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Abstract: It is essential to monitor and to diagnose faults in rotating machinery with a high
thrust–weight ratio and complex structure for a variety of industrial applications, for which reliable
signal measurements are required. However, the measured values consist of the true values of the
parameters, the inertia of measurements, random errors and systematic errors. Such signals cannot
reflect the true performance state and the health state of rotating machinery accurately. High-quality,
steady-state measurements are necessary for most current diagnostic methods. Unfortunately, it is
hard to obtain these kinds of measurements for most rotating machinery. Diagnosis based on
transient performance is a useful tool that can potentially solve this problem. A model-based
fault diagnosis method for gas turbines based on transient performance is proposed in this paper.
The fault diagnosis consists of a dynamic simulation model, a diagnostic scheme, and an optimization
algorithm. A high-accuracy, nonlinear, dynamic gas turbine model using a modular modeling method
is presented that involves thermophysical properties, a component characteristic chart, and system
inertial. The startup process is simulated using this model. The consistency between the simulation
results and the field operation data shows the validity of the model and the advantages of transient
accumulated deviation. In addition, a diagnostic scheme is designed to fulfill this process. Finally,
cuckoo search is selected to solve the optimization problem in fault diagnosis. Comparative diagnostic
results for a gas turbine before and after washing indicate the improved effectiveness and accuracy of
the proposed method of using data from transient processes, compared with traditional methods
using data from the steady state.

Keywords: fault diagnosis; gas turbine; transient performance; cuckoo search; modeling and
simulation; deterioration

1. Introduction

With the deepening of the industrialization process, the revolution of industry 4.0 is emerging in
many industry areas [1]. A variety of intelligent equipment and intelligent equipment management
technologies have been created, so as to redefine the interaction between humans and machines [2].
With the increased complexity of equipment, fault diagnosis has become a key technology to ensure
the safety and efficiency of the production process [3]. Smart fault diagnostic technologies will be
essential in the age of industry 4.0. With the development of sensing and information technology,
massive multi-source data can be obtained automatically from equipment, which will become the
foundation of developing advanced fault diagnosis methods [4].
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Gas turbines are widely used in the defense and energy industry. It is essential to perform fault
diagnosis on a regular basis to maintain the reliability of gas turbine. However, fault diagnosis is
generally a challenging task due to the structural complexity, which involves various fault modes [5].
In traditional diagnostic processes [6,7], measurement data represent the steady-state values, while the
trending patterns in the transient phase are neglected. However, it is hard to determine steady-state
values in the transient phase. For example, the time for military aircrafts fighting in unsteady
conditions, deviating from steady states, accounts for 70% of the total fight time [8]. It is not feasible to
obtain the steady-state data for a military aircraft. Additionally, the effects appear to be remarkable
in transient processes compared to the steady-state condition for some kinds of fault modes [9,10].
Compared with the study of fault diagnosis with steady-state data, this lacks the study of fault
diagnosis with transient process data. Therefore, the objective of this thesis is to study the fault
diagnosis of gas turbines based on transient process data.

Many gas turbine performance-analysis-based diagnostic technologies have been developed
since Urban [11] introduced the first gas path analysis method in 1967. Gas turbine engine
fault diagnosis during transient processes was first analyzed by Merrington [9]. Li developed
a non-linear-model-based diagnostic method, combined with a genetic algorithm, and applied it
to a model gas turbine engine to diagnose engine faults by using the accumulated deviation obtained
from transient measuring data [8]. Naderi proposed a data-driven fault diagnosis and estimation
scheme. Fault detection, isolation and, estimations filters was developed using system Input/Output
(I/O) data in operation [12]. Meher-Homji [13] provided an overview of the use of both performance
and mechanical transient analysis as a means to detect gas turbine problems, to express the importance
of transient analysis. Henry [14] utilized engine data acquired during takeoff to trend the performance
of a modern turbofan engine. Analytical redundancy methods have been applied to gas turbine
engine transient data with a view to extracting the desired fault information [15]. Simani and Fantuzzi
presented a model-based procedure exploiting analytical redundancy for the detection and isolation of
faults on a gas turbine process, which integrated linear model identification and output estimation [16].
The system was used in a single-shaft industrial gas turbine plant to experimentally verify the
robustness of the solution obtained [17]. Lu proposed a data hierarchical fusion method, using
improved, weighted Dempster–Shaffer evidence theory, to integrate data-driven and physics-based
models for the gas-path fault diagnosis of engines [18].

