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Abstract: Oblivious transfer (OT) and bit commitment (BC) are two-party cryptographic protocols
which play crucial roles in the construction of various cryptographic protocols. We propose three
practical quantum cryptographic protocols in this paper. We first construct a practical quantum
random oblivious transfer (R-OT) protocol based on the fact that non-orthogonal states cannot be
reliably distinguished. Then, we construct a fault-tolerant one-out-of-two oblivious transfer (OT2

1 )
protocol based on the quantum R-OT protocol. Afterwards, we propose a quantum bit commitment
(QBC) protocol which executes the fault-tolerant OT2

1 several times. Mayers, Lo and Chau (MLC)
no-go theorem proves that QBC protocol cannot be unconditionally secure. However, we find that
computing the unitary transformation of no-go theorem attack needs so many resources that it is not
realistically implementable. We give a definition of physical security for QBC protocols and prove
that the practical QBC we proposed is physically secure and can be implemented in the real world.

Keywords: quantum cryptography; oblivious transfer; bit commitment; practical protocol;
physical security

1. Introduction

Quantum oblivious transfer (QOT) and quantum bit commitment (QBC) protocols are basic
in quantum cryptography. They are important building blocks of multi-party secure computations.
The study of QOT was started by Crépeau and Kilian [1]. In 1992, a practical QOT protocol was
proposed [2]. However, in these two protocols, if Bob measures the pulses after Alice disclosing the
basis, he will get both messages and Alice’s privacy will be destroyed. In the light of this drawback,
Crépeau proposed a QOT protocol [3] based on a QBC scheme [4] to ensure that Bob cannot delay his
measurement. Then, Yao proved that QOT constructed based on QBC [5] is secure. Shortly afterwards,
Mayers, Lo and Chau separately presented no-go theorem and proved that there is no non-interactive
QBC protocol with statistical security [6–9]. Subsequently, a great number of works that extend
the framework of no-go theorem and further prove the impossibility of the standard QBC has been
presented since Then, [10–16]. These results indicate that QOT protocols constructed based on QBC
are not secure either. Then, quantum secure computations are also considered to be insecure [17–20].

Researchers Then, attempt to construct QBC protocols that can evade the no-go theorem. The most
famous ones are relativistic QBC protocols, which were first proposed by Kent [21–24]. The protocol in
Ref. [23] was implemented by different groups [25,26]. The time during commit phase and opening
phase is limited by the distance between the trusted agents, which may be a restriction for building
other multi-party cryptographic protocols. In addition, some QBC with computational security were
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proposed. Unconditionally binding and computationally concealing QBC schemes were presented by
Tanaka [27] and Chailloux [28], respectively, and in 2016, another computationally binding commitment
scheme was proposed and it can be realized from hash functions like SHA-3 [29]. The security of these
QBC protocols depends on the limited computing power of the adversary. Once the computing power
is improved in the future, the security of these protocols are threatened. Several QBC protocols
were proposed based on physical hypothesis, such as bounded-quantum-storage model [30,31],
noisy-storage model [32–34] and technological limitations on non-demolition measurements [35],
the security of these protocols is threatened by the development of techniques. Some QBC schemes
with security requirements relaxed were put forward, such as cheat-sensitive QBC [36–39] and game
theoretic secure QBC [40]. There are also some non-relativistic QBC schemes which are claimed to
be unconditionally secure [41–46]. However, most of them only exist theoretically. For example,
in Ref. [43] Bob stores the quantum registers unmeasured until opening phase, which can be hardly
implemented in practice.

In this paper, we do not devote to evading the no-go theorem. We give the definition of physical
security. As long as the physical security is satisfied, even the attacker who ownes all the resources of
the earth cannot break the protocol. The physical security was first proposed in Ref. [47]. The time
complexity of no-go theorem attack algorithm is O(23n), where n is the security parameter of the
QBC. In addition this algorithm needs at least O(22n) size of memory space to store the matrix of the
unitary transformation. We define that if the entry number of the attack matrix is greater than the total
number of protons on the earth (approximately 1050), QBC achieves physical-secure binding. It means
when n > 83, no-go theorem attack can hardly be realized in practice. Compared with those QBC
schemes based on physical hypothesis, the definition of physical security limits the attacker with all
the resources of the earth. QBC protocols that achieve physical security are more secure than other
protocols based on physical hypothesis. In this paper, we focus on how to construct practical quantum
protocols with physical security.

In [48], Yang constructed QBC based on QOT. We modify the protocols so that it can be applied
in practice and achieve physical security. The imperfect sources, quantum channel and detectors are
all allowed in the modified protocols. Considering error-correcting code and tolerable error rate, we
describe the protocols in detail and analyze the security and problems we may face in practice.

The practical QBC protocol proposed in this paper has advantages over many existing protocols.
Compared with the relativistic QBC protocols, the time between commit phase and opening phase
is not limited in our scheme. Compared with the computationally secure protocols and QBC
based on physical hypothesis, the physical security of our scheme will not be threatened by the
growing computing power and techniques. Compared with those theoretical protocols, our schemes
allow the imperfect equipment and can be implemented in the real world. The QBC protocols in
Refs. [47,48] are also theoretical. The security analysis of these theoretical protocols is based on the ideal
world rather than the real world. Therefore, these theoretical protocols which are not fault-tolerant
cannot achieve the security they declared and cannot be realized in the real world. Our practical
quantum cryptographic protocols, which are allowing the imperfection of current optoelectronic
apparatus, provide appropriate security parameters and security analysis in the practical conditions.
In sum, the practical QBC protocol achieves physical security and can be possible realized. Since the
selection of security parameters and security analysis are based on available optoelectronic apparatus,
the implement and security of the protocols are more practical and reliable.

2. The Efficiency and Errors of Practical Apparatuses

In practical protocols, all apparatuses should be realizable and convenient. All the apparatuses in
the protocols are divided into three types: emission apparatuses, channel and detection apparatuses.
In a practical protocol, the following situations should be considered.

• Emission apparatuses. The practical and efficient single-photon sources have not yet been realized,
while some researchers have been studying the spectra [49] and efficiency [50] of the single-photon
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sources. In this paper, the single-photon sources are not adopted. Instead, we use weak coherent
pulses with typical average photon number of µS in the following protocols, which can be easily
prepared by standard semiconductor lasers and calibrated attenuators [51]. The error rate caused
by the emission apparatuses is denoted as εS. A pulse is requested to contain only one kind of
polarization, but more than one photon in a pulse are allowed.

• Channel loss and error. The existence of the channel loss leads to an imperfect transfer efficiency,
and the noise in the channel leads to some channel error. Suppose the transfer efficiency of the
channel is ηC, the error rate caused by the channel is εC. Refs. [52,53] provided the physical setups
and detailed properties of some kinds of quantum channels.

