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Abstract: Due to the existing large-scale grid-connected photovoltaic (PV) power generation
installations, accurate PV power forecasting is critical to the safe and economical operation of electric
power systems. In this study, a hybrid short-term forecasting method based on the Variational Mode
Decomposition (VMD) technique, the Deep Belief Network (DBN) and the Auto-Regressive Moving
Average Model (ARMA) is proposed to deal with the problem of forecasting accuracy. The DBN
model combines a forward unsupervised greedy layer-by-layer training algorithm with a reverse
Back-Projection (BP) fine-tuning algorithm, making full use of feature extraction advantages of the
deep architecture and showing good performance in generalized predictive analysis. To better analyze
the time series of historical data, VMD decomposes time series data into an ensemble of components
with different frequencies; this improves the shortcomings of decomposition from Empirical
Mode Decomposition (EMD) and Ensemble Empirical Mode Decomposition (EEMD) processes.
Classification is achieved via the spectrum characteristics of modal components, the high-frequency
Intrinsic Mode Functions (IMFs) components are predicted using the DBN, and the low-frequency
IMFs components are predicted using the ARMA. Eventually, the forecasting result is generated by
reconstructing the predicted component values. To demonstrate the effectiveness of the proposed
method, it is tested based on the practical information of PV power generation data from a real
case study in Yunnan. The proposed approach is compared, respectively, with the single prediction
models and the decomposition-combined prediction models. The evaluation of the forecasting
performance is carried out with the normalized absolute average error, normalized root-mean-square
error and Hill inequality coefficient; the results are subsequently compared with real-world scenarios.
The proposed approach outperforms the single prediction models and the combined forecasting
methods, demonstrating its favorable accuracy and reliability.

Keywords: solar output power forecasting; combined prediction model; variational model decomposition;
deep belief networks; auto-regressive and moving average model

1. Introduction

To promote sustainable economic and social development, energy sources such as solar energy
and wind power need to be leveraged to counteract the rapidly growing energy consumption and
deteriorating environment caused by climate change. To promote increased solar energy utilization,
photovoltaic (PV) power generation has been rapidly developed worldwide [1]. PV power generation
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is affected by solar radiation, temperature and other factors. It also has strong intermittency and
volatility. Grid access by large-scale distributed PV power introduces significant obstacles to the
planning, operation, scheduling and control of power systems. Accurate PV power prediction not
only provides the basis for grid dispatch decision-making behavior, but also provides support for
multiple power source space-time complementarity and coordinated control; this reduces pre-existing
rotating reserve capacity and operating costs, which ensures the safety and stability of the system and
promotes the optimal operation of the power grid [2].

According to the timescale, PV power forecasting can be divided into long-term, short-term,
and ultra-short-term forecasts [3]. A medium-long-term forecast (i.e., with a prediction scale of several
months) can provide support for power grid planning; Short-term prediction (i.e., with a prediction
scale of one to four days in advance) can assist the dispatching department in formulating generator
set start-stop plans. Super short-term forecast (i.e., with a prediction scale of 15 min in advance)
can achieve a real-time rolling correction of the output plan curve and can provide early warning
information to the dispatcher. The shorter the time scale, the more favorable the management
of preventative situations and emergencies. Most of the existing literature describes short-term
forecasting research with an hourly cycle. There are few reports on the ultra-short-term prediction of
PV power generation [4–6]. In addition, in the previous research, PV power prediction methods mainly
include the following: physical methods, statistical methods, machine learning methods, and hybrid
integration methods.

(1) In physical methods, numerical weather prediction (NWP) is the most widely used
method, which involves more input data such as solar radiation, temperature, and other
meteorological information.

(2) As for the statistical approaches, their main purpose is to establish a long-term PV
output prediction model. In literature [7–10], the auto-regressive, auto-regressive moving average,
auto-regressive integral moving average and Kalman filtering model of short-term PV prediction are
respectively established based on the time series, and obtain good prediction results. The above model
is mainly based on a linear model, which only requires historical PV data and does not require more
meteorological factors. In addition, the time series methods can only capture linear relationships and
require stationary input data or stationary differencing data.

(3) Along with the rapid update of computer hardware and the development of data mining,
prediction methods based on machine learning have been successfully applied in many fields.
Machine learning models that have been widely applied in PV output prediction models are nonlinear
regression models such as the Deep Neural Network (DNN), the Recurrent Neural Network (RNN), the
Convolutional Neural Network (CNN), the Deep Belief Network (DBN) and so forth. Literature [11,12]
establishes output prediction models based on the neural network, which can consider multiple
input influencing factors at the same time. The only drawback is that the network structure and
parameter settings will have a great impact on the performance of the models, which limits the
application of neural networks. Literature [13,14] has analyzed various factors affecting PV power
and established support vector machine (SVM) prediction models facing PV prediction. The results
show that the SVM adopts the principle of structural risk minimization to replace the principle
of empirical risk minimization of traditional neural networks; thus, it has a better generalization
ability. To effectively enhance the reliability and accuracy of PV prediction results, related literature
proposes the use of intelligent optimization algorithms to estimate model parameters; some examples
of intelligent optimization algorithms include the gray wolf algorithm, the similar day analysis method
and the particle swarm algorithm [15–17]. The example analysis illustrates the effectiveness of the
optimization algorithm.

(4) In recent years, decomposition-refactoring prediction models based on signal analysis
methods have attracted more and more attention from scholars. Relevant research shows that
using signal analysis methods to preprocess data on PV power series can reduce the influence
of non-stationary meteorological external factors on the prediction results and improve prediction
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accuracy. The decomposition methods of PV power output data mainly include wavelet analysis and
wavelet packet transform [18,19], empirical mode decomposition (EMD) [20], ensemble empirical
mode decomposition (EEMD) [21] and local mean decomposition (LMD) [22]. Among them, wavelet
analysis has good time-frequency localization characteristics, but the decomposition effect depends on
the choice of basic function and the self-adaptability is poor [23]. EMD has strong self-adaptability,
but there are problems such as end-effects and over-enveloping [24]. LMD has fewer iterations and
lighter end-effects. However, judging the condition of purely FM signals requires trial and error. If the
sliding span is not properly selected, the function will not converge, resulting in excessive smoothness,
which affects algorithmic accuracy [25]. EEMD is the improved EMD method; the analysis of the
signal is made via a noise-assisted, weakened influence of modal aliasing. However, this method has
a large amount of computation and more modal components than the true value [26]. Variational
mode decomposition (VMD) is a relatively new signal decomposition method. Compared to the
recursive screening mode of EMD, EEMD, and LMD, by controlling the modal center frequency K,
the VMD transforms the estimation of the sequence signal modality into a non-recursive variational
modal problem to be solved, which can well express and separate the weak detail signal and the
approximate signal in the signal. It is essentially a set of adaptive Wiener filters with a mature
theoretical basis. In addition, the non-recursive method adopted does not transmit errors, and solves
the modal aliasing phenomenon of EMD, EEDM and other methods appeared in the background of
bad noise, and effectively weakens the degree of end-effect [27]. Literature [28] used this method for
fault diagnoses and achieved good results.

