3.12 2.83 2.27 6.21 6.47 −0.51 −0.10 0.25
P3(t) 3.31 4.00 4.00 4.00 4.00 4.00 4.00 0.00 0.00 0.00 0.00 0.00
P4(t) 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.48 2.88 2.28 1.68
P5(t) 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50
P6(t) 1.10 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 8. Optimal demand response (MW) in a day.

t 1 2 3 4 5 6 7 8–16 17 18 19 20 21 22–24

P6
el(t) 7.5 7.5 7.5 7.5 7.5 0.0 0.0 0.0 7.5 7.5 7.5 7.5 7.5 0.0

P16
el (t) 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P18
el (t) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P20
el (t) 2.5 2.5 2.5 2.5 2.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P26
el (t) 2.5 2.5 2.5 2.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.3. Impacts of Different Factors on Total Cost

This section explores the impact of different factors (electricity tariffs, minimum on/minimum
down times, ramp rates, and must-run hours in production lines) on the expected value of total cost
of the factory, considering the PV generation, with the purpose of validating the proposed method.
Table 9 gives the simulation results.

Three time-of-use tariffs are examined. When the tariff during the off-peak hours is high (low),
the total cost of the factory is high (low).

When the minimum on-/down-times of generators are all set to 1 h, the constraints are almost
relaxed and the acquired cost ($21,879.39) is lower than those in other two cases. When the minimum
on/minimum down times are set to large values, these operational constraints are very strict and a
larger cost ($25,845.03) is attained.

In the perspective of optimization, large (small) ramp rates imply the problem has a large solution
space, resulting in a low (high) cost. Generally, small micro-turbine generators have small ramp rates
in factories.

The must-run hours of the production lines reveal the amount of products that must be produced
in a day. Long must-run hours, corresponding to many required products, lead to a large total cost,
as shown in Table 9.

Table 9. Impacts of different factors on results.

Impact Factors Descriptions Expected Values of Total Cost ($)

Electricity Tariffs
Peak hour: 131$/MWh; off-peak hour: 30$/MWh 19,028.80
As shown in Table 5 23,737.68
Peak hour: 131$/MWh; off-peak hour: 100$/MWh 25,637.07

Minimum Up/Minimum
Down Times
(Mon

i , Mo f f
i )

All are 1 h at all buses 21,879.39
As shown in Table 2 23,737.68
(8,4), (8,3), (7,3), (7,4) hours at buses 3, 4, 5, 6. 25,845.03

Ramp Rates
(Rup

i = Rdown
i , MW/h)

0.5, 0.6, 0.7, 0.8 MW/h at buses 3, 4, 5, 6. 23,781.71
As shown in Table 2 23,737.68
4, 3.5, 4.5, 3 MW/h at buses 3, 4, 5, 6. 23,346.11

Must-run Hours in
Production Lines

7, 3, 4, 3, 2 h at buses 6, 16, 18, 20, 26 18,254.53
As shown in Table 6 23,737.68
15, 11, 12, 11, 10 h at buses 6, 16, 18, 20, 26 33,448.68

4.4. Comparisons between Traditional Method and Proposed Method

The traditional GA (TGA) incorporating with the interior point method and the point-estimation
method was used to study the problem for comparisons.

The case studied in Section 4.1 serves as an example here. Table 10 shows the performances of
TGA considering different population sizes (50, 75 and 100). The crossover and mutation rates of TGA
are 0.8 and 0.02, respectively. The simulation results imply that the TGA yields a feasible solution
only because a long binary bit string (24 × 9 = 216 bits) is needed for encoding ui(t) and v`(t) and the
number of real variables (encoded by 144 × 32 bits) is also large. The TGA requires much shorter CPU
times and less number of iterations than those needed by the proposed method. Obviously, the TGA
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converges prematurely. The expected values of final cost obtained by TGA are $31,300.69–31,345.96,
which are much greater than $23,737.68 obtained by the proposed method.