• Detection apparatuses. In practice there is no detector with perfect detection efficiency.
The quantum efficiency ηD is the probability that the detector registers a count when one photon
comes in, and the error rate caused by the detection apparatuses is εD, where the main error
source is the dark count d. The single-photon detectors with high efficiency, like 80–93% have
been realized in the laboratory [54,55].

Assume all the parameters described above are all known by both parities of the protocol, and
the typical average photon number of the whole system is µ ≡ µSηCηD. Then, the overall error rate is
ε ≡ 1− (1− εS)(1− εC)(1− εD).

3. Practical Weak QOT and QBC

Definition 1. Random Oblivious Transfer (R-OT) Channel.
Alice sends a random bit r to Bob via a channel, if

1. Bob obtains the bit value r with a probability p satisfying 0 < b < p < a, a < 1
2 , where a and b are any

two real numbers;
2. Alice does not know whether Bob has got the value of her bit.

Then, the channel is named as R-OT channel (an extended Rabin’s OT channel).

To construct a quantum string R-OT protocol, non-orthogonal states are used. There is no
measuring apparatus that can distinguish non-orthogonal states with certainty. Only some probabilistic
information can be obtained. Let Bob measure a sequence of photons in two quantum states |Ψ0〉,
|Ψ1〉, where 〈Ψ0|Ψ1〉 = cos ϕ. Here we choose ϕ = π

6 . The quantity of the information Bob obtains
depends on the measurement he performs. The optimal measurement can differentiate the two
non-orthogonal states with a probability of 1− cos ϕ [56–58], which is a kind of POVM measurement.
Actually, the complicated measurement is not necessary. Even if we construct the protocol with the
sub-optimal measurement, the security of the protocols can still be ensured, which will be analyzed in
detail in Section 4. Through all of the measurements, we choose the most practical and easiest one.
That is, Bob measures photons in two bases, B0 = {|Ψ0〉, |Ψ0〉⊥} and B1 = {|Ψ1〉, |Ψ1〉⊥} randomly.
When the states is |Ψ0〉, the measurement results may be |Ψ0〉, |Ψ1〉 or |Ψ1〉⊥. When the states is
|Ψ1〉, the measurement results may be |Ψ1〉, |Ψ0〉 or |Ψ0〉⊥. It can be seen that if Bob’s measurement
results in |Ψx〉, he cannot distinguish which state is sent by Alice. If his measurement results in
|Ψx〉⊥, which is orthogonal to |Ψx〉, the initial state cannot be |Ψx〉 and therefore is |Ψx⊕1〉. In this
sub-optimal measurement, although Bob cannot distinguish the non-orthogonal states with 100%,
he unambiguously knows that the receiving state must be |Ψx⊕1〉 when his measurement results in
|Ψx〉⊥. Ideally, the probability of getting a conclusive result is

pideal =
1
2
× 1

2
(〈Ψx⊕1|Ψx〉⊥〈Ψx|Ψx⊕1〉+ 〈Ψx|Ψx⊕1〉⊥〈Ψx⊕1|Ψx〉) =

1
8

. (1)

Protocol 1. Practical weak quantum R-OT protocol.

1. Alice and Bob agree on three security parameters, N, α, and εset. The parameter N is the length of the qubit
string sent by Alice. The parameter α is the expected fraction of Bob’s successful detection. The parameter
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εset is the expected error rate.
The number of photons in a weak coherent pulse with typical average photon number of µS follows Poisson

distribution pn(µS) =
e−µS µn

S
n! . It can be seen that the probability of no photon in a pulse is p0(µS) = e−µS .

Then, the probability of detecting at least one photons in a pulse with typical average photon number µS
through a channel with transfer efficiency ηC by a detector with quantum efficiency ηD is 1− e−µ.
They can set the fraction α ' 1− e−µ which is the probability that Alice expects Bob to detect successfully
and set error rate εset ' ε or a little bit higher to allow other noise. The parameters satisfy the equation
H(2εset) <

1
2 − (1− e−µS − µSe−µS)/2α to resist photon number splitting attack [2].

2. Alice and Bob perform two tests.
Firstly, compare Alice’s sending time ti with Bob’s receiving time t′i for each pulse. Since the distance
between Alice and Bob is fixed, by the test they can easily get the traveling time θ, i.e., θ = t′i − ti. This test
not only marks the address of each pulse, but also helps to distinguish the error caused by noises and
dark counts.
Secondly, Alice sends a sequence of pulses through the quantum channel and tells Bob the bases of the
pulses through a classical channel. Bob detects pulses in the other bases. If and only if Bob detects the
pulses successfully with a probability greater than α and an error rate less than εset, he agrees to continue
the protocol. Otherwise, they take counsel together to adjust the parameter α or εset.

3. Alice generates a random bit string (r1, ..., rN) ∈ {0, 1}N , and sends qubit string |Ψr1〉, . . . , |ΨrN 〉 to Bob.
She also tells Bob the sending time ti of each pulse through the classical channel.

4. Bob records the receiving time t′i of each pulse and compares with the sending time. If and only if
t′i = ti + θ, he admits |Ψri 〉 as a receiving pulse. He chooses B0 or B1 randomly to measure each receiving
pulse. For these receiving pulses, when his measurement results in state |Ψx〉⊥, he accepts the pulse as a
conclusive pulse and takes the bit value of this pulse as x⊕ 1.

5. The parameters are agreed by Alice and Bob. After Step 1-4, if the number of the effective pulses detected by
Bob is not approximately equal to αN, Bob has the right to abort the protocol. This step is a verification for
the malicious Alice.

We regard Protocol 1 as a weak R-OT because it is similar to standard R-OT. But it is weaker in
security when dishonest Alice sends different states, which will be explained in Section 4.2. Then,
we construct a weak quantum OT2

1 protocol based on R-OT protocol, the equivalence of R-OT and OT2
1

has been proved in [59].

Protocol 2. Practical weak quantum OT2
1 protocol.

1. Alice and Bob execute Protocol 1 and an error correcting scheme. Denote Bob’s probability of getting a
conclusive bit as pcon(µ). After Protocol 1, if the number of Bob’s conclusive bits is not approximately
equal to Npcon(µ), he regards Alice as a malicious party and aborts the protocol. If Bob agrees to continue,
they decide on a security parameter k according to an error correcting scheme and the probability pcon(µ).
The values of k are analyzed in Section 4 and listed in Table 1.

