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Featured Application: Dynamic tests can be used to characterize asphalt mixes and the results
obtained from dynamic tests are in good agreement with the results of conventional cyclic tests.

Abstract: In the presented research, conventional cyclic tension–compression tests and dynamic
tests were performed on two types of asphalt mixes (AM). For the tension–compression tests,
the complex modulus was obtained from the measurements of the axial stress and axial strain.
For the dynamic tests, an automated impact hammer equipped with a load cell and an accelerometer
were used to obtain the frequency response functions (FRFs) of the specimens at different
temperatures. Two methods were proposed to back-calculate the complex modulus from the FRFs
at each temperature: one using the 2S2P1D (two springs, two parabolic elements and one dashpot)
model and the other considering a constant complex modulus. Then, a 2S2P1D linear viscoelastic
model was calibrated to simulate the global linear viscoelastic behaviour back calculated from each of
the proposed methods of analysis for the dynamic tests, and obtained from the tension–compression
test results. The two methods of analysis of dynamic tests gave similar results. Calibrations from the
tension–compression and dynamic tests also show an overall good agreement. However, the dynamic
tests back analysis gave a slightly higher value of the norm of the complex modulus and a lower
value of the phase angle compared to the tension–compression test data. This result may be explained
by the nonlinearity of AM (strain amplitude is at least 100 times smaller for dynamic tests) and/or by
ageing of the materials during the period between the tension–compression and the dynamic tests.

Keywords: asphalt mixes; linear viscoelasticity; complex modulus; dynamic measurements;
tension–compression tests; frequency response function; back-analysis; finite element method

1. Introduction

Asphalt mixes (AM) have a linear viscoelastic (LVE) behaviour in the small strain domain [1]
Cyclic tension–compression tests are traditionally used to determine the LVE properties of AM that
are strongly dependent on frequency and temperature. However, these tests require expensive
experimental devices such as hydraulic presses and are not applicable in situ. An economical
alternative is to use non-destructive dynamic tests that are simple to perform and possibly adaptable
for measurements on pavement structures. Impulse techniques using impact loadings [2,3] are
known to provide accurate characterization of material properties in the case of elastic materials [4,5].
In the case of LVE materials, dynamic tests could be a great alternative to conventional cyclic
tension–compression tests. Dynamic tests using wave propagation and measurement of the flying
time [6–8] have been applied to LVE materials. Resonance testing considering only the fundamental
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resonance frequency [9–11] or resonant acoustic spectroscopy (RAS) [12–15] have also been applied to
AM but it is not possible to describe accurately the frequency dependency behaviour of AM with
these different tests. Recently, measurement of frequency response functions (FRFs) have been
performed on LVE materials [16,17] and more specifically on AM [18–21]. Gudmarsson et al. [19,20] and
Carret et al. [21] showed that using FRFs measurements to derive the LVE properties of AM is a very
promising approach. However, characterizing accurately the LVE behaviour of AM from FRFs is not
possible through a simplified analysis [22] and it requires an elaborate approach. In this paper,
two different methods using finite element calculations are proposed to obtain the LVE behaviour from
FRFs. The first method consists in an optimization of the continuous spectrum 2S2P1D (two springs,
two parabolic elements and one dashpot) model constants to back-calculate the complex modulus at
each tested temperature while the second method is a more direct back-calculation of the complex
modulus at the first resonance frequency. The two methods were applied to two different types of
AM representing five specimens that were tested with cyclic tension–compression tests and with
dynamic tests. Experimental complex modulus values obtained from tension–compression tests and
back-calculated from FRFs with the two proposed methods were used to fit the 2S2P1D model and the
Williams-Landel-Ferry (WLF) constants simulating the global LVE behaviour of the material in each
case. First, the materials tested in this study are presented. Then, the LVE behaviour characterization
with cyclic tests and the modelling with the 2S2P1D model are introduced. Next, dynamic tests
are introduced and the two proposed back-analysis methods are explained. Finally, data from
tension–compression tests are compared with results from the two methods of back-analysis of the
dynamic tests.

