
applied  
sciences

Article

Stochastic Investigation of Consolidation Process in
Spatially Correlated Heterogeneous Soils

Song-Hun Chong

High Speed Railroad Systems Research Center, Korea Railroad Research Institute, 176,
Cheoldo bangmulgwan-ro, Uiwang-si, Gyeonggi-do 437-757, Korea; songhun.chong@gmail.com;
Tel.: +82-10-4587-4830

Received: 22 August 2017; Accepted: 13 September 2017; Published: 15 September 2017

Abstract: Soil consolidation as the dissipation of excess pore water pressure is mainly affected by
the relative hydraulic conductivity among the layers. Geostatistical parameters such as the mean,
the standard deviation, and the correlation length are physical indicators for each sedimentation and
formation history. The effects of spatial variability on the excessive pore water pressure dissipation
during consolidation process are investigated using numerical parametric studies, where multiple
realizations are tested for selected hydraulic conductivity parameter using lognormal distribution.
Numerical simulations show that the greater heterogeneity in hydraulic conductivity distribution
applied, the longer time taken for the excess pore water pressure to dissipate, and the longer correlated
variability encourages the greater variation in consolidation time. Such differences can be reduced
significantly with the coupled drainage allowed by vertical drain method.

Keywords: soil consolidation; spatial variability; excessive pore water pressure dissipation; hydraulic
conductivity; consolidation time

1. Introduction

Uncertainty in geotechnical properties is mainly promoted by the following three primary sources:
measurement error, transformation uncertainty, and inherent variability [1,2]. Measurement error and
transformation uncertainty can be minimized by employing advanced measurement techniques and
analysis models [3,4]. The inherent variability as the most significant source of uncertainty needs
to be addressed in reliable prediction and design of geostructures, because its evaluation reflects
sedimentation and formation history.

Soil consolidation, as dissipation of excess pore pressure, is characterized by the coefficient of
consolidation Cv. The spatial variability in Cv has been observed in the site investigation profile. It was
quantified with statistical parameters, such as coefficient of variation, correlation length, and anisotropy
in spatial correlation [5]. The analysis of numerical simulation has been conducted to explain the
field settlement during consolidation process. The 1D Terzaghi’s consolidation has been widely
used to investigate the dissipation process of pore water pressure under multi-layers, and thus
the results showed that non-homogeneous soil medium causes a different degree of consolidation
compared to homogeneous [6–12]. In particular, an extensive consolidation simulation analyzed with
stochastic input parameters and single-valued consolidation coefficient calculated from arithmetic
mean, harmonic mean, and geometric mean revealed that the consolidation in heterogeneous soils
cannot be substituted for an equivalent homogeneous soil, and recommends that it should be taken
into consideration spatial variation of consolidation parameters that reflect the location of very thin
and very impermeable layers [13,14]. However, the previous studies have not explained how the
spatial variability quantitatively influences the consolidation process. This study explores the statistical
characteristics of excess pore water pressure dissipation in heterogeneous soils, with the binary layers,
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and spatially correlated random fields. In particular, all the numerical results obtained from spatially
correlated random fields are analyzed with consolidation times t50 and t90, that correspond to the
average degree of consolidation 50% and 90%, respectively. This paper starts with random field
generation, presents stochastic finite element modeling, followed by numerical results and analysis.

2. Stochastic Simulation of 1D Consolidation

2.1. Random Field Generation: Hydraulic Conductivity

Coefficient of consolidation Cv = k/(γwmv), that incorporates hydraulic conductivity, k, into
coefficient of volume compressibility, mv, defines the dissipation of excess pore water pressure.
However, the statistical analysis of consolidation parameters observed that coefficient of variation
(COV) value of mv (≈30%) is smaller than that of k (≈300%), and thus, k has a more pronounced
effect on the soil consolidation process [15,16]. Thus, the hydraulic conductivity, k, is selected as a
random variable, and mv is assumed constant. The hydraulic conductivity k can be obtained from
different probability distribution functions that satisfy with non-negative values and large variability.
The inherent variability of k is generated using lognormal distribution [11,17]. The hydraulic
conductivity, k, following lognormal distribution, is identified by mean µk and standard deviation σk.
The COVk can be expressed as

COVk =
σk
µk

(1)