Through the above literature research, we find that the previous prediction methods using
traditional neural network models and single machine learning models cannot meet the performance
requirements of local solar irradiance prediction scenarios with complex fluctuations. To further
improve the prediction accuracy of PV output, this work proposes a new and innovative hybrid
prediction method that can improve prediction performance. This method is a hybrid of variational
mode decomposition (VMD), the deep belief network (DBN), and the auto-regressive moving average
model (ARMA); it combines these prediction techniques adaptively. Different from the traditional
PV output prediction model, the key features of the VMD-ARMA-DBN prediction model are the
perfect combination of the following parts: (1) VMD-based solar radiation sequence decomposition;
(2) ARMA-based low-frequency component sequence prediction model; and (3) DBN-based
high-frequency component sequence prediction model. The original photovoltaic output sequences
are decomposed into multiple controllable subsequences of different frequencies by using the VMD
methods. Then, based on the frequency characteristics of each subsequence, the subsequence prediction
is performed by using the advantages of ARMA and DBN, respectively. Finally, the subsequences
are reorganized, and the final PV output prediction value is obtained. The main contributions of this
article are as follows:

(1) To reduce the complexity and non-stationarity of the PV output data series, the VMD
decomposition is used for the first time to preprocess the PV data sequence and decompose it into
a series of IMF component sequences with good characteristics, achieving an effective extraction of
advanced nonlinear features and hidden structures in PV output data sequences.

(2) An innovative method for predicting PV output based on VMD-DBM-ARMA is proposed.
According to the characteristics of the IMF component sequence decomposed by the VMD, DBN and
ARMA models are used to improve predictions of the high- and low-frequency component sequences,
respectively. Based on this, the DBN is used for feature extraction and structural learning of the
prediction results of each component sequence. Finally, the PV output predictive value is obtained.

(3) Taking the actual measured data of a PV power plant in China-Yunnan for application,
the short-term PV output predictions of ARMA, DBN, EMD-ARMA-DBN, EEMD-ARMA-DBN,
and VMD-ARMA-DBN were conducted and three prediction precisions were introduced, respectively.
The evaluation indicators perform a statistical analysis on the prediction effect of each model.
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The results show that the proposed method can guarantee the stability of the prediction error and
further improve the PV prediction accuracy.

The remainder of this paper is organized as follows: Section 2 describes our proposed approach:
A Hybrid Forecasting Method for Solar Output Power Based on VMD-DBN-ARMA; experimental
results are presented in Section 3; and the experimental comparison and conclusion are given in
Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Variational Mode Decomposition (VMD)

VMD is a new non-stationary, signal-adaptive decomposition estimation method. It was proposed
by Konstantin Dragomiretskiy in 2014. The purpose of VMD is to decompose the original complex
signal into K amplitude and frequency modulation sub-signals. Because K can be preset, and with
a proper value of K, modal aliasing can be effectively suppressed [29]. VMD assumes that each
“mode” has a finite bandwidth with unique center frequencies. The main process of this method is to:
(1) use Wiener filtering to de-noise the signal; (2) obtain the K-estimated center angular frequency by
initializing the finite bandwidth parameters and the central angular frequency; (3) use the alternating
direction method of multipliers to update each modal function and its center frequency; (4) demodulate
each modal function to the corresponding baseband; and (5) minimize the sum of each modal
estimation bandwidth. The algorithm can be divided into the construction of a variational problem,
subsequently obtaining the solution to the variation problem. The algorithm is described in detail in
Sections 2.1.1–2.1.4.

2.1.1. The Construction of the Variational Problem

Assume that each mode has a finite bandwidth and a pre-defined center frequency. The variational
problem is described as a problem that seeks K modal functions uk(t)(k = 1, 2, . . . , K) such that the
sum of the estimated bandwidths of each mode is minimized subject to the constraint that the sum of
each mode is equal to the input signal f . The specific construction steps are as follows:

(1) Apply a Hilbert transform to the analytical signal of each modal function uk(t). Then, obtain its
single-side spectrum (

δ(t) + j
πt

)
∗ uk(t)

δ(t) =

{
0
∞

t 6= 0
t = 0

,
+∞∫
−∞

δ(t)dt = 1
, (1)

where δ(t) is the Dirac distribution.
(2) Modulate the spectrum of each mode to be the corresponding baseband based on the

mixed-estimated center frequency e−jωkt of various modal analysis signals[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt, (2)

where e−jωkt is the phasor description of the center frequency of the modal function in the complex
plane and ωK is the center frequency of each modal function.

(3) Calculate the square of the norm of the gradient of the analytical signal and estimate the
bandwidth of each modal signal. The constrained variational problem is expressed as

min
{uk},{ωk}

{
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
⊗ uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f

, (3)
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where {uk} = {u1, u2, · · · , uK} is the set of modal functions, {ωk} = {ω1, ω2, · · · , ωK} is the set of
center frequencies that correspond to the modal functions, ⊗ is the convolution operation, and K is the
total number of modal functions.

