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Abstract: This article deals with the computational modelling of the fatigue crack aspect ratio
evolution in embedded, surface, and corner cracks located in finite-thickness plates under tensile
fatigue. The approach is based on the Paris law for fatigue propagation and an expression for the
stress intensity factor (SIF) provided by Newman and Raju. Numerical results indicate that the crack
path develops in such a manner that all flaws tend to reach similar aspect ratios, i.e., a preferential
crack path does exist along which there is a one-to-one relationship between the aspect ratio and the
relative crack depth (a sort of master curve in the matter of fatigue crack path evolution). Such a
reference curve corresponds to that of a very superficial initial flaw with almost circular shape.
The convergence (quicker or slower approach between fatigue crack paths starting from different
initial defects) is higher for surface flaws than for corner cracks, and quicker for the latter than for
embedded discontinuities. Corner defects increase their size faster than surface cracks, and the latter
do the same quicker than the embedded ones.

Keywords: numerical modelling; finite-thickness cracked plate; Paris law; preferential crack path;
fatigue life

1. Introduction

The stress intensity factor (SIF) in cracked plates of finite thickness is very useful in fracture
mechanics and damage tolerance approaches. SIF solutions for this geometry were provided by
Newman and Raju in a classical paper [1] and more recently by other authors [2–4]. In plates with a
surface crack under tension loading, the maximum SIF is reached at the crack center when the aspect
ratio is lower than 0.6 and at the border when it is higher [5]. For embedded cracks, the maximum SIF
is achieved near the free surface [6]. In the case of corner cracks, the highest values of the SIF occurred
at the free surface along the width direction for cracks in which the depth is higher than the other
dimension and at the free surface along the thickness direction for cracks in which the depth is lower
than the other dimension [7].

The crack front evolution for semielliptical cracks in plates was numerically analyzed [8–13]
through the Paris law [14] and the SIF, sometimes taking into account hypothetical crack closure effects
on the SIF value [15] or using the root mean square (RMS) SIF (an integrated average of the SIF) [16],
considering only two points or a set of points over the crack front and assuming a pre-defined crack
shape or with no shape constraints. A new finite element simulation technique using fatigue crack
growth circles needs a small number of crack front increments [17], while the conventional method
requires several hundred increments to get accurate results. In [18], a review is presented on 3D-FE
adaptive remeshing techniques for crack growth modeling.
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The existence of free surfaces has a great influence on crack advancement. Cracks tend to
propagate reaching a constant SIF along their front (iso-K), but the free surface prevents this
phenomenon [19]. Surface cracks in plates tend to propagate following a preferential cracking
path [8,13] which depends on the kind of loading applied on the specimen (tension or bending).
The crack aspect ratio for a semi-elliptical surface crack in a pipe subjected to internal pressure is
similar to that of a plate in tension [20]. For the same conditions, corner cracks grow quicker than
surface flaws, and surface flaws more rapidly than embedded cracks [21]. In the case of surface or
corner cracks near semicircular notches or holes, results of the SIF exhibit higher values when the ratio
of the notch (or hole) radius to the plate thickness increases [22–24] so that cracks emanating from
stress areas such as notches or holes advance by fatigue at a higher rate near the stress concentrator
than they do far from it.

This article deals with the computational modelling of the fatigue crack aspect ratio evolution
in embedded, surface, and corner cracks located in finite-thickness plates under tensile fatigue.
The approach is based on the Paris law for fatigue propagation and an expression for the SIF provided
by Newman and Raju. To fill the gap existing in the scientific literature, a comparison of the preferential
propagation path, the dimensionless SIF evolution, and the number of cycles required for propagation
between the three case studies needs to be performed.

2. Numerical Modelling

A computer program in Java programming language was developed to study the propagation
path of elliptical embedded cracks, semi-elliptical surface cracks, and quarter-elliptical corner cracks
on the cross section of a plate (Figure 1) subjected to fatigue (cyclic) loading in the form of remote
uniform tension (under Mode-I loading conditions). The plate has a finite thickness; the height and the
width are large enough to avoid any influence of the boundary on the SIF value.
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Figure 1. Scheme of a finite-thickness plate with: (a) an elliptical embedded crack; (b) a semi-elliptical 
surface crack; (c) a quarter-elliptical corner crack. 