The mean µln k and standard deviation σln k following normal distribution have the relation with
lognormal parameters as follows:

σln k =

√
ln
(

1 + COV2
k

)
(2)

µln k = ln(µk)−
1
2
σ2

ln k (3)

The multiple realizations of the one-dimensional correlated random variability in the hydraulic
conductivity, k, can be generated with the preselected values (µk and σk) through the matrix
decomposition technique. The procedure is as follows [18]:

(1) Assign index properties i and j to every location at the given geometry.
(2) Build distance matrix, d, where dij is the distance between point i and j.
(3) Compute the covariance matrix, A, with correlation length θln k:

Aij = σ2
ln ke−

|dij |
θln k (4)

(4) Decompose the matrix A into matrix C:

A = CCT (5)

(5) Calculate the correlated Gaussian random field G:

G = Cε+ T (6)

where ε is uncorrelated Gaussian random field of zero mean and unit variance for local averages
over the domain, and T is the trend following µln k.

(6) Transform the generated Gaussian random filed to the lognormal distribution

k = exp(G) (7)
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The spatial correlation length θln k is the distance where the spatial autocorrelation decays by
1/e, and provides the spatial scale of material heterogeneity [5,19]. The formulated one-dimensional
correlated random heterogeneity reflects the spatial variation of the consolidation coefficient with
depth. The relative correlation length Θ = θln k/H is expressed by combining internal fluctuation scale
θln k and specimen height H.

2.2. Stochastic Finite Element Modeling

The stochastic finite element modeling is used to generate a random field, and map the scalar
values into predefined elements. The assignment of correlated scalar random, k, over the elements,
indicates the local geometric average of the k. Consequently, the numerical result depends on the mesh
size [16]. This study is implemented using the finite element program ABAQUS. The square mesh
consists of 100 × 100 four node axisymmetric quadrilateral elements to minimize geometric effects
caused by correlated random variability (Table 1). At the given mesh size, the analytical solution
(Terzaghi’s 1D consolidation) matches well with the numerical result.

Table 1. Numerical study in binary mixture: (a) Boundary conditions; (b) Selected material properties.

(a) Boundary Conditions (All Cases)

• Zero lateral strain condition
• A pore fluid/stress four-node

axisymmetric quadrilateral element
(100 × 100)

• Single drainage condition (Top
drainage is allowed)

• Applied vertical stress (q): 100 kPa
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(b) Material Properties Lower K Higher K

Young’s modulus E (kPa) 2000 2000
Poisson’s ratio υ 0.3 0.3
Initial effective stress σ’o (kPa) 100 100
Earth pressure ko 0.5 0.5
Hydraulic conductivity k (m/s) 1.8 × 10−9 9.1 × 10−9

2.3. Parametric Studies

First, it is investigated for binary mixtures consisting of relatively higher- and lower-k. Simulation
cases include the different levels of material heterogeneity under different drainage conditions.
Two drainage conditions are considered: (1) A single upward drainage along top surface and
(2) combined radial drainage conditionally allowed by the vertical drain along centerline, where
the maximum radial drainage distance is r. The binary mixtures are constructed with respect to the
ratio of the layer thickness t/H. Table 1 summarizes the boundary conditions and material properties.
In particular, the geometry of the tested specimen and heterogeneity configuration has the same
volumetric portions of the material property and the thickness of each layer is given the same for each
case. Then, heterogeneity effect is investigated with one-dimensional correlated random k using matrix
decomposition method. The parametric studies are tabulated in Table 2. The specific characteristics of



Appl. Sci. 2017, 7, 949 4 of 10

1D consolidation are evaluated using the average degree of consolidation obtained from pore water
pressure dissipation. It can be defined by

U1D
avg = 1− 1

H

∫ H

0

u
q

dh (8)

where H is maximum drainage path, and q is applied stress (100 kPa in all cases). A radial drainage
condition expedites the consolidation process. The excess pore water pressure across the area of each
element is considered, and the 2D average degree of consolidation can be expressed by

U2D
avg = 1− 1

HD

∫ D

0

∫ H

0

u
q

r dhdr (9)

The pore water pressures are obtained at nodes along either the centerline (without vertical drain)
or lines between left and right boundaries (with vertical drain).

