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Abstract: A 56d incubation experiment was conducted to explore the effects of the silk-worm
excrement biochar (500 ◦C, BC) combined with different iron-based materials (FeCl3, FeSO4, and
reduced iron powder) on the speciation of cadmium (Cd) and lead (Pb) in a contaminated soil.
Application rate of BC and iron-based materials is 1% (W/W) and 0.2% (W/W) of the soil, respectively.
At the same time, the soil physicochemical properties, such as pH, cation exchange capacity (CEC),
and the structure of soil, were determined in order to explore the influence mechanism of amendments
to forms of Cd and Pb in soil. The results show that the stabilization effects on Cd is (BC + FeSO4) >
(BC + FeCl3) > (BC + Fe) > (BC) and Pb is (BC + Fe) > (BC + FeSO4) > (BC + FeCl3) > (BC) at the end of
incubation, compared with the effect of the control group. The treatment of (BC + FeSO4) is the most
effective in terms of the stabilization of Cd and Pb, which makes the percentages of organic-bound
and residual Cd and Pb increase by 40.90% and 23.51% respectively. In addition, with different
ways of treatment, the pH value and CEC of soil see a remarkable increase by 1.65–2.01 units and
2.01–2.58 cmol·kg−1 respectively. X-ray diffraction (XRD) patterns show that the soil imprisons Cd
and Pb in different mineral phases. As such the treatment of (BC + FeSO4) can significantly improve
soil environment, increase soil pH value & CEC and exert a relatively good stabilization effect on
both Cd and Pb.
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1. Introduction

Cadmium (Cd) and lead (Pb) are two typical potential toxic metals (PTMs) [1] that often compound
with each other and cause soil pollution. PTMs firstly accumulate in the soil, and then lead to
deterioration of the soil ecosystem and a decline in crop yields and quality [2]. Finally, it enters
human body through the food chain and thus endangers humans’ physical health [3,4]. As a noxious
carcinogenic pollutant, Cd is classified as a category I human carcinogen [5,6]. Numerous studies on
the health effects of Cd showed that its adverse effects on the bones and kidneys [7–10]. Pb is a potent
human neurotoxin which when accumulated in the blood results in neurocognitive damage including
intelligence quotient (IQ) deficits, behavioral problems and, at very high levels, death [11]. Therefore,
it is particularly important to prevent PTMs from getting into plants so as to ensure food safety.
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The toxicity of PTMs not only has a closed relation with their total amount, but also involves
their speciation in soil [12]. The biological effectiveness of PTMs greatly depends on its speciation [13].
Once in the soil, PTMs are adsorbed by initial fast reactions (minutes, hours), followed by slow
adsorption reactions (days, years) and are, therefore, redistributed into different chemical forms
with varying bioavailability, mobility, and toxicity [14,15]. This distribution is believed to be
controlled by reactions of PTMs in soils such as (i) mineral precipitation and dissolution, (ii) ion
exchange, adsorption, and desorption, (iii) aqueous complexation, (iv) biological immobilization and
mobilization, and (v) plant uptake [16]. According to Li et al. [17] and Sun et al. [18], soil in situ
stabilization technology is used to reduce the activity of PTMs by adding some kinds of material
to the soil contaminated by PTMs, which can transform these metals into a form that is difficult to
exploit through a series of chemical reactions. By doing so, the biological effectiveness of PTMs can
be reduced.