Figure 1. Scheme of a finite-thickness plate with: (a) an elliptical embedded crack; (b) a semi-elliptical
surface crack; (c) a quarter-elliptical corner crack.



Appl. Sci. 2017, 7, 746 3 of 13

The crack front was characterized as an ellipse of semiaxes a (crack depth) and b (crack length),
see Figure 1, and a specific point p over the crack front is determined by the angular parameter φ as a
function of the relationship between the semiaxes a and b (Figure 2).
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2.1. Stress Intensity Factor (SIF)

The SIFs used were those obtained by Newman and Raju [1] by a three-dimensional (3D) finite
element analysis and the nodal-force method. These authors adjusted their results to an equation that
calculates the SIF K:

K = σ

√
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Q
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where the function Q is the shape factor for an ellipse (given by the square of the complete elliptic
integral of the second kind) and depends on the aspect ratio a/b as follows:
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F is a function of the parameters: a/b (crack aspect ratio, see Figure 1), a/t (relative crack depth,
see Figure 1), and φ the angle representing the specific position at the crack front (see Figure 2).
The function F is different depending on if the crack is embedded, surface, or corner-type and is
calculated by means of the expression,
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where the parameters M1, M2, M3, g, and fφ are obtained through the equations in Appendix A.
In Table 1 the ranges are given of the variables a/b, a/t, and φ for which the Equations in

Appendix A are valid for the calculation of the SIF in an embedded, surface, or corner crack placed in
a plate subjected to tensile cyclic loading.

Table 1. Applicability ranges for the equations by Newman and Raju [1].

Parameters
Configuration
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a/b 0 to ∞ 0 to 2 0.2 to 2

a/t <1.25 (a/b + 0.6) if 0 ≤ a/b ≤ 0.2
<1 if a/b > 0.2 <1
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2.2. Crack Front Evolution

The basic hypothesis of this modelling is the assumption that the crack front can be characterized
as an ellipse (see characteristic dimensions in Figure 1) and that fatigue propagation takes place in a
direction perpendicular to such a front, following the Paris law [14],

da
dN

= C∆Km (5)

The fatigue process uncertainties eliminate any advantages of using a fatigue crack growth law
that is more complex and has more material parameters than the Paris law, cf. [25].

To discretize the crack front, modelled in an elliptical way, it was divided into z segments of
equal length using the Simpson’s rule. Subsequently, each of the points i was moved perpendicularly
to the crack front, in accordance with the Paris law, so that the maximum crack increase, ∆a(max),
corresponding to the point of the maximum SIF (maximum parameter F, F(max)) was kept constant
during the whole computation. From this maximum increase ∆a(max) and the SIF, the advance ∆ai of
each of the front points can be obtained as:

∆ai = ∆a(max)
[

Fi

F(max)

]m
(6)

The new points, fitted by the method of least squares to minimize the error, form a new ellipse,
as described elsewhere [26], so that the crack advance progress is repeated iteratively up to reaching
the required relative crack depth. The ranges of the used variables were as follows: 0.2 ≤ a/b ≤ 2,
0.02 < a/t < 1, and 0 ≤ φ ≤ π/2 (only a quarter of the ellipse was studied in the three cases due to the
symmetry exhibited by both the embedded and the surface cracks). Parameters z and ∆a(max) were
determined by a study of convergence to find out the most adequate values to obtain a reliable result
(z = 12 and ∆a(max) = 0.00001t).

The number of cycles N required for fatigue crack propagation can be calculated, from the Paris
law given by Equation (5), with the expression,

N =
1

C∆σmπm/2

af∫
a0

Qm/2

Fmam/2 da (7)

where a0 and af are, respectively, the initial and final crack depth.
The dimensionless number of cycles n necessary for fatigue crack propagation is obtained through

the following expression (on the basis of the trapezoidal rule),

n =

af∫
a0

Qm/2

Fmam/2t(2−m)/2
da (8)

3. Numerical Results

Figures 3–5 show the crack propagation (a/b-a/t) curves for embedded, surface, and corner cracks
placed in a plate under tension, with different initial geometry defined by (a/t)0 and (a/b)0, and for
distinct materials represented by the exponent m of the Paris law (values m = 2, 3, and 4 were used in
this paper). In one of the curves of Figure 3a, a dot is used to signal the initial geometry of the crack
((a/t)0 = 0.1, (a/b)0 = 0.2) and arrows are placed over the curve to indicate the sense of growth.