Table 10. Performance of traditional GA considering different population sizes.

Population Size Expected Cost ($) CPU Time (s) No. of Iterations

50 31345.96 25.72 15
75 31300.69 54.32 23

100 31321.59 56.07 20

4.5. Statistics of Convergence Performance of the Proposed Method

The simulation results shown in the previous subsections were conducted by running the
developed MATLAB code 20 times and the best solution among the 20 results was identified as
the final optimal solution. In order to show the convergence performance of the proposed method,
this Sections 4.1–4.4 increases the number of runs to 50. The case in Section 4.2 serves as an example.

The best solution occurs in the 9th run out of the 50 runs. The best solution is $24,333.87 while
the worst one is $30,328.29, which occurs in the 43th run. The difference between $24,333.87 and
$30,328.29 are divided equally into 10 portions; that is, 10%, 20%, . . . , 100% of the difference between
the worst and best costs. As shown in Figure 12a, the probability of the 1st portion is 0.04 (two runs
out of 50 runs); the best cost $24,333.87 and the cost, $24,513.49, obtained in the 15th run, are within
the 1st portion. The largest probability (0.3) occurs in the 7th portion, which covers the cost between
$28,330.11 and $28,996.16. Figure 12b shows the corresponding cumulative probability.
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4.6. Comparison of Results Considering Different Standard Deviations of PV Power Generations

The standard deviation of PV power generation is set to 3% of the mean value in Section 4.1.
That is, the range of PV power generation can be estimated approximately to be (the mean value) ×
(1 ± 3 × 3%), which covers 99.73% of possible PV generation cases. This section investigates impacts
of other standard deviation (8%) on the results. Table 11 shows the comparisons of results by studying
the same case in Section 4.1 with different standard deviations of PV power generations. The CPU
times and iterations indicate that the proposed GA can still converge properly without premature
convergence. The expected cost ($23,028.07) obtained by considering the standard deviation of 8%
of the mean value is smaller than that ($23,737.68) obtained in Section 4.1. However, the difference
is very small. Actually, the expected power generations of all micro-turbine generators obtained by
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considering different standard deviations of PV power generations are almost the same because two
location parameters of PV power generations in Equation (14) are utilized. These location parameters
are centered at the same mean value for a given PV array although different standard deviations are
considered and different location parameters are gained in Equation (14).

Table 11. Comparisons of results considering different standard deviations of PV power generations.

Standard Deviation Expected Cost ($) CPU Time (s) No. of Iterations

3% 23,737.68 106.99 46
8% 23,028.07 119.70 46

5. Conclusions

This paper investigates a new problem about optimal UC and DR caused by electricity tariffs
in a factory power system. The uncertain amounts of generated power from renewable sources,
which may reduce the total cost, are considered in the factory power system. The contributions of this
paper can be summarized as follows:

1. The problem concerning optimal DR and UC, considering uncertain PV power generation,
in a factory power system, rather than the UC in the bulk power system or DR at home,
is formulated and studied.

2. The method based on novel genetic algorithms that are associated with the point estimation and
interior point methods is proposed to determine the UC and DR in the factory power system.

3. The proposed string encoding in genetic algorithms efficiently performs both crossover and
mutation operations for the UC together with DR. This proposed method ensures that feasible
chromosomes can evolve to the fittest solution.

4. Impacts of different parameters (such as PV generations, electricity tariffs, minimum on/down
times, ramp rates and must-run hours) were completely investigated on the optimal solutions.

The results of the simulation verify the applicability of the proposed method using a 30-bus
factory power system.

Future studies will include modeling different tariffs for electricity and renewable energy as well
as different tariffs for purchase and selling energy. Power flow studies in the factory power system
will be investigated to ensure that both the voltages and line flows meet the security constraints.
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Appendix A

This appendix provides inelastic loads (MW) in the factory power system.
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