Dynamic, process-based gas turbine fault diagnosis requires special parameters, which can
describe the dynamic process of gas turbines. Due to the accumulative effects of the transient process,
it will be more sensitive to choosing transient process data than steady-state data for fault diagnosis.
However, current research results cannot support the fault diagnostic technology for a gas turbine
based on transient process data. The following issues still remain unsolved:

• The accuracy of the algorithm should be increased;
• The diagnostic result based on steady-state data and dynamic data should be compared;
• The diagnostic method based on transient process data should be used to analyze field data.

In this paper, a novel gas-path fault diagnostic model is proposed, by engine transient performance
analysis and a system dynamic model. Similar to the conventional gas-path fault diagnostic method,
the proposed method has the same basic idea that a surrogate model stands for the real engine under
different working conditions and health conditions. However, due to the change of input parameters
from steady-state to transient process, the three key parts of the diagnostic model, which are calculation
flowchart, simulation model, and algorithm, should be modified. Integrated deviations between
measurements and simulation results are chosen as the fitness function in the diagnostic problem.
Then this problem will be solved by the proposed calculation flowchart and heuristic algorithm.
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2. Methodology

To promote diagnosis based on the transient process data from theoretical study to commercial
application, a novel diagnostic method based on a dynamic simulation model and Cuckoo search
algorithm is proposed. A comparative study to steady-state analysis and application to analyze field
data are conducted based on this novel method.

2.1. Modeling of Gas Turbine

The dynamic system of a gas turbine plant consists of working fluid and rotary parts. The system
behavior can be derived by conservation laws and the equations of motion [19]. To analyze the dynamic
characteristics of a gas turbine, unsteady three-dimensional calculations can be used. However,
applying the unsteady three-dimensional simulation requires vast computational resources. It has
been proved that one-dimensional simulation gives sufficiently accurate results [20]. In this study,
the modular modeling method is applied to build the model. A two-shaft industrial gas turbine,
which consists of one compressor, one combustor, one high pressure turbine, and one power turbine,
is cited as an example for gas turbine modelling and fault diagnosis, as shown in Figure 1.
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Compressor and Turbine. The compressor and two turbines (high pressure turbine and power 
turbine) are modelled using the characteristic map that describes the correlation between pressure 
ratio, mass flow rate, rational speed, and efficiency. For example, compressor speed and isentropic 
efficiency can be determined using the characteristic map. Since the design pressure ratio of the 
compressor is known, and the mass flow rate of the air is determined from the plant operation 
requirement, mainly referring to power output, the compressor speed and isentropic efficiency can 
be read off the characteristic map. 

Figure 1. Gas turbine configuration of this case study.

Based on the principles of the modular modeling method, the entire plant is divided into four
parts: compressor, combustor, turbine (high pressure turbine and power turbine) and rotating shaft.
The input and output parameters of each module need to be defined. The modeling flowchart and
modular inputs and outputs are shown in Figure 2.
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Compressor and Turbine. The compressor and two turbines (high pressure turbine and power
turbine) are modelled using the characteristic map that describes the correlation between pressure ratio,
mass flow rate, rational speed, and efficiency. For example, compressor speed and isentropic efficiency
can be determined using the characteristic map. Since the design pressure ratio of the compressor
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is known, and the mass flow rate of the air is determined from the plant operation requirement,
mainly referring to power output, the compressor speed and isentropic efficiency can be read off the
characteristic map.

The following lists their performances:(
Q
√

Tin
pin

, η

)
= f

(
π, n/

√
Tin

)
(1)

where π, n and η stand for pressure ratio, rotational speed and component efficiency, and Tin is the
inlet temperature. From steady-state characteristics map generated by the field operating data [21],
compressor mass flow Gc and component efficiency η can be calculated by Equation (1), which can be
used to calculate the power required and the temperature of the discharge air.

T2 =

1 +
π

R
cp − 1
ηc

T1 (2)

Pc = GcCp(T2 − T1) (3)

where Cp is the heat capacity and R is the gas constant.
The degradation of gas path components can be mathematically determined by scaled component

maps. It is assumed that the degraded maps of the compressor, combustor, and turbine are down-scaled
versions of the corresponding original maps, due to the fact that the geometries do not change
significantly. More details on the definitions of the degradation parameters of gas turbine components
can be found in reference [22,23].