2.1.2. Solve the Variational Problem

(1) Introduce the second-level penalty factor C and the Lagrange multiplication operator θ(t)
to change the constraint variational problem into a non-binding variational problem. Among them,
C guarantees the reconstruction precision of the signal and θ(t) maintains the strictness of the constraint
condition. The expanded Lagrange expression is characterized by

L({uk}, {ωk}, θ) = C
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt

∥∥∥2

2

+‖ f (t)−
K
∑

k=1
uk(t)‖

2

2
+

〈
θ(t), f (t)−

K
∑

k=1
uk(t)

〉
,

(4)

(2) VMD uses the alternating direction multiplication operator method to solve Equation (4)
(the variational problem). In the expanded Lagrange expression, the “saddle point” is found by
alternately updating un+1

k , ωn+1
k and θn+1, where n denotes the number of iterations and where un+1

k
can be transformed into the frequency domain using the Fourier isometric transformation

ûn+1
k = argmin

ûk ,uk∈X

{
C‖jω{[1 + sgn(ω + ωk)]ûk(ω + ωk)}‖2

2

+‖ f̂ (ω)−
K
∑

k=1
ûk(ω) + θ̂(ω)

2 ‖
2

2

} , (5)

where ω is the random frequency and X contains all desirable sets of uk. Replace ω with ω − ωk,
and the non-negative frequency interval integral form is

ûn+1
k = argmin

ûk ,uk∈X


∫ ∞

0

4C(ω−ωk)
2|ûk(ω)|2 + 2

∣∣∣∣∣ f̂ (ω)−
K

∑
k=1

ûk(ω) +
θ̂(ω)

2

∣∣∣∣∣
2
dω

. (6)

Thus, the solution to the quadratic optimization problem is

ûn+1
k (ω) =

f̂ (ω)−
K
∑

k=1
ûk(ω) + θ̂(ω)

2

1 + 2C(ω−ωk)
2 . (7)

According to the same process, the method for updating the center frequency is solved via

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
. (8)

Among them, ûn+1
k (ω) is equivalent to the Wiener filter of the current residual quantity and

f̂ (ω) −
K
∑

k=1
ûk(ω); ωn+1

k is the barycenter of the power spectrum of the current modal function.

When an inverse Fourier transform is applied, we end up with ûk(ω), where its real-part is {uk(t)}.

2.1.3. VMD Algorithm Flow

• Step 1: Initialize parameters
{

u1
k
}

,
{

ω1
k
}

, θ̂1 and n. Set the number of iterations to be n to 1.
• Step 2: Update uk and ωk according to Equations (7) and (8).



Appl. Sci. 2018, 8, 1901 6 of 24

• Step 3: Update θ via

θ̂n+1(ω)← θ̂n(ω) + τ

[
f̂ (ω)−

K

∑
k=1

ûn+1
k (ω)

]
. (9)

• Step 4: If the discrimination precision e > 0 and
K
∑

k=1

‖ûn+1
k −ûn

k ‖
2
2

‖ûn
k ‖

2
2

< e are satisfied, the iteration ends

and Step 2 is returned.
• Step 5: Obtain the corresponding modal subsequences based on the given mode number.

2.1.4. Determine VMD Parameters

(1) Determine the number of modes

VMD needs to determine the number of K modalities before decomposing the signal. Study [29]
found that if the K value is too small, multiple components of the signal in one modality may appear
at the same time, or a component cannot be estimated. Conversely, the same component appears in
multiple mode, and the modal center frequency obtained iteratively will overlap.

Considering these problems, this paper uses a simple and effective modal fluctuation method to
determine the number of K modes. The algorithm flow is as follows [30]:

• Step 1: Estimate the initial value of the modal number k through the spectrum diagram of
the signal;

• Step 2: The modal number is k, whether the modal center frequencies overlap;
• Step 3: If the center frequency overlaps, reduce the number of modalities for VMD decomposition

until no center frequency overlap occurs, and output is K;
• Step 4: If there is no overlap in the center frequency, increase the number of modalities for VMD

decomposition, until the center frequency overlaps and output is K − 1.

(2) Penalty factor

The introduction of the penalty factor changes the constraint variational problem into
a non-binding variational problem. In the operation of the VMD program, only the modal bandwidth
and convergence speed (after decomposition) are affected. To avoid modal aliasing and guaranteeing
a certain convergence speed, the standard VMD has a strong adaptability with a penalty factor of 2000.
In this work, the penalty factor adopts a default value of 2000 during the VMD decomposition [31].

2.2. Deep Belief Network (DBN)

The deep belief network (DBN) is an in-depth network efficient learning algorithm proposed by
Hinton et al.; it processes high-dimensional and large-scale data problems [32] such as image feature
extraction and collaborative filtering. DBN essentially consists of multiple Restricted Boltzmann
Machine (RBM) networks and a supervised Back Propagation (BP) Network. The lower layer represents
the details of the original data. The higher layer represents the data attribute categories or the
characteristics, from a low-level to high-level layer-by-layer abstraction; it has the characteristics of
gradually tapping deep data features. The specific structure is shown in Figure 1.
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Figure 1. Deep belief network structure. RBM: Restricted Boltzmann Machine; BP: Back-Projection.

The DBN training process includes two stages: forward stack RBM pre-training and reverse
BP fine-tuning. The pre-training phase initializes the parameters of the entire DBN model.
The unsupervised learning of forward stacking is used to train each layer of RBM. The output of the
previous RBM hidden layer could be used as the input of the next RBM visible layer. Since the RBM
network can only ensure that the feature mapping in each layer of the DBN model is optimal, it cannot
guarantee that the feature mapping can be optimized in the entire DBN model. Therefore, we need to
enter the fine-tuning phase to optimize the parameters of the entire network. During the fine-tuning
phase, supervised learning methods are used to further optimize and adjust the relevant parameters of
the cyberspace. The errors resulting from the actual output and standard annotation information are
propagated backward layer by layer, and the entire DBN weights and offsets are fine-tuned from the
top to bottom.

2.2.1. Forward RBM Pre-Training

The Boltzmann machine (BM) is a probabilistic modeling method based on an energy function.
It has a strong unsupervised learning ability. In theory, it can learn arbitrarily complex rules and apply
the rules to the data. Inter-unit connections of the inner- and inter-layer are complex, so there are also
disadvantages such as a long training time, a large number of calculations, and difficulty in obtaining
the probability distribution [33].

RBM is an improvement over BM. It is a two-layer recursive neural network. Random binary input
and random binary output are connected via symmetrical weights, as shown in Figure 2. The two-layer
system consists of n dominant neurons (corresponding to the visible variable) and m recessive neurons
(corresponding to the hidden variable h), where the v and h elements are binary variables whose state
is 0 or 1. There is a weight value connection between the cell layer and the hidden cell layer, but there
is no connection between the cells in the layer.