Cui et al. [19] reported that 10–40 t/hm2 biochar dosage can significantly reduce the percentage
of Cd inside wheat seed by 24.8%–44.2%, improve soil fertility [20], and reduce the proportion of
CaCl2 leaching Cd in soil by 10.1%–40.2%. Using the Miscanthus straw to make biochar to remediate
Cd, Pb, and Zn in soil, the percentage of the bioavailability of Cd and Pb decrease by 71% and 92%
respectively [21]. Moreover, biochar can also induce root growth of plants [22–25]. The stabilizers
of ferric salt such as FeSO4, Fe2(SO4)3, and FeCl3 are commonly used in soil stabilization [26,27].
The iron compound has been widely recognized as an antidote that can effectively reduce the mobility
of As [28]. However, studies on the stabilization effect of Cd and Pb in soil by iron-based materials
are relatively few and the results are divided. Studies have found that ferrihydrite can enhance the
adsorption capacity of Cd in soil with the help of Fe(III)-reducing bacteria, and it is also possible to
produce a mixed mineral phase of CdCO3-FeCO3-CaCO3 [29,30]. Cui et al. [29,31] use phosphate,
FeSO4 and Fe2(SO4)3 to stabilize Pb and As in soil, as they find that Pb and As cannot be stabilized by
solely used one of the stabilizers. The percentage of the exchangeable content of Pb and As can only
be reduced by using two stabilizers together. However, other studies have found that ferric salt can
increase the dissolution of Cd and Pb in soil. Shao et al. [32] found that ferrous sulphate fertilization
significantly increased Cd concentrations in rice grains. Warren and Alloway have shown that mixing
ferrous sulfate with lime can increase the uptake of Cu, Zn and Pb by plant [33].

At present, many organic materials such as animal excrement, plant straw, etc. have already
been used in the remediation of PTMs contaminated soil, however, studies on the remediation
of PTMs contaminated soil by silk-worm excrement have rarely been reported [34]. Moreover,
studies on the remediation of Cd and Pb contaminated soil by the combination of iron-based
materials and biochar which is made from silk-worm excrement have been not reported at home and
abroad. This research uses the silk-worm excrement biochar, ferric chloride (FeCl3), ferrous sulfate
(FeSO4·7H2O), and reduced iron powder (Fe) as materials to explore whether adding iron-based
materials can increase the stabilization of Cd and Pb in soil under the condition of applying the
silk-worm excrement biochar. Meanwhile, this is trying to explore the effects of combination of these
materials on the speciation of Cd and Pb in composite contaminated soil and to analyze the effects of
different treatments on soil physicochemical properties in soil. Through analysis, hopefully a material
combination which has a good effects on stabilization of Cd and Pb can be found, and therefore can
provide a new suggestion for Cd and Pb contaminated soil remediation and also open up a new way
for agricultural waste disposal in Guangxi.

2. Materials and Methods

2.1. Materials

The soil sample was collected from a polluted farmland near a lead-zinc mine in Chongzuo city,
Guangxi, China. Basically, soil was collected from the surface layer (0–20 cm) of a cropland area.
Sampling took place in 25 points over a 0.5-ha area, totaling an amount of 50 kg of soil. After removing
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leaves, stones, and other miscellanies, the soil sample was air-dried, crushed, and sieved to 1 mm
to conduct general analyses. Part of the soil was sieved to 0.15 mm to conduct the total content
measurement of Cd and Pb in soil. The soil sample GBW07456 (GSS-27) was used as the quality control
(QC) sample of the total content measurement of Cd and Pb, and purchased from Shide Jia Technology
Co., Ltd., in Shenzhen, China. The soil sample GBW07459 (ASA-8) was used as the quality control
(QC) sample of the pH and cation exchange capacity (CEC) measurement, and purchased from Aike
Yingchuang Biological Technology Co., Ltd., in Beijing, China. The physicochemical properties of the
experiment soil are shown in Table 1.

Table 1. The basic properties of the tested soil.

Item pH Cation Exchange Capacity
(cmol·kg−1)

Total Lead
(mg·kg−1)

Total Cadmium
(mg·kg−1)

Paddy soil 6.76 10.86 1320.29 52.24
Control sample 8.60 13.42 0.61 41.57

Preparation of Silk-worm excrement biochar (BC): silk-worm excrement was collected from
Guangxi Silk-Worm Technology Promotion Centre. The silk-worm excrement was placed in a ceramic
crucible for weighing. The crucible was then heated in a muffle furnace (Nabertherm LT40, heating
rate: 20 ◦C/min; ventilatory rate: 2 mL N2/min) at 500 ◦C for 3 h, and then removed after cooling to
room temperature. The crucible was then weighed to calculate the silk-worm excrement biochar yield
at 500 ◦C pyrolysis.