Combustor. The combustor model involves the prediction of the dynamic response of pressure
and temperature inside the combustor. The pressure is determined by the combustor model, while the
flow rate is determined by the compressor and turbine model using the characteristics maps. Therefore,
the state equation of pressure can be written as:

dp
dt

=
RgTg

V

(
G f + Gc − Gt

)
(4)

where the subscripts f, c and t stand for the fuel, compressor and turbine, respectively. V is the volume
of the combustor, t is the time.

The turbine inlet temperature is the most important parameter for the gas turbine, which is also
calculated in the combustor model. The state equation of the turbine inlet temperature can be written
as follows:

dTg

dt
=

G f

(
h f + HV

)
+ Gchc − Gtht − (ht − RtT3)

(
G f + Gc − Gt

)
ρgVcp,g

(5)

where HV stands for the heating value of the fuel, h is the enthalpy, cp,g is heat capacity, and ρg is the
gas density in the combustor.

The turbine inlet pressure and temperature are both calculated through the state equations.
The results are sent to the compressor and turbine model to obtain the pressure ratio for characteristics
maps and to calculate the output power.

Rotating Shaft. A rotor is used to connect the compressor and load to the turbine. The mode is
described by the following equation.

dn
dt

=
900

nIπ2 (Pt − Pc) (6)

where I is the moment of inertia, Pt is input power from turbine, n is the rotational speed, and Pc is the
output power to drive the compressor.
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The fuel flow rate is calculated by a proportional–integral–derivative (PID) controller. The input
of this controller is the deviation between the set rotational speed and the measuring rotational speed.
After parameter tuning of the PID controller, this dynamic model can simulate the measurement
parameters of this gas turbine, setting the power condition and ambient condition. The Block diagram
for the speed control is shown in Figure 3.
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2.2. Cuckoo Search Algorithm

Cuckoo search (CS) was put forward on the basis of swarm intelligence technology by British
scholar X.S. Yang and S. Deb in 2009 [24]. A CS algorithm simulates the brood parasitism habit of
certain species of cuckoo to solve the optimization problem effectively. The structure of a CS algorithm
is simple. It has a few control parameters and a strong ability to jump out of local extremum. It shows
that in many cases, a CS algorithm shows better performance compared to a genetic algorithm (GA),
artificial bee colony (ABC) algorithm, particle swarm optimization (PSO) algorithm and some other
typical swarm intelligence algorithm [25,26]. In this paper, the CS algorithm was chosen to solve this
problem, as it features high computational efficiency and accurate optimization results.

In nature, the way that cuckoos look for a suitable location of bird’s nests for their own eggs is
random. In order to simulate the way that cuckoos find a nest, it is necessary to set the following three
ideal states:

1. A cuckoo lays one egg at a time, and selects a bird’s nest to hatch it randomly;
2. In a randomly selected group of bird’s nests, the best bird’s nest will be retained to the

next generation.
3. The number n of available bird’s nests is fixed and the probability that an owner of a bird’s nest

can find an exotic birds’ eggs is Pa ∈ [0, 1]. Based on the three ideal states, the updating formula
of path and location is as follows, when the cuckoo finds a nest:

X(t + 1)i = X(t)i + α× L(λ), i = 1, 2, · · · , n (7)

where X(t)i is the next location number in the cuckoo generation t, α represents the step control
variable and L(λ) represents the Levy random search path. Levy flight is a random movement
process, the step of its flight distance obeys Levy distribution. The following formula is used to
produce a Levy random number:

L(λ) =
φ× u

|v|
1
λ

(1 < λ < 3) (8)
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u and ν obey standard normal distribution and λ is the distribution factor, In this paper, it equals
1.5 [27]. The formula of ϕ is as follows:

φ =

 (1 + λ)× sin
(

π × λ
2

)
[(

1+λ
2

)
× λ× 2

λ−1
2

]


1
λ

(9)

2.3. Diagnostic System

The diagnostic scheme was designed as in Figure 4. The input of the real gas turbine is the
working condition, and the input of the simulation model is the working condition and health condition
represented by the health parameters. The health condition consists of two parts, the degradation
of component working ability and inertial coefficients. A detailed description of the degradation is
shown in reference [23].
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The diagnostic process can be divided into three steps.