RBM is an energy-based model. For a given set of states (v, h), the joint configuration energy
function [34] of the visible and hidden units is

E(v, h|θ) = −
n

∑
i=1

m

∑
j=1

wijhjvi −
m

∑
j=1

cjhj −
n

∑
i=1

bivi. (10)
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where θ = (ω, b, c) is the parameter of the RBM model; vi, bi are the respective states and offsets of the
i-th visible unit; hj, cj are the respective states and offsets of the j-th hidden unit; ωij is the i-th visible
unit and the connection weight between the j-th hidden units. The structure of the RBM model is very
special. There are no connections within the layers and all the layers are fully connected. When the
activation state of each visible layer unit is given, the activation states of the neurons in the hidden
layer are independent of each other, and σ(x) = 1

1+exp(−x) is a sigmoid activation function. Therefore,
the activation probability of the j-th neuron in the hidden layer is

p(hj = 1
∣∣v, θ) = σ(bj + ∑

i
viwij) (11)
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Similarly, when the state h of the hidden unit is given, the active states vi of the visible units are
also mutually independent, and the activation probability of the i-th visible unit is

p(vi = 1|h, θ) = σ(ci + ∑
j

hjwij) (12)

RBM is a stable network structure. By maximizing the log likelihood function L(θ) of the RBM on
the input training set to obtain the model parameter θ, the training data set can be fitted. The hidden
layer can subsequently be used as the characteristics of the visible layer data.

θ̂ = argmax
θ

L(θ) = argmax
θ

N

∑
t=1

lg P(v(t)
∣∣∣h, θ) (13)

To quickly train a log likelihood gradient of an RBM, the data distribution of Gibbs sampling [35]
can be used as the RBM definition expectation, and then the weight and offset parameter update
criteria can be obtained: 

wk+1
ij = wk

ij + ε(< vihj >data − < vihj >recon)

ak+1
i = ak

i + ε(< vi >data − < vi >recon)

bk+1
j = bk

j + ε(< hj >data − < hj >recon)

(14)

where ε is the learning rate, taking any value in the interval [0,1]; the data are the expectation of
the distribution of the original observation data; recon is the desired distribution defined by the
RBM model.
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2.2.2. Reverse Back-Projection (BP) Trimming Phase

After pre-training, the DBN network is fine-tuned. This phase is achieved via reverse supervised
learning. The BP network is set to be the last layer of the DBN, the output of the last layer of RBM is
taken as the input of the BP, and supervised training is performed from top to bottom to optimize the
parameters generated in the pre-training stage to optimize the prediction ability of the DBN. Unlike
an unsupervised DBN training process that considers one RBM at a time, the reverse-trimmed DBN
training process considers all DBN layers at the same time and uses the model output and target tag
data to calculate training errors; it also updates DBN classifier model parameters to minimize training
errors. In the process of backward BP propagation, the sensitivity of each layer needs to be calculated.
The sensitivity calculation is described in [36].

2.3. Auto-Regressive and Moving Average Model (ARMA)

The auto-regressive moving average model is an important method for studying time series.
It uses an auto-regressive model (referred to as the AR model) and a moving average model (referred to
as the MA model) as a basis for “mixing”. It uses modern statistics and information-processing
techniques to investigate time series law, which is a group of powerful tools for solving practical
problems. Time series laws have been widely used in many fields such as finance, economy,
meteorology, hydrology, and signal processing. Based on the historical data of the sequence, this
reveals the structure and regularity of the dynamic data, and quantitatively understands the linear
correlation between observable data. Time laws use mathematical statistics to process and predict
its future value. The ARMA model is used as a predictive model and its basic principles are as
follows [37–39]:

Let X(t) = {Xt, t = 0,±1, · · ·} be a 0-mean stationary random sequence and satisfy for any t

Xt − φ1Xt−1 − · · · − φpXt−p = εt + θ1εt−1 + · · ·+ θqεt−q, (15)

where p, q is the ARMA model order; ε = {εt, t = 0,±1, · · ·} is the white noise sequence with variance
σ2; φ, θ is a non-zero undetermined coefficient; and {Xt} is the ARMA (p, q) process with mean u [40].

2.3.1. Model Ordering

The ARMA model is the system’s memory of its past self-state and noise of entering the system.
Determining the order of the model and the value of the unknown parameter according to a set of
observation data is the model order. Firstly, through the correlation analysis, the autocorrelation
function (ACF) and partial autocorrelation function (PACF) of the sample are calculated, then the order
of the model is preliminarily judged by the trailing nature or censored nature of the ACF and PACF,
as shown in Table 1.

Table 1. Sequence characteristics table of ARMA (p, q) model. ARMA: Auto-Regressive Moving
Average; ACF: autocorrelation function; PACF: partial autocorrelation function; AR: Auto-regressive;
MA: Moving Average.

Model Type AR(p) MA(q) ARMA(p, q)

ACF trailing censored trailing
PACF censored trailing trailing

It can be seen that the PACF of AR(p) is censored at point p, while the ACF of MA(q) is censored
at point q. The p can also be determined by observing the oscillation period of the PACF. In this
way, the order of AR(p) or MA(q) can be preliminary determined while the model is being identified.
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The Akaike Information Criterion (AIC) [41] is used as the ARMA model ordering criterion. The AIC
function is:

AIC(p, q) = min
0≤p,q≤L

(p, q)

= min
0≤p,q≤L

{
ln σ̂2 + 2(p+q)

N

} . (16)

Among them, σ̂2 is the estimation of the variance of the noise term, N is the known observation
data sample size, and L is the highest order given in advance. The use of the AIC criterion to determine
the order refers to the points p and q that seek to minimize the statistic AIC (p, q) within a certain
range of p, q, which is used as an estimate of (p, q) [42]. Theoretically, the larger the L, the higher the
prediction accuracy. However, considering the calculation time, and the increase in L, the prediction
accuracy is not significantly improved. In general, the value is N/10, ln N, or

√
N.

From Equation (16), when the model parameter N is gradually increased, the fitting error is
improved significantly and the AIC (p, q) value will show a downward trend. As the model order
increases, the fitting residual improves a little. The AIC value also increases gradually; when the AIC
(p, q) obtains the minimum, the corresponding p, q is the ideal order of the model.