The crack advance from different initial geometries tends towards a preferential propagation path,
it being consistent with previous research [8]. In the present paper, such a preferential path is linked to
a very shallow initial crack with quasi-circular front, the convergence (closeness between curves) being
higher for surface cracks than for corner flaws, and higher for the latter than for those embedded in
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the plate. Cracks growing from initial geometries (a/b)0 = {1, 1.5, and 2} exhibit quicker convergence
than those with initial geometries (a/b)0 = {0.2 and 0.5}. In addition, the convergence is faster: (i) as the
m-exponent of the Paris law increases, (ii) as the initial crack depth (a/t)0 diminishes, and (iii) as the
initial crack geometry ((a/t)0, (a/b)0) becomes closer to the preferential cracking path.
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4. Discussion

Figure 6 shows the preferential propagation path for the three analyzed configurations and for
Paris exponents m = 2, 3, and 4. For embedded cracks, the preferential path exhibits values of the
aspect ratio higher than 1, they being close to 1 up to a depth a/t = 0.4, and slightly increases with
the relative crack depth for a/t > 0.4. For surface and corner cracks such a preferential path presents
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aspect ratios lower than 1, which diminish along with the relative crack depth. The Paris coefficient m
raises the preferential plot a/b-a/t for embedded cracks when a/t > 0.4 and lowers it for surface and
corner flaws (this trend being valid for the whole range of a/t).
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The embedded defects in infinite solids under fatigue tend towards an iso-K state [27], but the
free surface (front, back, and lateral side) of the plate ensures that the iso-K state is not reached for the
preferential crack path.

In the matter of the preferential cracking path, Figure 7 plots the dimensionless SIF K/(σ(πa)1/2)
at three points of the crack front: points A and B (one of them always exhibiting the maximum SIF
along the crack front) and an intermediate point. The latter corresponds to the half-length between the
points A and B for the case of the embedded cracks (Figure 7a) and is associated with the minimum
SIF over the crack front for the surface cracks (Figure 7b) and for the corner-type cracks (Figure 7c).
The maximum dimensionless SIF over the crack front is higher in the case of corner cracks, intermediate
for surface flaws, and lower for embedded defects. The exponent m of the Paris law makes the SIF
decrease for the embedded case, whereas for the case of surface and corner cracks, it makes the
SIF increase.

The embedded cracks exhibit approximately the same SIF over the crack front, up to a/t ~0.4,
from which the SIF diminishes continuously along the crack front (from a maximum value in A to a
minimum in B). For surface cracks, the maximum SIF is achieved at point B (where the crack intersects
the surface) and the minimum SIF at an intermediate point in such a manner that the SIF diminishes
along the crack front when the point shifts away from the surface and increases along such a front
when the point approaches the center. In the case of corner cracks, the shallower ones (with small depth)
present the maximum SIF at point A (with close values in A and B) and the deeper ones exhibit that
maximum SIF at point B. The minimum SIF for these cracks is achieved in an intermediate point over
the crack front.

The crack growth rate for the preferential crack path (Figure 8) is higher for the corner
configuration than for the surface crack, and higher for the latter than for the embedded defect
(in the same conditions). The dimensionless number of cycles n increases with the exponent m of the
Paris law. The most dangerous situations are those for plates under tension with corner cracks inside
because they exhibit quicker propagation rates and higher maximum SIFs.
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5. Conclusions 

Fatigue growth of elliptical-shape cracks in plates subjected to remote tension takes place by 
approaching a preferential cracking path corresponding to a very shallow quasi-circular initial crack. 
The convergence (closeness between propagation curves starting from different initial geometries) 
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of surface and corner cracks.  

(ii) Any increase of the Paris exponent of the material leads to a decrease of the aspect ratio in the 
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(iii) Both the crack propagation rate and the maximum stress intensity factor (SIF) are higher for 
the case of corner cracks than for surface ones, and higher for the latter than for the embedded 
defects. 
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Figure 8. Dimensionless number of cycles for the preferential crack paths. (The arrows indicate the
direction in which the curves are moved with the increase of the Paris m exponent).