1. Model simulation

At the beginning of the calculation, we set the gas turbine faults in the gas turbine and obtained the
measurable parameters after the operation of the gas turbine. By inputting the same input parameters
as the measurable parameters of the fault model and inserting the health initial values diagnosed by
the calculation model, the measurable parameters of the fault model can be estimated through the
calculation model.

2. Objective function calculation

The estimated parameters given in the initial calculation are generally incorrect, therefore
the deviation exists between the model and the measurable parameters in the actual gas turbine.
The deviation can be determined by the objective function in a certain calculation way. The object
function of this paper is defined as:

fobj =

tj∫
t=ti

∣∣Zt − Zt
∣∣ (10)

3. Optimization of the estimation parameters

If the value of the objective function is small, the estimate can recognize and isolate the fault to
achieve the goal of the fault diagnosis. However, when the deviation does not achieve the desired
accuracy, the estimated initial value needs to be corrected through the optimization algorithm to return
to the first process calculation. Such a process takes place recursively until the objective function
reaches an acceptable accuracy.
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3. Case Study

A single spool and free power turbine industrial gas turbine is cited as an example for fault
diagnosis with transient data. The basic performance parameters are shown as in Table 1.

Table 1. Base load parameters of gas turbine.

Parameter Value

Pressure ratio 24.1
Exhaust mass flow 84.31 kg/s

Power output 31.4 MW
Efficiency of compressor 85%

3.1. Overall Performance Test Rig

An overall performance test rig was established to acquire transient process measuring data,
see Figure 5. The data for the instrument and control system of the gas turbine, through the isolated
safety barrier, is sent to the signal acquisition board, where data acquisition, data pre-processing, A-D
signal conversion and data output are being completed. The calculative process is finished in the
portable decay controller of the board. The processed digital signal will be published to the level I
network through wireless access point (WAP) or access point (AP) web. The data management system
of the portable condition monitoring system is in charge of data transformation and transmission from
the level I network to level II. The interface management system of the remote data center, obtains
data from the internet, sends data to main database via the level III network (remote data center local
area network (LAN)) according to the defined interface rules, and stores the test data chronically.
The remote data management system is mainly responsible for human–computer interactions for
a remote data center, with a level III network and interface management server.
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The data for the model validation and the case study is acquired from the instrument and control
system based on the overall performance test rig. However, this is sometimes forbidden by users
considering operation safety. Thus another channel is designed for data acquisition. The portable data
management system is linked to the plant database via a level I network directly to get the historical
data for this selection. The measuring parameters and performance parameters related to this case are
listed in Table 2.

Table 2. Parameter list for this case.

Measurement Parameter Symbol

Rotational Speed n1
Discharge Temperature of Compressor T2

Discharge Pressure of Compressor P2
Discharge Temperature of High Pressure Turbine T34

Discharge pressure of High Pressure Turbine P34
Compressor efficiency degradation DEC
Compressor flow rate degradation DGC

High pressure turbine efficiency degradation DET
High pressure turbine flow rate degradation DGT

Power Turbine efficiency degradation DEP
Power Turbine flow rate degradation DGP

3.2. Simulation Model Validation

The dynamic simulation model is validated in this section. The start-up process is selected to
show the maximum error of this model. All measurement parameters simulated by this model and
tested by the overall performance test rig are compared, including high-pressure turbine rotational
speed n1, and high-pressure turbine discharge pressure.

The P34 and compressor discharge temperature T2, standing for the minimum, moderate and
maximum simulation error, are cited as three examples. The comparative results are shown in
Figures 6–8. The mean relative error of rotational speed is 0.5%, and the mean relative error of
compressor discharge temperature is 4.6%. In conclusion, this model can predict the trend of
measurement parameters, and the simulation error is under 4.6%. It proves that this model can
support fault diagnosis with transient data.
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3.3. Simulation with Component Degradation

Compressor fouling is implanted in this section, to show the effect of gas path faults on the
monitoring parameters. As the rule base of gas-path fault, flow rate degradation due to compressor
fouling is three times the efficiency degradation [28]. The start-up process is studied, and the
degradation of the compressor flow rate is assumed to be 3%, the degradation of compressor efficiency
is assumed to be 1%. The simulation result of a healthy engine and deteriorated engine is listed in
Figures 9 and 10.