2.3.2. Parameter Estimation

There are many methods for estimating the parameters of the ARMA model. The Least Squares
Estimation method is used in this work. See Reference [43] for the specific parameters. After each
parameter is calculated, it is substituted into ARMA (p, q) to forecast each reconstructed component to
obtain the predicted value X̂ and the fitted value ĉk of the modeling data. The residual γ = ck − ĉk
between the measured data and the fitted value of the model data is calculated. Then, γ is used to
describe the modeling data and to obtain the residual forecast γ̂. After that, the revised forecast value is

X̃t = γ̂ + X̂t (17)

In the formula, γ is the residual value of the observed value and the forecasted value;
ck(k = 1, 2, · · · ) is the observation value of the modeling data; X̃t is the prediction value after the
prediction residual correction; and X̂t and γ̂ are the ARMA model prediction values and their
corresponding residual values, respectively.

2.4. Combination Forecasting Model Based on VMD-ARMA-DBN

Considering the nonlinear, non-stationary, and periodic characteristics of PV output data, and
considering that the time series ARMA (p, q) is a linear model, the prediction effect on non-stationary
data is not good; however, the better-trained neural network has higher accuracy for non-stationary
data prediction. Therefore, in this work, PV prediction based on the VMD-ARMA-DBN model is used
to decompose the PV output time series into multiple IMFs with different frequencies. The predictive
models for different IMFs sequences are established (respectively) to reduce the interaction between
varying characteristics. Finally, DBN is used to reconstruct the prediction components to obtain the
predicted value of the original sequence. The specific process is shown in Figure 3.



Appl. Sci. 2018, 8, 1901 11 of 24

Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 25 

 

 

Figure 3. Combination Forecasting Model Based on VMD-ARMA-DBN. PV: photovoltaic; IMF: 

Intrinsic Mode Function; VMD: Variational Mode Decomposition; DBN: Deep Belief Network. 

2.5. Data Model Accuracy Evaluation Index 

To evaluate the predictive performance of the prediction model, the normalized mean absolute 

error NMAEe , normalized mean-square-error NRMSEe , and Theil coefficient (TIC) are used as the 

performance evaluation indicators of the prediction model. 

1

1 1
ˆ *100%

n

NMAE i i

ir

e y y
P n =

= − , (18) 

( )
2

1r

1 1
ˆ *100%

P

n

NRMSE i i

i

e y y
n =

= − ,
 

(19) 

( )
2

1

2 2

1 1

1
ˆ

1 1
ˆ

n

i i

i

n n

i i

i i

y y
n

Theil IC

y y
n n

=

= =

−

=

+



 

.
 

(20) 

Original sample 

sequence of PV output

VMD decomposition

(determine the number 

of decomposed K)

……

IMFs Frequency analysis

Combinatorial 

prediction

High frequency IMFs component Low frequency IMFs component

DBN modal ARMA modal

… …

DBN modal
PV output training 

sample

Forecast results output

IMFs component 

training sample

IMFs component 

training sample

Figure 3. Combination Forecasting Model Based on VMD-ARMA-DBN. PV: photovoltaic; IMF: Intrinsic
Mode Function; VMD: Variational Mode Decomposition; DBN: Deep Belief Network.

2.5. Data Model Accuracy Evaluation Index

To evaluate the predictive performance of the prediction model, the normalized mean absolute
error eNMAE, normalized mean-square-error eNRMSE, and Theil coefficient (TIC) are used as the
performance evaluation indicators of the prediction model.

eNMAE =
1
Pr

1
n

n

∑
i=1
|ŷi − yi| × 100%, (18)

eNRMSE =
1
Pr

√
1
n

n

∑
i=1

(ŷi − yi)
2 × 100%, (19)

Theil IC =

√
1
n

n
∑

i=1
(yi − ŷi)

2

√
1
n

n
∑

i=1
y2

i +

√
1
n

n
∑

i=1
ŷ2

i

. (20)

where yi is the actual observed value, ŷi is the predicted value, yi is the total average of the observed
values, n is the number of samples, and Pr is the rated installed capacity of the PV power plant. The Hill
unequal coefficient is always between 0 and 1. The smaller the value, the smaller the difference between
the fitted value and the true value, which means the prediction accuracy is higher. When it is equal to
0, it means a 100% fit.
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3. Results

Based on the multi-frequency combination forecasting model, this work selected the recorded data
of a 50 MW PV power station monitoring platform in Yunnan Province in 2016 to conduct an empirical
study of PV output forecasting. Since there are 96 load points in the output sample of the PV power
plant every day, the data entries are numerous and the change is complex. Therefore, this work selected
35,040 output data entries from 1 January 2016 to 30 December 2016 and from 1 January to 23 December
2016 as research samples, which suggests that a total of 34,368 output data entries were used as sample
points for model fitting and the basis for the selection parameters. This model was then used to make
predictions for 768 loads for the period between 24 December 2016 and 30 December 2016.

3.1. Training Sample Construction Based on VMD

3.1.1. Initial Determination of VMD Mode

According to the decomposition principle of VMD in Section 2.1, the number of modalities is
determined by studying the series of PV output samples. Figure 4a shows a sequence diagram of
the PV output. Figure 4b shows the frequency spectrum after the PV output sequence is through the
Fast Fourier Transform (FFT). Because there are many data, the full spectrum diagram is not easy to
observe, while the spectrum diagram is symmetrical. Therefore, when analyzing, half of the spectrum
diagram is to be taken for analysis.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 25 

 

where iy  is the actual observed value, ˆ
iy  is the predicted value, iy  is the total average of the 

observed values, n is the number of samples, and rP  is the rated installed capacity of the PV 

power plant. The Hill unequal coefficient is always between 0 and 1. The smaller the value, the 

smaller the difference between the fitted value and the true value, which means the prediction 

accuracy is higher. When it is equal to 0, it means a 100% fit. 

3. Results 

Based on the multi-frequency combination forecasting model, this work selected the recorded 

data of a 50 MW PV power station monitoring platform in Yunnan Province in 2016 to conduct an 

empirical study of PV output forecasting. Since there are 96 load points in the output sample of the 

PV power plant every day, the data entries are numerous and the change is complex. Therefore, this 

work selected 35,040 output data entries from 1 January 2016 to 30 December 2016 and from 1 

January to 23 December 2016 as research samples, which suggests that a total of 34,368 output data 

entries were used as sample points for model fitting and the basis for the selection parameters. This 

model was then used to make predictions for 768 loads for the period between 24 December 2016 

and 30 December 2016. 