2. The error correcting scheme is applied to αN bits words with expected error rate εset, which is
non-uniqueness. The following is only an example of this kind of scheme, which is based on (63, 57, 3)
Hamming code.
There are k bits in sets I and J after the process of error correction, respectively. Let lobt denotes the number
of the bits in I or J before error correction. Alice divides two sequences of lobt bits into 63-bit blocks and
performs the wire link permutation W on it. When lobt = 63

⌈
lobt
63

⌉
− ∆, ∆ bits of the block in front should

be added to the last block. Then, calculate the syndromes sAi and discard the check bits of each block. Repeat
above operations four times and send these syndromes to Bob. Bob divides his lobt bits into 63-bit blocks and
performs the wire link permutation W on it. When lobt = 63

⌈
lobt
63

⌉
− ∆, ∆ bits of the block in front should

be added to the last block. For each round, he calculates the syndromes sBi and si = sAi ⊕ sBi . Correct the
error in each block and discard all check bits. After error correction, assume the error rate reduces to ε′1.
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3. Bob discards all check bits and selects from the remaining bits to obtain two sets I and J, where
I = {i1, . . . , ik} and J = {j1, . . . , jk} with I ∩ J = ∅. The k bits ri1 , . . . , rik are chosen from the
conclusive bits. In case the conclusive bits in Bob’s hand are a little less than k, he adds some random bits.

4. Bob chooses a random bit m. If m = 0, he sends {X, Y} = {I, J} to Alice. Otherwise, he sends
{X, Y} = {J, I}.

5. After receiving (X, Y), Alice encrypts her messages b0 and b1 with ri,{
c0 = b0 ⊕i∈X ri,

c1 = b1 ⊕i∈Y ri.

Then, Alice sends c0, c1 to Bob.
6. Bob calculates ⊕i∈Iri and decrypts cm to obtain bm.

According to the error correcting scheme, the relation between the parameters k and lobt is

k = 57
⌈

lobt
63

⌉
− ∆ = lobt − 6

⌈
lobt
63

⌉
. (2)

Suppose the error rate of each bit in Protocol 1 is ε1 = 0.3%, which is a general value in practice.
After error correction, the error rate can be reduced to ε′1 = 0.0757% [60]. As long as there is one bit
error in key used in the decryption algorithm, Bob cannot obtain bm in Protocol 2. The error rate of
Protocol 2 is ε2. The relation of ε2 and ε′1 is

ε2 = 1− (1− ε′1)
k. (3)

When ε′1 = 0.0757%, the values of ε2 changing with the parameter k are shown in Figure 1.

Figure 1. The error rate of Protocol 2 changing with the size of sets.

Protocol 2 is different from standard QOT since Alice may not transfer a correct message to Bob.
If we set the upper bound of the error rate as 20%, the parameter k should be less than 295 according
to Equation (3).

Then, we can construct a quantum bit commitment protocol by executing the quantum OT2
1

protocol l times as follows.

Protocol 3. Practical quantum bit commitment protocol.
Commit phase:

1. Alice randomly divides her commit value as b = b(i)0 ⊕ b(i)1 , i = 1, . . . , l.
2. Bob generates local random numbers {mi = 0, 1|i = 1, . . . , l}.
3. Alice executes Protocol 2 with Bob l times, and Bob can obtain the values {b(i)mi |i = 1, . . . , l}.
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Opening phase:

1. Alice opens {b(i)0 , b(i)1 ; r(i)i1
, . . . , r(i)ik

; r(i)j1
, . . . , r(i)jk

|i = 1, . . . l}.

2. Bob verifies whether {b(i)0 , b(i)1 ; r(i)i1
, . . . , r(i)ik

; r(i)j1
, . . . , r(i)jk

|i = 1, . . . l} are consistent with his

{b(i)mi ; r(i)i1
, ..., r(i)ik

|i = 1, . . . l} and those conclusive bits in J. If the consistency holds more than 80%
of l rounds, he admits Alice’s commitment value as b. Otherwise, he regards Alice as a malicious party and
aborts the protocol.

In practice, the physical system and the coded bit string in OT protocols unavoidably have some
errors. In Section 3, assume ε1 = 0.3%, k ≤ 295, the error rate of OT2

1 can be less than 20%. But it does
not impact the construction of a BC protocol.

4. The Security of QOT

A standard OT2
1 scheme satisfies the following requirements.

• Correctness If both parities are honest and follow the protocols, Bob obtains one of the message
bm sent by Alice correctly.

• Privacy for Alice If Alice is honest, Bob cannot obtain both of the messages sent by Alice.
• Privacy for Bob If Bob is honest, Alice cannot distinguish which message Bob obtains.

The aim of our QOT is to construct a practical QBC. Therefore, the correctness of the QOT
protocols is not necessary. To detect a cheating Alice, suppose the probability that an honest Bob cannot
get a correct message is less than 20%. Execute Protocol 2 l times to construct QBC scheme. If and
only if there are less than 0.2l rounds where Alice does not disclose the consistent results, Bob admits
Alice’s commitment.

For the security of OT2
1 protocol, He [61] has proved that the OT2

1 protocol implemented upon
all-or-nothing OT is not covered by the cheating strategy in Ref. [17]. Therefore, the following security
analysis of OT2

1 does not contain the attack of entangled states.

4.1. Privacy for Alice

The operations executed by Bob in Protocol 2 include measuring the states sent by Alice, selecting
the elements in Set I and J Then, sending X, Y to Alice, decrypting the ciphertext c0 or c1. It can be
seen that only in the measurement, he can cheat and take a more superior measurement to obtain more
conclusive results, which may lead him to get both b0 and b1. We analyze the probabilities of getting a
conclusive bit for the honest Bob and the malicious Bob in order to determine the security parameters
in the practical protocols.

4.1.1. Analysis on the Probability of Getting a Conclusive Bit for Honest Bob

Let |n0〉 and |n π
6
〉 denote n-photon states of polarization 0 and π

6 , respectively. For an honest Bob,
if he chooses the measurement basis B1 to detect |10〉, the probability of the state collapsing to |1 2π

3
〉 is

1
4 . For |n0〉, the probability of at least one of the photons collapse to the state with polarization of 2π

3
is 1−

( 3
4
)n

. Therefore, the probability of getting a conclusive resulting in a pulse which contains n
photons is

p(n) =
1
2
×
[

1−
(

3
4

)n]
. (4)
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The probability of getting a conclusive bit in a pulse with the typical average photon number µ is

pcon(µ) = ∑
n=1

[pn(µ)× p(n)]

= ∑
n=1

{
1
2

[
1−

(
3
4

)n] e−µµn

n!

}

=
1
2

∑
n=1

e−µµn

n!
− e−

µ
4 ∑

n=1

e−
3µ
4

(
3µ
4

)n

n!