Biochar yield (%) = (m1/m0) × 100%, (1)

where m0 (g) was the weight of silk-worm excrement before entering the muffle furnace, and m1 (g)
was the biochar weight of silk-worm excrement after charring.

The ash content was calculated by placing a fixed amount of biochar in a ceramic crucible, charring
at 800 ◦C in a muffle furnace, and recording the weight once a constant value was obtained.

Ash content (%) = (M1/M0) × 100%, (2)

where M0 (g) was the biochar weight of silk-worm excrement before entering the muffle furnace, and
M1 (g) was the biochar weight of silk-worm excrement after charring.

Equation (1) was used to calculate yield rate which is 40.14%. Equation (2) was used to calculate
ash content which is 32.57%. Then BC was sieved to 0.25 mm to conduct general analyses. The basic
properties of BC are shown in Table 2.

Table 2. The basic properties of BC.

Material pH Cation Exchange Capacity
(cmol·kg−1)

Alkaline Functional Groups
(mmol·g−1)

Acid Functional Groups
(mmol·g−1)

BC 10.20 71.58 4.02 0.59

2.2. Experimental Method

50 g soil samples through 1 mm sieves were put in fifteen 200 mL plastic jars respectively.
Different materials were added into the soil samples as follows: 1© control (CK); 2© 1% (mass ratio)
silk-worm excrement biochar (BC); 3© 1% silk-worm excrement biochar + 0.2% FeCl3 (BC + FeCl3);
4© 1% silk-worm excrement biochar + 0.2% FeSO4·7H2O (BC + FeSO4); 5© 1% silk-worm excrement

biochar + 0.2% reduced iron powder (BC + Fe). Each treatment was replicated three times.
The stabilizers and soil were fully mixed in accordance to the test setting. Then added distilled
water to maintain a maximum moisture holding capacity of the soil at 40%. The plastic jars were
covered with kraft paper and put in a (25 ± 1) ◦C biochemical incubator (LRH-70, Suzhou, China) to
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allow incubation for 56d. The moisture contents of soil were kept using weighing method throughout
the experiment every two days [35,36].

2.3. Items for Determination

pH of BC was measured with a pH meter (Mettler Toledo FE20 Plus) using “GB-T 12496.7-1999
pH measurements for wood-based activated carbon” [37] as a reference. Two grams of biochar were
placed into a beaker, before adding 50 mL of ultrapure water and putting a glass evaporating dish
over the beaker, and heating to boiling temperature for 5 min. Following that, the original 5 mL of
filtrate was filtrated and discarded, and the remaining filtrate was cooled to room temperature for
determining the pH value. The experiment was repeated three times.

The ash content of BC was determined using “GB-T12496.3-1999 ash content measurements
for wood-based activated carbon” [38] as a reference. CEC of soil and BC were determined by
a method described by Gillman and Sumpter [39]. Soil pH was determined using the “ISO soil
quality-determination of pH” [40]. The determination of the content of surface functional groups
was referred to Bohem method [41]. Tessier [42] five-step sequential extraction method was used to
extract PTMs in soil at the end of incubation, extracting exchangeable fraction (F1), carbonate bound
fraction (F2), Fe-Mn oxide fraction (F3), bound organic fraction (F4), and residual fraction (F5) one by
one. Cd and Pb in leaching solution and digestion liquid were filtered by 0.45-µm membranes and
measured by atomic absorption spectrophotometer (Agilent 55B AA, AUS). The soil samples before
and after passivation were analyzed by using high power (4 KW) polycrystal X-ray diffractometer
(DX-2700A, Liaoning, China).

2.4. Data Processing

IBM SPSS 21.0 statistical package program was applied to analyze data, and Origin Pro 8.0 were
used to draw a data diagram.