5. Conclusions

Fatigue growth of elliptical-shape cracks in plates subjected to remote tension takes place by
approaching a preferential cracking path corresponding to a very shallow quasi-circular initial crack.
The convergence (closeness between propagation curves starting from different initial geometries) is
quicker for surface cracks than for corner ones, and faster for the latter than for embedded ones.

In the matter of the preferential cracking paths:

(i) Those paths associated with embedded cracks exhibit aspect ratios higher than 1 and increase
with the crack depth, while they are lower than 1 and diminish with the crack depth in the case
of surface and corner cracks.

(ii) Any increase of the Paris exponent of the material leads to a decrease of the aspect ratio in
the case of surface and corner cracks and, on the other hand, to an increase of it in the case of
embedded flaws.

(iii) Both the crack propagation rate and the maximum stress intensity factor (SIF) are higher for the
case of corner cracks than for surface ones, and higher for the latter than for the embedded defects.
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Nomenclature

a crack depth
a0 initial crack depth
af final crack depth
a/b crack aspect ratio
(a/b)0 initial crack aspect ratio
a/t relative crack depth
(a/t)0 initial relative crack depth
∆ai crack advance at the point i
∆a(max) maximum crack advance in the iterations
b second dimension of the crack (modeled as an ellipse)
C Paris constant
da/dN crack growth rate
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F parameter to obtain K
Fi parameter F to obtain K at the point i
F(max) maximum parameter F over the crack front
φ angle characterizing a point at the crack front
K stress intensity factor (SIF)
∆K stress intensity factor range
m Paris exponent
n dimensionless number of cycles required for fatigue crack propagation
N number of cycles required for fatigue crack propagation
p point over the crack front
Q shape factor
σ remote tensile stress
∆σ remote tensile stress range
t plate thickness
w plate width
z number of parts in which each ellipse (crack front) is divided

Appendix A

The SIFs used in the present paper were those obtained by Newman and Raju [1]. The coefficients included
in the SIF expressions are as follows, see [1]:

• For a
b ≤ 1 and elliptical embedded crack [1]

M1 = 1 (A1)

M2 =
0.05

0.11 + (a/b)3/2 (A2)

M3 =
0.29

0.23 + (a/b)3/2 (A3)

g = 1− (a/t)4[2.6− 2(a/t)]1/2

1 + 4(a/b)
|cos φ| (A4)

fφ =

[( a
b

)2
cos2 φ + sin2 φ

]1/4
(A5)

• For a
b ≤ 1 and semi-elliptical surface crack [1]

M1 = 1.13− 0.09
( a

b

)
(A6)

M2 = −0.54 +
0.89

0.2 + (a/b)
(A7)

M3 = 0.5− 1
0.65 + (a/b)

+ 14
[
1−

( a
b

)]24
(A8)

g = 1 +
[

0.1 + 0.35
( a

t

)2
]
(1− sin φ)2 (A9)

fφ is given by Equation (A5).
• For a

b ≤ 1 and quarter-elliptical corner crack [1]

M1 = 1.08− 0.03
( a

b

)
(A10)

M2 = −0.44 +
1.06

0.3 + (a/b)
(A11)

M3 = −0.5 + 0.25
( a

b

)
+ 14.8

[
1−

( a
b

)]15
(A12)

g = g1g2 (A13)
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g1 = 1 +
[

0.08 + 0.4
( a

t

)2
]
(1− sin φ)3 (A14)

g2 = 1 +
[

0.08 + 0.15
( a

t

)2
]
(1− cos φ)3 (A15)

fφ is given by Equation (A5).
• For a

b > 1 and elliptical embedded crack [1]

M1 =

(
b
a

)1/2
(A16)

fφ =

[(
b
a

)2
sin2 φ + cos2 φ

]1/4

(A17)

M2, M3, and g are given by Equations (A2)–(A4).
• For a

b > 1 and semi-elliptical surface crack [1]

M1 =

(
b
a

)1/2[
1 + 0.04

(
b
a

)]
(A18)

M2 = 0.2
(

b
a

)4
(A19)