=

1
2

(
1− e−

µ
4

)
.

(5)

It can be seen that an honest Bob is supposed to obtain Npcon(µ) conclusive bits. The probability
of getting a conclusive bit in one pulse with different µ can be seen in Figure 2. The larger µS of
emission apparatus and more efficient detector they use, the higher efficiency the protocol has.

Figure 2. The probability that an honest Bob gets conclusive bit changing with µ.

4.1.2. Analysis on the Probability of Getting a Conclusive Bit for Malicious Bob

Assume that the malicious Bob has the ability of separating n photons by photon number splitting
attack. For a single photon, the successful probability of optimal measurement to distinguish the two
non-orthogonal states is 1− cosϕ, which has been proved in Refs. [56–58]. For n photons, a malicious
Bob’s probability of distinguishing the non-orthogonal sates is

p′(n) = 1− cosn ϕ. (6)

Then, a malicious Bob using photon number splitting attack and optimal measurement for
single-photon can get a conclusive bit with the probability of

p′con(µ) = ∑
n=1

pn(µ)× p′(n) = 1− e−µ(1−
√

3
2 ). (7)

Here we consider that the malicious Bob has an ideal detector, the quantum efficient η′D of which
is 100%. Thus, µ′ = µSηC = µ

ηD
. Assume that the protocols are executed over atmospheric channel,

the quantum efficiency ηD of an honest Bob’s detector is 80% and this kind of detector has already
been realized in the laboratory [54,55]. The cheating Bob’s probability of getting a conclusive bit is

p′′con(µ) = 1− e−
5µ
4 (1−

√
3

2 ), (8)

which can be seen in Figure 3. A malicious Bob can get about [1− e−
5µ
4 (1−

√
3

2 )]N conclusive bits.
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Figure 3. The probability that a malicious Bob gets a conclusive bit changing with µ.

4.1.3. Contrastive Analysis and Determination of the Parameters in Practical Protocols

If a malicious Bob wants to obtain both b0 and b1 in Protocol 2, he must get at least 2k conclusive
bits in Protocol 1. The difference between an honest Bob’s probability of obtaining a conclusive bit
and half of a malicious Bob’s probability of obtaining a conclusive bit is pdi f f (µ) = pcon(µ)− 1

2 p′′con(µ),
which can be seen in Figure 4.

Figure 4. The difference between an honest Bob’s probability of obtaining a conclusive bit and half of a
malicious Bob’s probability of obtaining a conclusive bit changing with µ.

When µ = 4.85, the difference pdi f f (µ) takes a maximum value 0.0732. The probability of
obtaining i conclusive bits is pobt, which is referred to the binomial distribution and shown in Figure 5.

Figure 5. The solid line denotes the probability of an honest Bob obtains i conclusive bits when
N = 800, µ = 5. It can be seen that an honest Bob can obtain more than 259 conclusive bits with a great
probability. The dashed line denotes the probability of a malicious Bob obtains i + 259 conclusive bits.
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Suppose the probability of the case where the number of conclusive bits obtained by an honest
Bob is no more than lobt is p1, and the probability of the case where the number of conclusive bits
obtained by a malicious Bob is no less than 2lobt is p2. Then,

p1 =
lobt

∑
i=0

Ci
N [pcon(µ)]

i[1− pcon(µ)]
N−i (9)

p2 =
N

∑
i=2lobt

Ci
N [p
′
con(µ)]

i[1− p′con(µ)]
N−i (10)

To ensure that the honest Bob obtains one correct message in Protocol 2 and the malicious Bob
cannot obtain both b0 and b1, p1 and p2 should be small enough.

The probability that an honest Bob cannot execute Protocol 2 successfully is p,

p = 1− (1− ε2)(1− p1). (11)

To detect a cheating Alice, p should be less than 20%. Given an error rate ε2, p1 has an upper
bound p1t to ensure p ≤ 20%. To ensure the concealing of the BC protocol, p2 is set up with a
magnitude of 10−6.

When µ is too low, the difference between the probability of obtaining a conclusive bit by an
honest and a malicious Bob is not large enough to select the proper parameters. When µ is too large,
the proper k is large, which will lead to a large ε2. Then, there is no proper parameters either. It can
be seen from Table 1 that when 2 ≤ µ ≤ 6, we can always find the proper parameters to execute the
protocols successfully.

Table 1. When p = 20%, N = 800, p2 is controlled to be a magnitude of 10−6, the values of parameters
with different µ.

µ pcon(µ) p′
con(µ) lobt k ε2 p1t p1 p2

2 0.197 0.285 143 131 0.0944 0.117 0.107 3.25× 10−6

3 0.264 0.395 190 172 0.122 0.0887 0.0484 1.85× 10−6

4 0.316 0.488 228 210 0.147 0.0621 0.0312 1.53× 10−6

5 0.357 0.567 260 236 0.164 0.0435 0.0324 7.45× 10−7

6 0.388 0.634 283 259 0.178 0.0267 0.0236 4.73× 10−6

4.2. Privacy for Bob

The attack for Alice is to send different states which can bias the measurements that will be
conclusive for Bob. Then, she may have a larger probability to guess Bob’s choice m. In our protocol,
if and only if Bob’s measurement results in state |Ψ0〉⊥ and |Ψ1〉⊥, he admits it a conclusive bit. We
analyze the case where Alice sends all the states dishonestly and the case where Alice sends only one
state dishonestly in R-OT protocol.

4.2.1. The Attack that Alice Sends Only One State Dishonestly in R-OT Protocol

In Step (3) of Protocol 1, an honest Alice is supposed to send the state |Ψ0〉 or |Ψ1〉 only. However,
a malicious Alice may replace one of the pulse (|Ψrc〉) with |Ψ0〉⊥ instead. This attack makes Bob more
likely to accept this pulse as a conclusive results and Alice has a higher probability to distinguish
which set is Set I. Then, we analyze whether this attack is effective both in R-OT and OT2

1 protocols.
In Protocol 1, when Alice replaces one of the pulses (|Ψrc〉) with |Ψ0〉⊥, the number of the photons

in the pulse follows Poisson distribution. Let |n π
2
〉 denotes an n-photon state with the polarization

π
2 . For an honest Bob, he chooses the measurement basis B1 with the probability of 1/2. When he
measures |1 π

2
〉 with B1, the probability that the state collapse to |1 2π

3
〉 is 〈π

2 |
2π
3 〉〈

2π
3 |

π
2 〉 = 3/4. When
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he measures |n π
2
〉 with B1, the probability that at least one of the photons of |n π

2
〉 collapse to the state

with polarization of 2π
3 is 1− ( 1

4 )
n. According to Equation (5), the probability of choosing the basis B1

and getting a conclusive bit in a pulse is

pB1con(µ) = ∑
n=1

{
1
2

[
1−

(
1
4

)n] e−µµn

n!