3.1. Training Sample Construction Based on VMD 

3.1.1. Initial Determination of VMD Mode 

According to the decomposition principle of VMD in Section 2.1, the number of modalities is 

determined by studying the series of PV output samples. Figure 4a shows a sequence diagram of the 

PV output. Figure 4b shows the frequency spectrum after the PV output sequence is through the Fast 

Fourier Transform (FFT). Because there are many data, the full spectrum diagram is not easy to 

observe, while the spectrum diagram is symmetrical. Therefore, when analyzing, half of the 

spectrum diagram is to be taken for analysis. 

 

Figure 4. Photovoltaic output sample sequence. 

As we can see from Figure 4b, the spectrum of the sample sequence contains three major 

frequency band components, and the symmetry of the spectrogram and the initial value of the 

modal number are taken as six. When K = 5, K = 6, and K = 7, the load data are separately 

decomposed via VMD to obtain an iterative curve of each modal center frequency under different K 

values, as shown in Figure 5. 

0 2000 4000 6000 8000 10,000 12,000 14,000 16,000
0

10

20

30

40

50

P
V

 o
u
tp

u
t 
p
o
w

e
r 

(M
W

)

(a) Sample Sequence

0 100 200 300 400
0

0.5

1

1.5

2

x 10
5

(b) Sample Frequency

Figure 4. Photovoltaic output sample sequence.

As we can see from Figure 4b, the spectrum of the sample sequence contains three major frequency
band components, and the symmetry of the spectrogram and the initial value of the modal number are
taken as six. When K = 5, K = 6, and K = 7, the load data are separately decomposed via VMD to obtain
an iterative curve of each modal center frequency under different K values, as shown in Figure 5.Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 25 
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Figure 5. Sample center frequency iteration curves in different modes.

From the comparison of Figure 5, it can be found that when K = 7, the ends of the two
iterative curves of the label are very close; in other words, central frequency aliasing appears.
Therefore, the mode number was finally determined to be six.
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3.1.2. Decomposition of Solar Output Power Data

The VMD decomposition method effectively improves modal aliasing and false components
that appear in decomposition when the EMD and EEMD are decomposed. From a mathematical
point-of-view, the phenomenon of mode mixing is that the components of each mode are intercoupling,
which does not satisfy the orthogonality requirement. False components, as the name suggests,
imply that they are mathematically calculated modal components. Modal aliasing leads directly to the
appearance of false components. As demonstrated above, the number of modalities here is K = 6 and
the original load is decomposed. The modal decomposition diagrams and spectrograms are shown in
Figure 6.
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Figure 6. VMD decomposition diagram and spectrum diagram. (a) Modal components, (b) Frequency.

As in the spectrogram shown in Figure 6b, the spectral distributions of each modal component
do not appear to be coupled with one another, satisfying the requirement of orthogonality.
Therefore, no modal aliasing phenomenon occurs and the false component due to modal aliasing is
also greatly improved (reduced). According to the spectrum period size of each modal component,
the modes found via VMD decomposition are divided into two categories: the first three cycle short
modal components IMF1, IMF2 and IMF3 are classified as high-frequency data, while the longer
periods IMF4, IMF5 and IMF6 are used as low-frequency data.

3.2. Prediction of VMD Components

3.2.1. Rolling Prediction of High-Frequency Components Based on DBN Model

As described above, the DBN is used to predict high-frequency components. First, the DBN
network is trained. Because the number of hidden layers of the DBN network and the number of
cells in each hidden layer have a great influence on the prediction accuracy and computation time,
this work focuses on the selection for these two parameters. The weight of the DBN model is initialized
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via a normal random distribution. The threshold of the DBN model is initialized at 0, the maximum
number of iterations of the RBM is 100, the learning rate is 0.1, the momentum parameter is 0.9, and
the model parameters are set as in Reference [44,45]. In the training model, the rolling prediction
model with eight inputs and one output is adopted, i.e., the number of input layer nodes are the
data from the first 2 h before the predicted time (eight nodes). The output layer consists of the
predicted time for one node. The enumeration method is used to select the number of hidden units,
layer by layer, to verify the influence of the deep network structure on the prediction effect and time
consumption. First, we determine the optimal number of hidden units in the RBM1 layer and fix them;
then, we add a hidden layer to determine the optimal value of the number of hidden units in the
RBM2 layer. This continues until the prediction accuracy is no longer improved. The output error and
time spent are obtained by changing the number of hidden layers and the number of nodes. Since the
corresponding weight and threshold are automatically initialized during each training, the number
of hidden cells in each layer is set to four to 32 (the interval is four), which is a total of eight levels.
The number of layers of the hidden layer is sequentially set to the RBM1, RBM2, and RBM3 layers.
IMF1 is taken as an illustration example, and the others will not be described again. The specific DBN
parameters are shown in Table 2.

Table 2. Training times and output errors of IMF1 hidden layer nodes. IMF1: Intrinsic Mode Function 1.

Hidden Layer RBM1

Number of hidden nodes 4 8 12 16 20 24 28 32
Output error/% 2.7427 2.1418 1.6717 1.2419 1.0242 1.3237 1.5517 1.8152
Training time/s 13.27 13.36 13.21 13.53 13.47 14.18 19.97 24.41

Hidden Layer RBM2

Number of hidden nodes 4 8 12 16 20 24 28 32
Output error/% 1.5024 1.3024 1.2124 1.9122 2.0038 2.1522 2.0155 2.0014
Training time/s 15.18 15.94 16.47 17.08 21.78 28.15 30.32 37.77

Hidden Layer RBM3

Number of hidden nodes 4 8 12 16 20 24 28 32
Output error/% 4.5174 4.2415 3.7791 2.8172 3.4014 3.1179 3.1563 4.7791
Training time/s 22.47 25.78 30.11 33.91 55.78 80.14 117.35 135.88

Table 2 shows that when the number of neurons in the hidden layer RBM1 is 20, the output error
reaches a minimum of 1.0242%, which takes 13.47 s; the average output error of its two neighboring
neurons is 1.28281. When the number of neurons in the hidden layer RBM2 is 12, the output error
reaches a minimum of 1.21242%, which takes 15.94 s; the output error is smaller than the average
output errors of neurons that are adjacent to the optimal neurons in the RBM1 layer. When the
number of neurons in the hidden layer RBM3 is 16, the output error reaches the minimum value of
2.81824%, which takes 33.91 s; both the output error and the training time of RBM3 are higher than the
average output errors of neurons that are adjacent to the optimal neurons in the RBM2 layer. For the
IMF1 component data set, the DBN prediction model has better effects when it adopts a four-layer
structure of “8-20-12-1” (that is, the numbers of hidden units of RBM1 and RBM2 are 20 and 12,
respectively, which are marked in red in the table). By using this method, the DBN model structure of
the high-frequency components of IMF2 and IMF3 and the number of nodes of each hidden layer are
obtained, as shown in Table 3.