M3 = −0.11
(

b
a

)4
(A20)

g = 1 +
[

0.1 + 0.35
(

b
a

)( a
t

)2
]
(1− sin φ)2 (A21)

fφ is given by Equation (A17).
• For a

b > 1 and quarter-elliptical corner crack [1]

M1 =

(
b
a

)1/2[
1.08− 0.03

(
b
a

)]
(A22)

M2 = 0.375
(

b
a

)2
(A23)

M3 = −0.25
(

b
a

)2
(A24)

g1 = 1 +

[
0.08 + 0.4

(
b
t

)2
]
(1− sin φ)3 (A25)

g2 = 1 +

[
0.08 + 0.15

(
b
t

)2
]
(1− cos φ)3 (A26)

g and fφ are given by Equations (A13) and (A17).

References

1. Newman, J.C., Jr.; Raju, I.S. Stress-intensity factor equations for cracks in three-dimensional finite bodies
subjected to tension and bending loads. In Computational Methods in the Mechanics of Fracture; Atluri, S.N.,
Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1986; pp. 311–334.

2. Wahab, M.A.; de Roeck, G. A finite element solution for elliptical cracks using the ICCI method.
Eng. Fract. Mech. 1996, 53, 519–526. [CrossRef]

3. Le Delliou, P.; Barthelet, B. New stress intensity factor solutions for an elliptical crack in a plate. Nucl. Eng. Des.
2007, 237, 1395–1405. [CrossRef]

http://dx.doi.org/10.1016/0013-7944(95)00163-8
http://dx.doi.org/10.1016/j.nucengdes.2006.07.014


Appl. Sci. 2017, 7, 746 13 of 13

4. Peng, Y.; Tong, L.; Zhao, X.-L.; Xiao, Z. Modified stress intensity factor equations for semi-elliptical surface
cracks in finite thickness and width plates. Proc. Eng. 2011, 14, 2601–2608. [CrossRef]

5. Newman, J.C., Jr.; Raju, I.S. Analyses of Surface Cracks in Finite Plates under Tension or Bending Loads;
NASA TP-1578; NASA: Hampton, VA, USA, 1979.

6. Guozhong, C.; Kangda, Z.; Dongdi, W. Analyses of embedded elliptical cracks in finite thickness plates
under uniform tension. Eng. Fract. Mech. 1996, 54, 579–588. [CrossRef]

7. Raju, I.S.; Newman, J.C., Jr. Finite-Element Analysis of Corner Cracks in Rectangular Bars; NASA TM-89070;
NASA: Hampton, VA, USA, 1987.

8. Wu, S. Shape change of surface crack during fatigue growth. Eng. Fract. Mech. 1985, 22, 897–993. [CrossRef]
9. Gilchrist, M.; Smith, R. Finite element modelling of fatigue crack shapes. Fatigue Fract. Eng. Mater. Struct.

1991, 6, 617–626. [CrossRef]
10. Gilchrist, M.; Chipalo, M.; Smith, R. Shape development of surface defects in tension fatigued finite thickness

plates. Int. J. Press. Vessels Pip. 1992, 49, 121–137. [CrossRef]
11. Nykänen, T. Fatigue crack growth simulations based on free front shape development. Fatigue Fract. Eng.

Mater. Struct. 1996, 19, 99–109. [CrossRef]
12. Wu, Z. The shape of a surface crack in a plate based on a given stress intensity factor distribution. Int. J.

Press. Vessels Pip. 2006, 83, 168–180. [CrossRef]
13. Toribio, J.; Matos, J.C.; González, B. Aspect ratio evolution associated with surface cracks in sheets subjected

to fatigue. Int. J. Fatigue 2016, 92, 588–595. [CrossRef]
14. Paris, P.C.; Erdogan, F. A critical analysis of crack propagation laws. J. Basic Eng. 1963, 85D, 528–534.

[CrossRef]
15. Newman, J.C., Jr.; Raju, I.S. Prediction of fatigue crack-growth patterns and lives in three-dimensional

cracked bodies. In Advances in Fracture Research; Valluri, S.R., Ed.; Elsevier Science Publishers: New Delhi,
India, 1984; pp. 1597–1608.