}
=

1
2

(
1− e−

3µ
4

)
. (12)

When Bob chooses the measurement basis B0 to detect the fake pulse, if there is only one photon
in the pulse, the probability that he accepts it as conclusive pulse is 100%. The probability of choosing
the basis B0 and getting a conclusive bit in a pulse is

pB0con(µ) =
1
2
(1− e−µ). (13)

Therefore, when Alice replaces one of the pulses with |Ψ0〉⊥, the average probability of Bob
getting a conclusive result is

p(i) = pB0con(µ) + pB1con(µ) = 1− 1
2

e−µ − 1
2

e−
3µ
4 . (14)

Consequently, Bob accepts the fake pulse as a conclusive result with a larger probability of
p(i) than the situation where Alice is honest. In the following, we will analyze that although the
cheating Alice has a larger probability to know Bob’s choice m, she still has no idea what is got by Bob.
In standard OT2

1 , if Alice has a probability larger than the legal threshold of knowing Bob’s choice,
she breaks Bob’s privacy. In this paper, Protocol 2 is the block of constructing QBC. The security that
requests Alice cannot know what is obtained by Bob is enough. It can be seen that the security is
weaker than the standard OT2

1 . Therefore, we call it weak quantum OT2
1 , and Alice attacking the weak

OT2
1 successfully means that she knows the content of the message obtained by Bob.

Protocol 2 is a fault-tolerant quantum OT2
1 scheme with p ≤ 20%. When Bob does not get the

correct message with a probability of p, whether Alice attacks successfully cannot be defined. Then,
consider Alice’s attack in the condition that Bob gets the correct message. When Alice replaces one of
the pulses (|Ψrc〉) with |Ψ0〉⊥ instead, the index of the fake pulse may be in Set I, J, or neither in I nor
J. If Alice does not see the index c in Set X or Y, she randomly guesses which message Bob obtains.
Suppose the probability that she guesses the correct m is 1

2 p[c /∈ I ∧ c /∈ J]. If Alice finds the index c in
Set X or Y, she believes the set which contains c is Set I. In other words, when the index of the fake
pulse in Set I, Alice knows Bob’s choice with a large probability; when the index of the fake pulse in
Set J, she has no choice to break the protocol. Then, Alice needs the following conditions to know the
content of the message obtained by Bob.

(i) Bob accepts the fake pulse as a conclusive result.
(ii) Bob picks the index of the fake pulse into Set I.

(iii) Bob’s measuring result of |Ψ0〉⊥ is consistent with Alice’s conjecture of rc.

Item (iii) ensures that Bob can obtain a correct message. Suppose the probability of the above
three conditions being satisfied is p(3con). The probability that Alice knows the content of the message
obtained by Bob is

p(OT) = p(3con) +
1
2

p(c /∈ I ∧ c /∈ J). (15)

The probability of Item (i) being satisfied is p(i). In the practical protocol, an honest Bob is

supposed to obtain Npcon(µ) conclusive bits, where pcon(µ) = (1− e−
µ
4 )/2 according to Equation (5).
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He picks k bits from the conclusive results to form Set I. Assume the number of conclusive result is still
Npcon(µ). The probability that Bob accepts the fake pulse as the conclusive pulse and picks it in Set I is

p(c ∈ I) = p(i) ·
Ck−1

Npcon(µ)−1

Ck
Npcon(µ)

=
k(2− e−µ − e−

3µ
4 )

N(1− e−
µ
4 )

. (16)

Suppose the probability that Bob measures in basis B0 and gets a conclusive bit rc = 1 is pB0con(µ),
the probability that Bob measures in basis B1 and gets a conclusive bit rc = 0 is pB1con(µ). It can be
seen that pB0con(µ) > pB1con(µ). Alice knows that Bob is more likely to obtain rc = 1. In the case that
c ∈ I, the conditional probability that Bob accepts rc = 1 is

p
(
rc = 1|c ∈ I

)
=

p
(
rc = 1|c ∈ I

)
p
(
rc = 1|c ∈ I

)
+ p

(
rc = 0|c ∈ I

)
=

pB0con(µ)

pB0con(µ) + pB1con(µ)

=
1− e−µ

2− e−µ − e−
3µ
4

.

(17)

The second “=” holds because Bob randomly picks the elements of Set I from his conclusive
results in well-distributed. Therefore, the probability of the above three conditions being satisfied is

p(3con) = p(rc = 1∧ c ∈ I) = p
(
rc = 1|c ∈ I

)
p(c ∈ I) =

k
N
· 1− e−µ

1− e−
µ
4

. (18)

Then, we analyze the condition that the index c is neither in Set I nor J. When Bob does not
receive the fake pulse, the index c is certainly not in the sets, the probability of which is p0(µ) = e−µ.
When Bob receives the fake pulse, the probability that the index c is not in the two sets depends on his
choice of the elements in the sets. Suppose the probability that the index c is not in the two sets when
Bob receives the fake pulse is

p1[c /∈ I∧c /∈ J]= p(i)p[c /∈ I∧c /∈ J|Con]+(1−p0(µ)−p(i))p[c /∈ I∧c /∈ J|Inc], (19)

where p[c /∈ I ∧ c /∈ J|Con] denotes the probability of the condition where Bob accepts the fake
pulse as a conclusive result but does not choose it in Set I nor J; p[c /∈ I ∧ c /∈ J|Inc] denotes the
probability of the condition where Bob accepts the fake pulse as an inconclusive result but does not
choose it in Set J. Assume that Bob chooses x bits of the conclusive results into Set J while k− x bits
of the inconclusive results into Set J, where 0 ≤ x ≤ pcon(µ)N − k. Then, the number of conclusive
results neither in Set I nor J is pcon(µ)N − k − x, the number of inconclusive results not in Set J is
[1− p0(µ)− pcon(µ)]N − (k− x). Therefore, the probability p1[c /∈ I ∧ c /∈ J] is

p1[c /∈ I ∧ c /∈ J]

=p(i)
pcon(µ)N − k− x

pcon(µ)N
+[1− p0(µ)− p(i)]

[1− p0(µ)− pcon(µ)]N−(k− x)
[1− p0(µ)− pcon(µ)]N

=1−e−µ− 2+2e−
µ
4−8e−µ+2e−

7µ
4 +2e−2µ

(1− e−
µ
4 )(1− 2e−µ + e−

µ
4 )

k
N
−2(1−e−µ)(1+e−

µ
4−e−

3µ
4 −e−µ)

(1− e−
µ
4 )(1− 2e−µ + e−

µ
4 )

x
N

.