It is obvious that the deviation between the monitoring parameters for healthy and deteriorated
engines is small. For instance, this deviation of compressor discharge temperature is just 2–4 ◦C under
100% working conditions. It is easy to be annihilated by sensor noise. However, in the transient process,
this deviation can be integrated. Figures 11 and 12 show the integrating result. Thus, the integrated
deviation is selected as the object function for the cuckoo search algorithm.
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3.4. Comparative Study

The diagnostic results based on the steady-state data and transient data are compared in this
section. Up to now, extensive research has been conducted to investigate the effects of physical faults
on the performance of gas turbines. From the experimental results, the theoretical value of the ratio of
the compressor flow rate degradation over the efficiency degradation is three [28–30]. This theoretical
value was chosen as the criterion for the comparison of different diagnostic methods.

For comparison, two pieces of relatively stable steady-state data are selected for the same kind of
fault diagnosis, as in Figure 13. They are the input for the steady-state diagnosis. The input for the
transient process is the two complete pieces of data before and after washing.
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Component degradation is the relative value of the clean component. The improvement value
of component degradation is selected for this comparative study. The diagnostic result of transient
process analysis method is better than using steady state measurements, according to the result
comparison, see Table 3. For convenience, diagnosis based on the steady-state is called Method A,
and diagnosis based on the transient process is called Method B below.
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• The improvement of the compressor flow rate degradation is 13 times the value of its efficiency
degradation based on Method A. It does not meet the theoretical value of three. The result of
Method B is 1.96, closer to the theoretical value.

• These ratios for high pressure turbines are 3.86 and 5.33. It seems that Method A is more accurate
than Method B for high-pressure turbines. Thus, the health condition of high-pressure turbines
can be monitored by both Method A and Method B. However, washing decisions are usually
made by compressor degradation. This means that Method B is more suitable for supporting
maintenance scheduling.

• There is not any maintenance work being carried out for power turbines in this process. Therefore,
the improvement of both its flow rate and efficiency should be zero, theoretically. This proves
that Method B is more accurate for power turbine diagnosis.

Table 3. Comparison result of diagnostic results based on steady-state analysis and transient process analysis (%).

Time Process DGC DEC DGC/DEC DGT DET DGT/DET DGP DEP

Before Washing Steady-state 5.79 1.70 - 4.85 2.03 - 0.88 1.53
Transient process 7.83 4.62 - 5.71 2.10 - 3.28 1.89

After Washing Steady-state 2.02 1.48 - 2.03 1.30 - −0.17 1.07
Transient process 1.54 1.41 - 2.56 1.42 - 2.95 1.76

Improvement Steady-state 3.77 0.29 13.0 2.82 0.73 3.86 1.05 0.44
Transient process 6.29 3.21 1.96 3.15 0.57 5.53 0.33 0.13

4. Conclusions

In this paper, a gas turbine dynamic model was introduced to simulate its nonlinear dynamic
behavior. The model was developed in the environment of Matlab/Simulink(MATLAB 2013a,
The Mathworks, Inc., Natick, MA, USA). The start-up process was simulated via this model.
The comparison of the simulation results to the field operating data showed the validity of the
model and the advantage of using transient accumulated deviations. Some conclusions have been
obtained as follows:

1. A new, non-linear, model-based diagnostic method, using gas turbine transient measurements
and a cuckoo search (CS) algorithm, was tested to diagnose a gas turbine before and after
a washing process.

2. Diagnosis with transient measurements is more relevant than diagnosis with steady-state
measurements, when gas turbine faults contribute little to performance deviation in steady-state
conditions or gas turbine output fluctuates greatly.

3. Gas turbine component fault diagnosis using transient data can be more effective than using
steady state data, owing to magnifying fault signatures and extending the tracking time to
eliminate variable uncertainties.
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Nomenclature

π component pressure ratio
η component efficiency
T1 compressor inlet air temperature
P1 compressor inlet air pressure
n1 rotational speed of high pressure turbine
Qc compressor inlet air mass flow
T2 compressor discharge air temperature
P2 compressor discharge air pressure
Qf fuel gas flow
T3 high pressure turbine inlet temperature
P3 high pressure turbine inlet pressure
T34 high pressure turbine discharge temperature
P34 high pressure turbine discharge pressure
Qt high pressure turbine mass flow
T4 power turbine discharge temperature
P4 power turbine discharge pressure
Qp power turbine mass flow
Pc power consumption of compressor
Pt power generation of high pressure turbine
Pp power generation of power turbine
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