16. Brennan, F.P.; Ngiam, S.S.; Lee, C.W. An experimental and analytical study of fatigue crack shape control by
cold working. Eng. Fract. Mech. 2008, 75, 355–363. [CrossRef]

17. Liu, C.; Chu, S. Prediction of shape change of corner crack by fatigue crack growth circles. Int. J. Fatigue
2015, 75, 80–88. [CrossRef]

18. Branco, R.; Antunes, F.V.; Costa, J.D. A review on 3D-FE adaptive remeshing techniques for crack growth
modelling. Eng. Fract. Mech. 2015, 141, 170–195. [CrossRef]

19. Lin, X.B.; Smith, R.A. Finite element modelling of fatigue crack growth of surface cracked plates: Part III:
Stress intensity factor and fatigue crack growth life. Eng. Fract. Mech. 1999, 63, 541–556. [CrossRef]

20. Boukharouba, T.; Pluvinage, G. Prediction of semi-elliptical defect form, case of a pipe subjected to internal
pressure. Nucl. Eng. Des. 1999, 188, 161–171. [CrossRef]

21. Gdoutos, E.E.; Hatzitrifon, N. Growth of three-dimensional cracks in finite-thickness plates. Eng. Fract. Mech.
1987, 26, 883–895. [CrossRef]

22. Tan, P.W.; Newman, J.C., Jr.; Bigelow, C.A. Three-dimensional finite-element analyses of corner cracks at
stress concentrations. Eng. Fract. Mech. 1996, 55, 505–512. [CrossRef]

23. Shivakumar, K.N.; Newman, J.C., Jr. Stress intensity factors for large aspect ratio surface and corner cracks
at a semi-circular notch in a tension specimen. Eng. Fract. Mech. 1991, 38, 467–473. [CrossRef]

24. Lin, X.B.; Smith, R.A. Stress intensity factors for corner cracks emanating from fastener holes under tension.
Eng. Fract. Mech. 1999, 62, 535–553. [CrossRef]

25. Mahmoud, M.A.; Hosseini, A. Assessment of stress intensity factor and aspect ratio variability of surface
cracks in bending plates. Eng. Fract. Mech. 1986, 24, 207–221. [CrossRef]

26. Toribio, J.; Matos, J.C.; González, B.; Escuadra, J. An automated procedure for the geometrical modelling of a
surface crack front. Struct. Durab. Health Monit. 2009, 123, 1–16.

27. Lin, X.B.; Smith, R.A. An improved numerical technique for simulating the growth of planar fatigue cracks.
Fatigue Fract. Eng. Mater. Struct. 1997, 20, 1363–1373. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.proeng.2011.07.327
http://dx.doi.org/10.1016/0013-7944(95)00143-3
http://dx.doi.org/10.1016/0013-7944(85)90117-1
http://dx.doi.org/10.1111/j.1460-2695.1991.tb00691.x
http://dx.doi.org/10.1016/0308-0161(92)90075-Q
http://dx.doi.org/10.1111/j.1460-2695.1996.tb00935.x
http://dx.doi.org/10.1016/j.ijpvp.2006.01.004
http://dx.doi.org/10.1016/j.ijfatigue.2016.03.028
http://dx.doi.org/10.1115/1.3656900
http://dx.doi.org/10.1016/j.engfracmech.2007.03.033
http://dx.doi.org/10.1016/j.ijfatigue.2015.02.006
http://dx.doi.org/10.1016/j.engfracmech.2015.05.023
http://dx.doi.org/10.1016/S0013-7944(99)00042-9
http://dx.doi.org/10.1016/S0029-5493(99)00013-8
http://dx.doi.org/10.1016/0013-7944(87)90036-1
http://dx.doi.org/10.1016/0013-7944(94)00231-2
http://dx.doi.org/10.1016/0013-7944(91)90096-J
http://dx.doi.org/10.1016/S0013-7944(99)00007-7
http://dx.doi.org/10.1016/0013-7944(86)90052-4
http://dx.doi.org/10.1111/j.1460-2695.1997.tb01495.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Numerical Modelling 
	Stress Intensity Factor (SIF) 
	Crack Front Evolution 

	Numerical Results 
	Discussion 
	Conclusions 
	