(20)
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Then, the probability that Alice attacks Protocol 2 successfully is

p(OT) = p(3con) +
1
2

p0(µ) +
1
2

p1[c /∈ I ∧ c /∈ J]

=
1
2
+

e−µ−e−
5µ
4 −e−

7µ
4 +e−2µ

(1−e−
µ
4 )(1−2e−µ+e−

µ
4 )

k
N
− (1−e−µ)(1+e−

µ
4−e−

3µ
4 −e−µ)

(1−e−
µ
4 )(1−2e−µ+e−

µ
4 )

x
N

.
(21)

When x = bpcon(µ)N − kc, the minimum of p(OT) is

p(OT)min =
1
2
−

⌊
1
2 (1− e−

u
4 )N

⌋
(1− e−µ)(1 + e−

µ
4 − e−

3µ
4 − e−µ)

(1− e−
µ
4 )(1− 2e−µ + e−

µ
4 )N

+
(1− e−

3µ
4 )(1 + e−

µ
4 − 2e−

5µ
4 )

(1− e−
µ
4 )(1− 2e−µ + e−

µ
4 )

k
N

.

(22)

When x = 0, the maximum of p(OT) is

p(OT)max =
1
2
+

(e−µ − e−
5µ
4 − e−

7µ
4 + e−2µ)

(1− e−
µ
4 )(1− 2e−µ + e−

µ
4 )

k
N

. (23)

The minimum and the maximum probabilities that Alice attacks Protocol 2 successfully with
different µ are listed in Table 2. Actually, Bob putting more index of conclusive results in Set I
and J is beneficial for him to get more information about b0 and b1. Bob should prefer to select
x = bpcon(µ)N − kc. Even if Alice guesses which message Bob obtains without any trick, she has
a probability of 1/2 to get the right answer. It can be seen from Table 2 that when Bob chooses
x = bpcon(µ)N − kc, the probability that Alice breaks the OT2

1 protocol is p(OT)min < 1/2, which
causes that Alice replaces one of the states with |Ψ0〉⊥ is not an effective attack. In addition, we will
show in Section 5.2 that even Bob chooses x = 0, Alice cannot break the binding of our QBC protocol.

Table 2. The probabilities of Alice breaking Bob’s privacy in our OT2
1 protocol. p(OT)min and p(OT)max

denote the maximum probabilities that Alice breaks Protocol 2 with different µ when N = 800.

µ k p(OT)min p(OT)max

2 131 0.4462 0.5129
3 172 0.4227 0.5070
4 210 0.4238 0.5034
5 236 0.4174 0.5015
6 259 0.4194 0.5007

4.2.2. The Attack that Alice Sends All States Dishonestly in R-OT Protocol

The attack that Alice sends all states dishonestly may be detected by Bob through the different
ratio of conclusive results. She should generate different proportions of different states. For example,
Alice sends states in Breidbart basis to increase the proportion of Bob’s conclusive (inconclusive) bits.
Consider the ideal case, for |Ψ0〉 = |0〉 and |Ψ1〉 = |π/6〉, the states in Breidbart basis are | π

12 〉 and | 7π
12 〉.

If Alice sends the state | π
12 〉 and Bob randomly chooses the measurement basis B0 or B1, the probability

that Bob obtains a conclusive bit is

pc =
1
2

〈 π

12

∣∣∣π
2

〉 〈π

2

∣∣∣ π

12

〉
+

1
2

〈
7

12

∣∣∣∣2π

3

〉〈
2π

3

∣∣∣∣ π

12

〉
=

1
2
−
√

3
4

. (24)
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If Alice sends the state | 7π
12 〉 and Bob randomly chooses the measurement basis B0 or B1, the

probability that Bob obtains a conclusive bit is

p′c =
1
2

〈
7π

12

∣∣∣π
2

〉 〈π

2

∣∣∣ 7π

12

〉
+

1
2

〈
7π

12

∣∣∣∣2π

3

〉〈
2π

3

∣∣∣∣ 7π

12

〉
=

1
2
+

√
3

4
. (25)

It is clear that when Alice sends | π
12 〉, she knows that Bob is likely to get an inconclusive bit. When

Alice sends | 7π
12 〉, she knows that Bob is likely to get a conclusive bit. In order to ensure the ratio of the

conclusive result is 1/8 according to Equation (1), Alice should set the proportion of | π
12 〉 as 1

2 +
√

3
4

and the proportion of | 7π
12 〉 as 1

2 −
√

3
4 . According to Equation (25), the ratio of state | 7π

12 〉 accepted as

conclusive results and inconclusive results is
1
2+
√

3
4

1
2−
√

3
4

in OT2
1 protocol, which is around 13.9. When Alice

receives the index set X and Y, she regards the set contains more index of | 7π
12 〉 as the set I. By this

attack, she can know the value of m chosen by Bob with a large probability.
However,

〈 7π
12

∣∣π
2
〉 〈

π
2

∣∣ 7π
12
〉
=
〈 7π

12

∣∣ 2π
3
〉 〈 2π

3

∣∣ 7π
12
〉

means that Alice has no idea about Bob’s the
measurement results by this attack. Bob cannot obtain the correct bit in OT2

1 protocol, while Alice
cannot disclose the correct ri in the opening phase of QBC protocol.

5. The Security of QBC

BC protocol is binding if Alice cannot change the value of b after she commits and it is concealing
if Bob cannot obtain b before the opening phase. Protocol 3 is both physically binding and concealing
in practice. We first show the concealing property.

5.1. Concealing of QBC

We first analyze the ideal protocol without error and loss to prove that QBC in ideal conditions is
information-theoretically concealing. Then, further consider the practical conditions.

Theorem 1. Protocol 3 in ideal conditions without imperfect facilities and errors is information-theoretically concealing.

Proof. According to the description of Protocol 3, it is easy to see that the relation of ri, ciphertext c0,
c1 and the commit value b is

2k⊕
i=1

ri = c0 ⊕ c1 ⊕ b. (26)

Suppose ρ
(2k)
b′ is the density operator of the whole state received by Bob when Alice commits b,

where b′ = c0 ⊕ c1 ⊕ b. Then

ρ
(2k)
b′ =

1
22k−1 ∑⊕2k

i=1 ri=b′
|Ψri 〉〈Ψri |. (27)

As 〈Ψ0|Ψ1〉 = cos ϕ, define

|Ψ0〉 =
[

cos ϕ
2

sin ϕ
2

]
, |Ψ1〉 =

[
cos ϕ

2
− sin ϕ

2

]

According to the process of analysis in [62], the density operators ρ
(2k)
0 and ρ

(2k)
1 satisfy

ρ
(2k)
0 − ρ

(2k)
1 = 2×

[
0 sin ϕ

2 cos ϕ
2

sin ϕ
2 cos ϕ

2 0

]⊗2k

. (28)
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Then, trace distance is

D(ρ
(2k)
0 , ρ

(2k)
1 ) =

1
2

Tr
∣∣∣ρ(2k)

0 − ρ
(2k)
1

∣∣∣ = (sin ϕ)2k. (29)

For any positive polynomial p(·) and every sufficiently large n,

D(ρ
(2k)
0 , ρ

(2k)
1 ) <

1
p(n)

(30)

holds. The theorem is proved.