Table 2. Parametric studies. Random variable is hydraulic conductivity, k, following lognormal
distribution in all cases. The global mean value of k case is kept the same (µ[k] = 1.8 × 10−9 m/s).

Drainage Condition Topic COV Relative Correlation Length

No vertical drainage Variability 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 0.1
Correlation length 1.0 0.01, 0.03, 0.05, 0.1, 0.2

Vertical drainage Variability 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 0.1
Correlation length 1.0 0.01, 0.03, 0.05, 0.1, 0.2

3. Result and Analysis

3.1. Random Field Generation: Hydraulic Conductivity

The excess pore water dissipation is significantly affected by the distance from a free-drainage
boundary to permeable layer and relative boundary conditions formed by relative hydraulic
conductivity k difference among layers. Figure 1 presents the effects of binary mixture sequence
and thickness on 1D consolidation process. At the given binary mixture thickness ratio, the excess
pore water pressure dissipates faster for the soils in which the layers with higher k are located closer to
the drainage boundary (case: [k]A/[k]B = 5.0), even if the volumetric composition of each material
is equal [20]. On the contrary, lower k at a top drainage delays the consolidation process (case:
[k]A/[k]B = 0.2). Furthermore, introducing internal material heterogeneity (layer thickness) tends to
delay or accelerate the dissipation, depending on the k magnitude of the top layer. Figure 2 shows
that the relative k magnitude differences between hydraulic conductivity of the layers cause a more
delayed dissipation of excess pore water pressure. Smaller layer thickness ratios and lower magnitude
differences reduce those specific patterns, yet initial heterogeneity configurations are quite different
from the equivalent homogeneous one during dissipation of excess pore pressure. The vertical
drainage condition has a pronounced effect on the consolidation process of the binary mixtures.
The internal heterogeneity promotes the delayed dissipation of the excessive pore water pressure,
yet such differences in consolidation time delay are significantly reduced when radial drainage is
allowed (Figure 3a). If the vertical drains are more narrowly spaced, the global consolidation process
is controlled more by the radial drainage, and thus the differences in consolidation time are reduced
more with a shorter maximum radial drainage path (Figure 3b).
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Figure 1. Effects of heterogeneity configurations on one-dimensional consolidation process of soils
with binary layers. All the cases have the same arithmetic mean of consolidation coefficient.
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Figure 2. Effects of k variability on one-dimensional consolidation process of soils with binary layers.
All the cases have the same mean of consolidation coefficient and the same thickness ratio t/H = 0.05.
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Figure 3. Effect of a vertical drainage conditions on the consolidation of the binary mixtures; (a) vertical
drain (r/D = 0.2); (b) vertical drainage distance. The vertical drain is installed along the centerline and
radial drainage is allowed. [k]A/[k]B = 0.2 in all cases. The radial consolidation coefficient is assumed
to be identical to the vertical one.
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3.2. Consolidation of Spatially Correlated Heterogeneous Soils

Figure 4 shows three selected realizations of the spatially varying consolidation coefficient profiles.
For the realizations, the mean value µ[k] is 1.8 × 10−9 m/s, COV[k] is 0.6, and the correlation
length θln k is 1 m. The total thickness of the compressible layers D is 10 m, the maximum radial
drainage length r is 2 m, and the radius of the vertical drain is 0.1 m. The consolidation behavior
of spatially varying random soils with different drainage conditions is compared in the following
Figure 5. The results show that a different configuration with the same even statistic promotes a
different consolidation process, and such differences due to the different heterogeneity configurations
are reduced by the radial drainage, as discussed in the section on binary mixtures. Case C is the
fastest, with a 90% consolidation by a single upward vertical drainage (for 90% consolidation, case A:
2800 days; case B: 3300 days; case C: 2600 days); however, Case C is the slowest for the case of coupled
drainage (for 90% consolidation, case A: 520 days; case B: 580 days; case C: 590 days), which indicates
that the contributions of spatial variation to the global consolidation process differ with respect to the
drainage conditions.
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The 100 realizations for each case are tested to quantitatively investigate the effect of random
spatial variability in the hydraulic conductivity on the consolidation process. Figure 6 presents the
consolidation process with the preselected variability and correlation length. Clearly, the spatial
variability in k and drainage conditions have a pronounced effect on the global consolidation process.
For further analysis of numerical results, 50% consolidation time, t50, and 90% consolidation time,
t90, are computed, and data are gathered for statistical analyses. The computed t50 and t90 for
heterogeneous soils are normalized by those of the homogeneous soil, which are called the normalized
time. Results are presented with the ensemble mean and the standard deviation of the normalized
consolidation time. The effects of COV in the spatially varying consolidation coefficient COV[k] on
the normalized consolidation times, t50 and t90, are studied, while keeping the correlation length
(Θ = 0.1) and the radial drainage length ratio (r/D = 0.2) constant. Results show that a greater value of
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COV[k] corresponds to a more delayed consolidation time, and greater standard deviation of t50 and
t90. However, such variations are significantly reduced when the radial drainage is allowed, as shown
in Figure 7b. The mean values of the normalized t50 and t90 for the realizations with COV[k] = 1.0, are
about 2.0 for the case without radial drainage; those values go down to about 1.3 if coupled drainage is
allowed. Therefore, spatial variability should be carefully considered when analyzing the consolidation
process of soils with high variability, especially for the cases without vertical drains. Figure 7 also
shows that the mean values for both normalized t50 and t90 are very similar, but the variation in
normalized t90 is smaller than that in normalized t50, which shows that the mean consolidation time
does not differ much with degree of consolidation, but the relative variation in consolidation time
becomes smaller at a higher degree of consolidation.