3. Results and Discussion

3.1. The Effect of Different Treatments on Cd and Pb in Soil

3.1.1. The Effect of Different Treatments on Cd in Soil

At the end of incubation, the influence of different treatments on the speciation of Cd in
soil is shown in Figure 1. After the four treatments (BC, BC + FeCl3, BC + FeSO4 and BC + Fe),
the percentages of the Cd (F1) of each treatment decreased by 17.77%, 33.81%, 39.53%, and 24.40%
respectively, the percentages of Cd (F2) of each treatment decreased by 1.29%, 11.56%, 12.52%,
and 14.43% respectively, the percentage of Cd (F3) of each treatment increased by 0.45%, 3.80%,
18.85%, and 8.56% respectively, the percentages of Cd (F4) of each treatment increased by 35.68%,
58.75%, 47.69%, and 29.13%, and the percentages of Cd (F5) of each treatment increased by 13.10%,
32.89%, 39.38%, and 27.02% respectively, compared with the percentages of these chemicals in the CK
(F1: 31.11%, F2: 21.28%, F3: 9.47%, F4: 7.23%, and F5: 30.92%).

The exchangeable fraction and carbonate bound fraction are greatly affected by the environment,
because they are easy to be transferred and converted by plants [43]. Fe-Mn oxide fraction can be
greatly influenced by soil pH value and redox conditions. While the bound organic and residual
fraction are stable forms that cannot be easily absorbed by plants. As shown in Figure 1, different
treatments can effectively reduce the percentages of Cd (F1 and F2) and increase those of the Cd (F4 and
F5) at the end of incubation, so as to achieve the purpose of reducing Cd bioavailability. The effect of
different treatments on speciation of Cd is not consistent. Among them, the treatment of (BC + FeSO4)
has the best effect, causing an increase of 40.90% in the percentages of the Cd (F4 and F5), and of
28.44% in the percentages of Cd (F1 and F2). The stabilization effect is (BC + FeSO4) > (BC + FeCl3) >
(BC + Fe) > (BC), which indicates that adding iron-based materials can increase the stabilization effect
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of Cd in soil. Some studies mention that adding iron-based materials can promote the formation of
hydroxylated metal ions and promote the formation of hydroxide precipitate of Cd, Pb, Zn, and other
PTM ions in soil [44].Appl. Sci. 2018, 8, 1999 5 of 12 
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3.1.2. The Effect of Different Treatments on Pb in Soil

At the end of incubation, the influence of different treatments on the speciation of Pb in
soil is shown in Figure 2. After the four treatments (BC, BC + FeCl3, BC + FeSO4 and BC + Fe),
the percentages of the Pb (F1) of each treatment decreased by 41.87%, 30.68%, 38.79%, and 51.84%
respectively, the percentages of Pb (F2) of each treatment increased by 24.13%, 7.48%, 12.17%, and 1.88%
respectively, the percentage of Pb (F3) of each treatment increased by 0.17%, 0.93%, 0.70%, and 8.00%
respectively, the percentages of Pb (F4) of each treatment increased by 13.46%, 31.77%, 31.53%, and
31.09% respectively, and the percentages of Pb (F5) of each treatment increased by 23.95%, 17.51%,
19.67%, and 29.77% respectively, compared with the percentages of these chemicals in the CK (F1: 6.13%,
F2: 49.40%, F3: 20.53%, F4: 7.76%, and F5: 16.18%).
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As shown in Figure 2, the percentages of Pb (F1) in different treatments significantly decrease
while the percentages of other fractions to some extent increase at the end of incubation, which
indicates the Pb in soil is transformed from the exchangeable fraction to more stable fractions. Different
treatments have certain passivation effects on Pb in soil, and the treatment of (BC + Fe) has the best
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effect among all treatments. The percentages of Pb (F4 and F5) increase by 30.2% and the Pb (F1 and
F2) decrease by 8.43% compared with those percentages of these chemicals in the control sample.
The stabilization effect is (BC + Fe) > (BC + FeSO4) > (BC + FeCl3) > (BC), which indicates that adding
iron-based materials can increase the stabilization effect of Pb in soil. Research show that after FeSO4

is oxidized to Fe2(SO4)3 in soil, FeSO4 and Fe2(SO4)3 would generate Fe2O3 precipitation [45], and
iron oxide has a strong metal ion adsorption and enrichment ability [46].