In practical QBC protocol, the commit value is b = b(i)0 ⊕ b(i)1 , where i = 1, 2, ..., l. The OT2
1 protocol

is executed l times. When Bob breaks Alice’s privacy just once in OT2
1 protocol, he knows the commit

value. Some security parameters of OT2
1 protocol are given is Table 1 and the probability that Bob

breaks Alice’s privacy p2 is controlled to be a magnitude of 10−6. Suppose the times of executing OT2
1

protocol in bit commitment protocol is l = 40, a malicious Bob can obtain what Alice has committed
before opening phase with a probability of

pbr = 1− (1− 10−6)40 ≈ 4.0× 10−5. (31)

In practical protocol, the probability of breaking the concealing of bit commitment around
4.0× 10−5 is allowed.

5.2. Binding of QBC

All of Alice’s attacks can be divided into two categories, i.e., without entangled states, and with
entangled states.

5.2.1. Attacks without Entangle States

When Alice attacks QBC protocol without entangle states, she has two different strategy. One is
to attack QBC protocol directly. The other is to attack privacy for Bob of OT2

1 first and knows Bob’s

choice m. Then, she changes the message b(i)m⊕1 in the opening phase.

The former attack for Alice is to change the values of b(i)0 or b(i)1 just in the opening phase of
QBC protocol. But some of these values are known by Bob. Alice has no idea about which bits Bob
obtains. Because our OT2

1 is a fault-tolerant scheme, the probability that Bob can obtain a correct b0

or b1 successfully is 1− p = 0.8, which is the probability that there is no error for the key used in the
decryption algorithm of OT2

1 protocol and the conclusive results are enough to construct Set I. Bob
has a probability of p = 20% of getting neither of the messages, a probability of 40% of getting the
message b0, and a probability of 40% of getting the message b1. Therefore, if Alice randomly changes
the message b(i)0 or b(i)1 , her probability of being detected is 40%. Alice’s commitment in Protocol 3
contains l same value of b. A strategy for the cheating Alice is to commit “0” with the number of l

2 and
commit “1” with the number of l

2 in commit phase, and change half of them in opening phase. Therefore,
for l = 40, Alice’s success probability of attacking is

p′br = (1− 0.4)20 ≈ 3.6× 10−5. (32)

In practical protocol, the probability of breaking the binding of the bit commitment is allowed to
be around 3.6× 10−5.

The QBC protocol is a compositional protocol, which calls the OT2
1 protocol several times.

In Section 4.2, we analyze the privacy for Bob of OT2
1 protocol. Alice could attack by replacing

one of the states with |Ψ0〉⊥. Suppose the cheating Alice commits “0” with the number of l
2 and

commit “1” with the number of l
2 in commit phase. When Alice attacks l/2 rounds without detection,
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she can break the binding of QBC. Bob has a probability of p = 20% getting neither of the messages.
When Bob gets none of the correct messages, Alice can change one of the messages without being
detected. When Bob gets one of the messages, the probability that Alice attacks without detection is
not greater than p(OT) = p(3con) + 1

2 p0(µ) +
1
2 p1 [c /∈ I ∧ c /∈ J]. The reason is that when the index c

is neither in Set I nor J, it is possible that the fake state |Ψ0〉⊥ is accepted as a conclusive bit and Alice
discloses an inconsistent result in opening phase of QBC. The probability that Alice attacks one round
without being detected is

p(1round)

≤p + (1− p)p(OT)

=
1
2
+

e−µ − e−
5µ
4 − e−

7µ
4 + e−2µ

(1− e−
µ
4 )(1− 2e−µ + e−

µ
4 )

k
N
− (1− e−µ)(1 + e−

µ
4 − e−

3µ
4 − e−µ)

(1− e−
µ
4 )(1− 2e−µ + e−

µ
4 )

x
N

.

(33)

When Alice attacks OT2
1 protocol and changes b0 or b1 in opening phase of QBC, the probability

that the attack is not detected by Bob is

p(BC) = [p(1round)]l/2. (34)

When Bob selects none of conclusive results into Set J, the maximum probability of attacking is

p(BC)max = [p(1round)max]
l/2 = [p + (1− p)p(OT)max]

l/2, (35)

which are listed in Table 3. Alice has the maximum probability of attacking the binding of QBC protocol
with magnitudes of 10−5, which is allowed in practice.

Table 3. The maximum probabilities of Alice breaking the binding of QBC protocol by replacing one
state of |Ψ0〉⊥ with different µ when N = 800.

µ k p(1round)max p(BC)max

2 131 0.6103 5.1× 10−5

3 172 0.6056 4.4× 10−5

4 210 0.6027 4.0× 10−5

5 236 0.6012 3.8× 10−5

6 259 0.6005 3.7× 10−5

5.2.2. Attack with Entangle States

The entanglement generation and control [63–66] are the preconditions of the attack with entangle
states. Then, we analyze this kind of attacks. In Protocol 1, the states are generated by Alice and sent
to Bob. After sending the states, if Alice does not perform the EPR type attack, she can do nothing
with the outgoing states. If she prepares entangled states and sends a part of them to Bob, she tries to
find the local unitary transformation to change the value of commitment, which is actually the no-go
theorem attack.

When Alice commits “0” or “1”, she prepares

|0〉 =
2k

∑
i=1

αi|ei〉A ⊗ |Ψri 〉B, |1〉 =
2k

∑
j=1

βi|e′j〉A ⊗ |Ψrj〉B, (36)

respectively, where

2k⊕
i=1

ri = c0 ⊕ c1,
2k⊕

j=1

rj = c0 ⊕ c1 ⊕ 1, (37)
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If Alice wants to change the value of commitment from “0” to “1”, she needs to get state |ν〉 with
the same reduced density operator as |0〉, which satisfies |〈1|ν〉| = F(ρ2k

0 , ρ2k
1 ) = 1− δ. Then, she must

find out the unitary transformation acting on A alone to transform |0〉 into |ν〉. The calculation of
unitary transformation is presented in Appendix A. As |ν〉 and |1〉 are so similar, Bob can hardly detect
the cheating Alice.