Table 3. Variational Mode Decomposition (VMD) decomposition high-frequency components’ Deep
Belief Network (DBN) structure.

VMD Decomposition High-Frequency IMF1 IMF2 IMF3

DBN structure 8-20-12-1 8-16-12-4-1 8-12-8-1
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Through the analysis above, the IMF1-IMF3 components are predicted using the trained model,
as shown in Figure 7.Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 25 
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Figure 7. Prediction of IMF1-IMF3 component.

Figure 7 shows that the high-frequency components IMF1 and IMF2 have strong volatility,
their prediction errors are larger than other components, the IMF3 components fluctuate less than
the previous ones, and the error is reduced. Overall, the high self-learning and adaptive capabilities
of the DBN model are suitable for predicting high-frequency components with strong volatility and
short periods.

3.2.2. Prediction of Low-Frequency Components Based on ARMA Model

Thus, the low-frequency components are predicted via the ARMA model. First, the sample’s
autocorrelation function (ACF) and partial autocorrelation function (PACF) are obtained to determine
the initial order of the model. This work uses IMF4 as the example to illustrate, and other low-frequency
components are not described again. The ACF and PACF of IMF4, respectively, are shown in Figure 8.

According to the AIC order code determined in Reference [41] and the above figure, both the
autocorrelation and the partial autocorrelation plots of the IMF4 component have tailing characteristics.
Also, the autocorrelation coefficient is not zero when the lag order is 3, and the trailing characteristic
is apparent when the lag order is greater than 3. The partial autocorrelation coefficient is not zero
when the lag order is 6, but the trailing characteristic is obvious after the lag order is greater than 6.
Thus, we can initially determine that p = 6 and q = 3. To make the model more accurate, the values of
p and q can be relaxed. Using the AIC criterion, the minimum value is taken as the optimal model.
The AIC values under the various model orders are shown in Table 4.

Table 4. The Akaike Information Criterion (AIC) values of different order models.

Order ARMA(6, 3) ARMA(6, 4) ARMA(7, 3) ARMA(7, 4) ARMA(8, 3) ARMA(8, 4)

The value of AIC −2.902 −2.869 −2.609 −2.823 −2.807 −2.817

From the above table, the optimal model of IMF4 is ARMA(7, 3). Then, using the above method,
the components IMF5 and IMF6 are ordered. The specific situation is shown in Table 5.
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Table 5. Orders of VMD low-frequency components.

Component IMF4 IMF5 IMF6

Order ARMA(7, 3) ARMA(8, 4) ARMA(6, 4)
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Figure 8. The autocorrelation function (ACF) and partial autocorrelation function (PACF) of
IMF4 decomposed.

Through the above analysis, the components IMF4 to IMF6 were predicted using the trained
model, which is shown in Figure 9.
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Figure 9. IMF4-IMF6 component prediction.

From Figure 9, we can see that using the ARMA model to predict low-frequency components,
with relatively gentle fluctuations, results in a small error. ARMA has strong nonlinear fluctuation
data learning ability, which is suitable for low-frequency component prediction.

3.2.3. Combination Prediction Based on VMD-ARMA-DBN Model

In this work, DBN is used for the combined reconstruction of the prediction value of each
component (IMF1 to IMF6). Taking each IMF sample data as input, the actual PV output sample value
is used as an output to train the model. Then, the prediction value of each component is taken as
input, and the prediction value of each component, that is, the final load prediction value, is obtained.
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Among them, the DBN model is a five-layer implicit structure “12-24-16-8-1”. The final PV output
forecasting chart is shown in Figure 10.Appl. Sci. 2018, 8, x FOR PEER REVIEW  18 of 25 
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Figure 10. VMD-ARMA-DBN combination forecast results.

4. Discussions and Comparison

To test the prediction effect of the model proposed in this paper, we compared the results of
the following prediction models: (1) the single prediction models (ARMA, DBN) used in this paper;
(2) the common neural network prediction model, RNN and Gradient Boost Decision Tree (GBDT) in
literature [46,47], used on a representative basis; (3) the combined prediction model, Discrete Wavelet
Transformation (DWT) in literature [48] and traditional EMD and EEMD are used on a representative
basis. The prediction results for each model are shown in Figure 11.
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Figure 11. Prediction results for multiple models. (a) ARMA model prediction results; (b) DBN
model prediction results; (c) RNN model prediction results; (d) GBDT model prediction results;
(e) EMD-ARMA-DBN model prediction results; (f) EEMD-ARMA-DBN model prediction results;
(g) DWT-RNN-LSTM model prediction results. RNN: Recurrent Neural Network; GBDT: Gradient
Boost Decision Tree; EEMD: Ensemble Empirical Mode Decomposition; DWT: Discrete Wavelet
Transformation; LSTM: Long Short-Term Memory.

From the simulation results shown in Figures 10 and 11, the VMD-ARMA-DBN combined models
have a better tracking and fitting ability for the PV output curve. Compared to the single models,
the combined model prediction accuracy (after using the modal decomposition technique) shows
different degrees of improvement. Figure 12 is a bar graph demonstrating the absolute error of
prediction in each model.
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Figure 12. Simulation results of each model: absolute error box plot.

From the perspective of the absolute error distribution of the prediction results, the stability
of the prediction accuracy for the single models is poor, and the error distribution interval is large.
Among them, the absolute error distribution interval of each model is [0, 24.7821], [0.0051, 22.2464],
[0.0082, 22.3289], [0.0363, 22.6686], [0.0005, 8.8306], [0.0018, 8.7955], [0.0008, 10.5322], and [0.0017,
6.6526], respectively, and the prediction error median is 0.1692, 0.2791, 0.2708, 0.4523, 0.5926, 0.3078,
0.0351, and 0.1414, respectively. The absolute error distribution of the VMD-ARMA-DBN model is
more concentrated and the median of the error is the smallest, which is the most ideal of the eight
groups of prediction models. In summary, the VMD-based multi-frequency combined forecasting
model presented in this paper is superior to other models. To compare the prediction effects of each



Appl. Sci. 2018, 8, 1901 20 of 24

model more intuitively, we used quantitative evaluation indicators. Table 6 shows the evaluation
results for each model.