3.2. The Effect of Different Treatments on Soil Property and Soil Crystal Structure

3.2.1. The Effect of Different Treatments on Soil pH Value

As shown in Figure 3, soil pH values of the treatments with stabilizer were significantly higher
than that of CK (pH: 6.81). The pH values of the four treatments (BC, BC + FeCl3, BC + FeSO4 and BC
+ Fe) significantly increased by 1.96, 1.94, 1.65, and 2.01 units when compared with the control sample
at the end of incubation. The difference of soil pH by the treatment of (BC) and iron-based materials is
not significant, but there are significant differences with the treatment of blank control. This indicates
that the soil pH can be significantly increased by adding the silk-worm excrement biochar. The reason
why the pH value of soil got increased after adding stabilizers was that silk-worm excrement contains
alkaline matter (Na, K, Ca, Mg, and CaCO3) [47,48], which can increase the pH value of soil [49].
And this result is consistent with previous ones [50,51].
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3.2.2. The Effect of Different Treatments on Soil CEC

As shown in Figure 4, soil CEC of the treatments with stabilizer were significantly higher than
that of CK (CEC: 10.15 cmol·kg−1). The content of soil CEC after the four treatments (BC, BC + FeCl3,
BC + FeSO4 and BC + Fe) significantly increased by 2.13, 2.16, 2.01, and 2.58 cmol·kg−1 respectively
compared with that of the control sample at the end of incubation. CEC refers to the amount of
cationic ions in the soil that can be absorbed by the soil colloid [52]. Its amount can reflect the soil
system buffering ability, which is also an important basis for evaluating synthetical fertility and soil
improvement. The soil CEC got increased after the use of stabilizer, which means that the fertility
of the soil also got increased. The difference of soil CEC by the treatment of (BC) and iron-based
materials is not significant, but there are significant differences with the treatment of blank control.
This indicates that the soil CEC can be significantly increased by adding the silk-worm excrement
biochar. Due to the micropore structure of biochar, it can adsorb a lot of mineral elements, so causing
the application of biochar to increase the soil CEC [53]. In addition, the increase of soil CEC may be
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related to relatively high content of ash of silk-worm excrement biochar in this study. Singh et al. [54]
reported that because insect feces tend to have high ash content, biochar made from them has higher
CEC than charcoal or straw, which leads to a significant increase in soil CEC by the application of
silk-worm excrement biochar compared with CK.Appl. Sci. 2018, 8, 1999 7 of 12 
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Figure 4. The effect of different treatments on soil cation exchange capacity (CEC). Note: different
letters for the Figure 4 indicates that the differences are statistically significant (P < 0.05).

3.2.3. The Effect of Different Treatments on the Soil Crystal Structure

The effect of different treatments on soil crystal structure is shown in Figure 5. It can be seen from
the figure that Cd in soil crystal mainly exists in the forms of Cd(OH)NO3 and Cd(OH)2. Pb mainly
exists in the forms of Pb5O4 and Pb3(CO3)2(OH)2. This indicates that Cd and Pb are fixed in the
soil in different mineral phases. However, the mineral phase is relatively less. It is speculated that,
this phenomenon may be because only a handful of PTM is stabilized in the form of crystals in soil.
The content of Pb5O4 mineral phase treated by (BC + Fe) and (BC + FeSO4) at the number 1 is higher
than others. This indicates that the majority of Pb5O4 is fixed in the form of soil crystals, and the
soil treated by (BC + Fe) and (BC + FeSO4) has more crystal of Pb5O4. The differences of crystal
structures after different treatments are not distinct when compared with the crystal structure of the
control sample. This shows that there is no significant change in soil crystal structure by adding
different stabilizers. The content of Cd(OH)NO3, Pb3(CO3)2(OH)2 and Cd(OH)2 mineral phase treated
by (BC + FeCl3), (BC + FeSO4) and (BC + Fe) are higher than that treated by BC at the number 2, 3,
and 4, which indicates that it is feasible to apply iron-based materials to the stabilization of Cd and
Pb. In addition, mineral phase of Cd(OH)NO3 treated by (BC + FeSO4) at the number 2 is higher than
(BC + Fe), which indicates that the treatment of (BC + FeSO4) has a better stabilizing effect on Cd in
soil than (BC + Fe). In summary, the treatment of (BC + FeSO4) has a better promotion of conversion of
Cd and Pb into mineral phases, which means that Cd and Pb eventually exist in the soil in a form of
low bioavailability.
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3.3. Correlation between the Speciation of PTMs and Soil Properties