However, according to Appendix A, the no-go theorem attack algorithm’s time complexity is
O(23n), besides, this algorithm needs at least O(22n) size of memory space to store the matrix. The entry
number of matrix UA is 22k × 22k, according to Table 1 this number is greater than the number of
protons on the earth. It means that Alice is unable to get the matrix in practice, and the storage time of
quantum states is limited. The bit commitment could be executed over a period of time to prevent
Alice from applying transformation with the other part of entanglement states. Therefore, in practice
Alice can hardly attack the binding of the bit commitment protocol with this method. Therefore, our
protocol achieves the physical security defined in Section 1.

6. Discussions

In this paper, we analyze the situation where the protocols are executed on an atmospheric
window with a high efficiency detector of 80%. If a malicious Bob has a greater ability to obtain
information near Alice’s site and has a super channel, the transfer efficiency could be 100%. To defend
the attack, the product of the efficiency of transfer and an honest Bob’s detector ηCηD should be
increased to 80%.

If we execute the protocols in optical fiber, the bit commitment protocol can be realized between
two parties with a long distance. For a malicious Bob who uses photon number splitting attack and
has a detector with an efficiency less than ηD/80%, the analysis and security of the protocol also hold.
It means that our protocols can probably be applied over a long distance in the future.

We considered another construction of quantum bit commitment protocol. In quantum
R-OT protocol, Bob prepares a random qubit string |Φ1〉, ..., |Φn〉 and sends it to Alice, where
|Φi〉 ∈ {|0〉, |1〉, |+〉, |−〉}. Alice generates random bit string (r1, ..., rN) ∈ {0, 1}N . When ri = 0,
she keeps the ith qubit unchanged and sends it back to Bob; when ri = 1, she rotates the state along y
axis with π

6 , and sends the qubit back to Bob, that is ri = 0, |Φi〉 −→ |Φi〉,

ri = 1, |Φi〉 −→ |Φi +
π

6
〉.

Bob chooses B0 or B1 randomly to measure the pulses coming from Alice, where |Ψ0〉 = |Φi〉 and
|Ψ1〉 = |Φi +

π
6 〉. From these receiving pulses, if and only if his measurement results in state |Ψx〉⊥,

he accepts a pulse as a conclusive pulse and takes the bit value of this pulse as x⊕ 1.
When attacking the quantum bit commitment protocols by no-go theorem, Alice usually prepares

states as |0〉 = Σiαi|ei〉A ⊗ |φi〉B and |1〉 = Σjβ j|e′j〉A ⊗ |φ′j〉B. Then, she keeps the first register herself
and sends the second register to Bob. Only by Alice’s local unitary transformation, she can cheat by
changing the value of the commit bit b in opening phase. In the protocol above, the quantum states are
prepared by Bob and Alice has no original states. However, when she rotates the coming states, she
can make the operation as a controlled unitary transformation. The control bit in the transformation
is entangled with the other register. Similarly, Alice can cheat by local unitary transformation on the
other register. The construction above actually is not beyond the no-go theorem and increase the
complexity of the practical system. Therefore, we construct a more practical and easier protocol in
Section 3.

7. Conclusions

Based on two non-orthogonal states, we construct a practical quantum R-OT protocol. Afterwards
we construct a one-out-of-two oblivious transfer protocol based on the quantum R-OT protocol. Finally,



Appl. Sci. 2018, 8, 1990 17 of 20

we present a bit commitment protocol based on the one-out-of-two protocol. The security of concealing
is kept by the measurement hypothesis and superposition principle of state in quantum mechanics.
The binding of the bit commitment protocol is physically secure. By using weak coherent pulses and
allowing some errors, our protocols can be applied in practice. With the advent of the higher efficiency
detectors in optical fiber, our protocol can be realized with a long distance.
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Appendix A. Alice’s Attack for Binding of QBC

1. The Schmidt decomposition of |0〉, |1〉 and the polar decomposition of
√

ρB
1

√
ρB

0

For the entangled states prepared by Alice, there is an orthogonal basis set of 2k dimensions for
subsystems A and B. Therefore, |0〉 can be written as

|0〉 = ∑
i,j

θij|i〉A ⊗ |j〉B, (A1)

where i, j ∈ {0, 1, ..., 22k − 1}, and

θij = ∑
l

αlA〈i|el〉AB〈j|Ψrl 〉B. (A2)

The entries θij compose 22k × 22k matrix Θ. Θ can be decomposed by the singular value
decomposition as Θ = UDV, where D is a diagonal matrix with positive elements, and U and
V are unitary matrices.

|0〉 = ∑
i,j,l

uildllvl j|i〉A ⊗ |j〉B. (A3)

Define |xl〉A = ∑i uil |i〉A, |yl〉B = ∑j vl j|j〉B, and λl = dll , the state |0〉 becomes

|0〉 = ∑
l

λl |xl〉A ⊗ |yl〉B, (A4)

where {|xl〉A}, {|yl〉B} form two orthogonal basis sets. Similarly,

|1〉 = ∑
l

λ′l |x
′
l〉A ⊗ |y

′
l〉B. (A5)

For ρB
1 and ρB

0 , the related polar decomposition is√
ρB

1

√
ρB

0 =

∣∣∣∣√ρB
1

√
ρB

0

∣∣∣∣ T. (A6)

There is an orthogonal basis set with which ρB
0 and ρB

1 are in block-diagonal form [62] and blocks
have a general expression, so that we can give the entries of matrix T based on this orthogonal basis.

2. Solving UA. Based on the proof of Uhlmann’s theorem given by Jozsa [67], we have

|ν〉 =
(

I ⊗
√

ρB
0 T†

)
∑

i
|x′i〉A ⊗ |y′i〉B. (A7)
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It can be seen that there is a local unitary transformation UA for Alice to transform |0〉 into |ν〉.
According to Equation (A4), ρB

0 = ∑i |λi|2|yi〉BB〈yi|, it gives

|ν〉 =
(

I ⊗
√

ρB
0 T†

)
∑

i
|x′i〉A ⊗ |y′i〉B

= ∑
i,j
|x′i〉A ⊗ λj|yj〉BB〈yj|T†|y′i〉B

= ∑
j

λj

(
∑

i
B〈yj|T†|y′i〉B|x′i〉A

)
⊗ |yj〉B.

(A8)

It can be seen that
UA|xj〉 = ∑

i
B〈yj|T†|y′i〉B|x′i〉A. (A9)

Then, Alice can get all elements of UA from this equation.
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