Table 6. Forecast results for each model.

Evaluation Index eNMAE eNRMSE TIC

ARMA 3.74146 7.17435 0.11359
DBN 3.19754 6.43502 0.10139
RNN 3.21145 6.548871 0.10328
GBDT 3.27612 6.434691 0.10812

EMD-ARMA-DBN 2.11062 3.49985 0.05456
EEMD-ARMA-DBN 1.35409 2.67181 0.04171
DWT-RNN-LSTM 1.48241 2.74976 0.04265
VMD-ARMA-DBN 1.03374 2.05776 0.03201

First, it can be concluded from Figure 12 and Table 6 that, compared with the single prediction
models containing ARMA, DBN, RNN, and GBDT, the introduction of the modal decomposition
method has a great influence on the accuracy of the prediction results. The modal decomposition
method is used to effectively decompose the original PV output, and the prediction method is selected
according to the characteristics of different modal vectors, which can make the prediction result
more accurate and stable, and the result can be anticipated. The PV system power output has high
volatility, variability, and randomness; through modal decomposition it can effectively eliminate the
unrelated noise components to make each component easier to predict. In the single prediction models,
the error of the ARMA prediction model is the largest, which is not suitable for effectively tracking the
undecomposed solar PV output; DBN, RNN and GBDT belong to machine learning, and the prediction
error is essentially the same. However, the parameters of the RNN prediction model are more difficult
to choose and more easily fall into the local optimum, and GBDT is easy to over-fit for complex models.
However, combined prediction methods can effectively avoid these problems.

Second, the proposed VMD-ARMA-DBN model prediction results are always better than those of
other combined prediction models (such as EMD, EEMD, and DWT). This is mainly because different
decomposition methods have different ways of controlling the modal number, affecting the size of the
prediction error. The center frequency of the VMD modal decomposition is controllable, which can
effectively avoid modal aliasing compared with other modal decomposition models. The original
sequences are decomposed according to the frequency components, and different prediction models
are used for fitting purposes. According to the prediction results in Table 6, this kind of combined
prediction method significantly improves the prediction accuracy.

Finally, it should be noted that the prediction results of the VMD-ARMA-DBN models are different
under different modal center frequencies K. Specifically, when K is too large, it is easy to cause excessive
frequency decomposition, which increases the degree of complexity of the model prediction; when K is
too small, it will cause modal overlapping, and the single frequency components cannot be effectively
predicted, so only the appropriate K can be used to make an effective prediction. Moreover, this will
be an important problem that must be overcome in the next research stage.

5. Conclusions

The short-term prediction accuracy of the nonlinear PV power time series in this work
proposes a multi-frequency combined prediction model based on VMD mode decomposition.
Specifically, the following was observed:

(1) For the first time, this paper introduces the VMD method into PV power plant output
forecasting, decomposes the unstable PV output sequence, and conducts in-depth research on
the characteristics of VMD. When traditional decomposition methods deal with sequences that
contain both trend and wave terms, accurately extracting the shortcomings of the trend items is
impossible. A combination method based on VMD-ARMA-DBN is proposed, which not only reflects
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the development trend of the size of PV output, but also decomposes the fluctuation series into a set of
less complex and some strong periodical parameters, which greatly reduced the difficulty of prediction.

(2) If the VMD cannot restore the original sequence completely, and cannot determine the number
of decomposition layers automatically, we propose a method to determine the number of VMD
decomposition layers via a spectrum analysis, which can restore the original sequence to a large extent
and ensure the stability of the component. First, according to the spectrum diagram of the sample
data, we determined the number of modal components. If the overlapping phenomenon occurred in
the center frequency iteration curve, the number of decompositions was selected and divided into
high- and low-frequency components according to the characteristics of the different components.
ARMA and DBN were used to simulate and predict high-frequency and low-frequency components.
Then, the predictive value of each component was determined using DBN. Each one had a strong
nonlinear mapping ability, and high self-learning ability and self-adaptive capability. The sample data
of each component was taken as input, and the actual PV sample value was used as an output to
train the model. Then, the predicted value of each component was used as input for the prediction.
Finally, the PV output predicted value was obtained.

(3) To test the prediction effect of the VMD combinatorial model, the normalized absolute mean
error, normalized root-mean-square error, and the Hill inequality coefficient were used to compare the
single prediction models with the combined prediction models. The simulation results show that the
different decomposition methods have been improved to varying degrees in terms of forecast accuracy.
Thus, the VMD-ARMA-DBN model proposed in this work offers better accuracy and stability than the
single prediction methods and the combined prediction models.

In the prediction process, we found that although the VMD improved the phenomenon of modal
aliasing and false components, it was not eliminated. In addition, the DBN’s component–RBM needs
to be further improved. The weight and offset of each layer of RBM are initialized during training.
Therefore, even if the number of hidden layer nodes is compared and selected, the optimal model
cannot be obtained, and the final prediction result will show diversification; that is, the same model
yields different results, and to obtain optimal results, it is necessary to train the model multiple times,
which makes the workload cumbersome. The above deficiencies inevitably increase the errors in the
prediction process of each component and affect the final prediction results.
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Nomenclature

ACF autocorrelation function
AIC Akaike Information Criterion
AR Auto-Regressive Model
ARMA Auto-Regressive Moving Average Model
BM Boltzmann machine
BP Back-Projection
CNN Convolutional Neural Network
DBN Deep Belief Network
DNN Deep Neural Network
DWT Discrete Wavelet Transformation
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
FFT Fast Fourier Transform
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GBDT Gradient Boost Decision Tree
IMFs Intrinsic Mode Functions
LMD Local mean decomposition
LSTM Long Short-Term Memory
MA Moving-Average Model
NWP numerical weather prediction
PACF Partial autocorrelation function
PV Photovoltaic
RBM Restricted Boltzmann Machine
RNN Recurrent Neural Network
SVM Support vector machine
VMD Variational Mode Decomposition
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