The results of correlation among the speciation of Cd and Pb, the pH value and CEC are shown
in Table 3. The pH value and CEC were significantly negatively correlated with the content of
exchangeable fraction and carbonate bound fraction Cd (P < 0.01), and positively correlated with
the content of bound organic and residual fraction Cd (P < 0.05); the pH value and CEC were
significantly negatively correlated with the content of exchangeable fraction and carbonate bound
fraction Pb, and significantly positively correlated with the content of bound organic and residual
fraction Pb. This indicates that the exchangeable and carbonate bound Cd fraction and Pb were
respectively gradually converted to the bound organic and residual fraction Cd and Pb after adding
stabilizers. This process is mainly achieved through increasing the pH value and CEC. In the process
of remediating soil contaminated by PTMs, soil pH value is a very important factor [55]. Soil pH
value directly controls the solubility of metal hydroxide, carbonate, and phosphate, the hydrolysis of
PTMs, the formation of ionic radius, the dissolution of organic matter, and the charge property of soil
surface [56–58]. With the increasing pH value, the functional groups, such as the phenols, hydroxyl
groups and carbonyl groups are separated from soil organic matter. In this way, their affinity for metal
cation increases, and thus they can reduce the mobility of PTMs ions [13]. The exchange adsorption
is also one of important reasons for the reduction of PTMs activities [59]. The bigger the number
of cation exchange, the stronger the retention of PTMs [60,61]. As the content of soil CEC increases,
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the adsorption and exchange ability on cationic in soil is enhanced, and the content of the available
PTMs in soil can be reduced by exchangeable reaction [62].

Table 3. Correlation analysis among the speciation of typical potential toxic metals (PTMs), pH value
and CEC.

Index
The Speciation of Cd

F1 F2 F3 F4 F5

pH −0.816 ** −0.729 ** 0.059 0.705 ** 0.142
CEC −0.792 ** −0.839 ** 0.126 0.630 * 0.225

Index
The Speciation of Pb

F1 F2 F3 F4 F5

pH −0.929 ** −0.323 0.156 0.692 ** 0.919 **
CEC −0.860 ** −0.207 0.325 0.651 ** 0.861 **

Note: * and ** indicate respectively that the correlation is statistically significant (p < 0.05 and p < 0.01).

4. Conclusions

(1) Adding iron-based materials can increase the stabilization effect of Cd and Pb in soil under the
condition of applying the silk-worm excrement biochar.

(2) The speciation of Cd and Pb in soil could be changed after the application of BC and
iron-based materials. In doing so, the speciation of Cd and Pb can be transformed into fraction
of low bioavailability. The treatment of (BC+FeSO4) has a good effect on the stabilization of Cd and Pb
in soil relative to other treatments. In addition, XRD patterns showed that Cd and Pb were respectively
immobilized on the soil in the form of Cd (OH)NO3, Cd (OH)2, Pb5O4, and Pb3(CO3)2(OH)2.

(3) The soil pH value and CEC could be significantly improved after the application of BC and
iron-based materials; the pH value and CEC were significantly negatively correlated with the content
of exchangeable fraction and carbonate bound fraction Cd, and positively correlated with the content of
bound organic and residual fraction Cd; the pH value and CEC were significantly negatively correlated
with the content of exchangeable fraction and carbonate bound fraction Pb, and significantly positively
correlated with the content of bound organic and residual fraction Pb. The increase of soil pH and
CEC are important factors affecting the speciation transformation of Cd and Pb in soil.
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