The effects of correlation length on consolidation are explored by varying the dimensionless
correlation length from Θ = 0.01 to 0.2, while keeping the COV[k] = 1.0 constant, as shown in Figure 8.
The tendency is that the mean values in consolidation time do not differ much with respect to
correlation length; however, longer correlation length leads to higher variance in consolidation time,
and the variation in normalized t90 is smaller than that in normalized t50, as discussed in the previous
case (Figure 7).
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Figure 6. Selected simulation results with spatially varying hydraulic conductivity COV[k], and
drainage conditions. The 100 realizations are generated with the given correlation length (Θ = 0.1);
(a) COV[k] = 0.4, No Vertical Drain; (b) COV[k] = 0.4, Vertical Drain Installed; (c) COV[k] = 0.8,
No Vertical Drain; (d) COV[k] = 0.8, Vertical Drain Installed.
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Figure 7. Effect of spatially varying hydraulic conductivity COV[k] on consolidation times t50 and
t90 of heterogeneous soils with different drainage conditions; (a) No vertical drainage; (b) Vertical
drainage. In all cases, dimensionless correlation length is kept constant Θ = 0.1.
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Figure 8. Effect of dimensionless correlation length in spatially varying hydraulic conductivity k on
consolidation times t50 and t90 of heterogeneous soils with different drainage conditions; (a) No vertical
drainage; (b) Vertical drainage.

4. Conclusions

The effects of spatial variability in the hydraulic conductivity on the consolidation process are
explored in this study. Based on a parametric study for the binary mixing soils and spatially correlated
random soils using the finite element method, the following conclusions can be drawn:

• For the binary mixture cases, the excess pore water dissipation is significantly affected by the
distance from a free-drainage boundary to permeable layer, and relative boundary conditions
formed by relative hydraulic conductivity k difference among layers. Smaller layer thickness
ratios and lower magnitude differences reduce those specific patterns, yet initial heterogeneity
configurations are quite different from the equivalent homogeneous one during dissipation of
excess pore pressure.

• The greater the heterogeneity in the hydraulic conductivity distribution that is applied, the more
time will be taken for excess pore water pressure to dissipate. This is because higher variance
enhances impermeability among the layers, delays the pore water pressure dissipation, and forms
the bottleneck.

• When spatially varying layered soil has statistically identical consolidation properties,
the consolidation process by the single drainage perpendicular to the layers can yield clear
differences with respect to the heterogeneity configurations. However, consolidation patterns of
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different heterogeneous media become homogenized when radial drainage is allowed together
with vertical drainage.

• The more dominant the radial drainage by shorter spacing between the vertical drains is, the more
homogenized and the closer to the homogeneous soils the consolidation process of the spatially
varying soils will be.

Sites characterized with spatially varying consolidation properties induce specific characteristics
of consolidation [6]. Thus, it should be taken into consideration, spatial variability that reflects the
location of very thin and very impermeable layers to capture the observed field response.
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