2. Materials and Methods

Two different types of AM are considered in this paper. The first material is a warm mix that
was fabricated in laboratory using bitumen foam and labelled WF for warm foam. It contains 70% of
reclaimed asphalt pavement (RAP) after one cycle of recycling. This material was used in a project from
the French national research agency called IMPROVMURE [23]. Three specimens of this material were
tested with tension–compression and dynamic tests. The second material is a mix with an optimized
granular skeleton also fabricated in laboratory and labelled GB5. It contains 30% of RAP and the
bitumen used is a polymer modified bitumen (PMB). Two specimens of this material were tested
with tension–compression tests and dynamic tests. Table 1 gives some indications on the five studied
specimens. The tension–compression tests were performed first and the dimensions listed in Table 1
correspond to the dimensions after the specimens were cut (see Section 3.1) before performing the
dynamic tests.

Table 1. Specimens used in this study.

Specimen Mass (g) Height
(mm)

Diameter
(mm)

Density
(kg/m3)

Void Ratio
(%)

Bitumen Content
(%)

RAP Content
(%)

WF-4 1293 0.123 75 2379 6.6 5.4 70
WF-6 1320 0.123 75 2431 4.2 5.4 70
WF-8 1330 0.123 75 2449 3.8 5.4 70
GB5-3 941 0.152 64 2381 4.8 4.8 30
GB5-4 951 0.152 64 2378 5.1 4.8 30

3. Characterization of the Linear Viscoelastic (LVE) Behaviour

3.1. Cyclic Tension–Compression Tests

Cyclic tension–compression tests were first performed to determine the complex modulus and
complex Poisson’s ratio of the five considered cylindrical specimens. A hydraulic press was used in
strain-controlled mode to apply cyclic sinusoidal axial loadings with an amplitude of around 50 µm/m.
The axial stress σz was measured with a load cell, the axial strain εz was obtained from the average of
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three extensometers placed at 120◦ from each other, and the radial strain εr was derived from the
measurements of two non-contact sensors. The procedure developed at ENTPE/University of Lyon
laboratory is detailed in other publications [24–26]. The complex notation of the axial stress, the axial
strain and the radial strain are given in Equation (1):

σ∗z = σ0z·ejωt

ε∗z = ε0z·ej(ωt+ϕεz)

ε∗r = ε0r·ej(ωt+ϕεr)

(1)

whereω is the pulsation (ω = 2πf, where f is the frequency), σ0z is the norm of the complex axial stress
and ε0z and ϕεz (respectively, ε0r and ϕεr) are the norm and phase angle of the complex axial strain
(respectively, complex radial strain). The tension–compression tests were performed at eight loading
frequencies (0.003, 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 Hz) and nine temperatures from −25 ◦C to 55 ◦C
in steps of 10 ◦C. Details of the experimental set up are shown in Figure 1. The complex modulus
(respectively, complex Poisson’s ratio) are defined as the ratio between the axial stress and the axial
strain (respectively, the opposite of the radial strain and the axial strain) and they are calculated at
each temperature and frequency as follow:

E∗ =
σ∗z
ε∗z

= |E∗|·ejϕE (2)

ν∗ = −ε
∗
r
ε∗z

= |ν∗|·ejϕν (3)

where E* is the complex modulus, ϕE is the phase angle of the complex modulus, ν* is the complex
Poisson’s ratio and ϕν is the phase angle of the complex Poisson’s ratio.
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Figure 1. Tension–compression test set-up (ENTPE laboratory, University of Lyon). 
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Figure 1. Tension–compression test set-up (ENTPE laboratory, University of Lyon).

3.2. Modelling of the LVE Behaviour: 2S2P1D Rheological Model

The continuous spectrum 2S2P1D model developed at ENTPE [27–29] was used to model the LVE
behaviour of AM. This model is the association in series of two springs, two parabolic creep elements
and one dashpot. In the three-dimension case [30], the expressions of the complex modulus and the
complex Poisson’s ratio, for isotropic behaviour, are given at a given reference temperature (Tref),
by Equations (4) and (5), respectively.
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E∗2S2P1D(ω) = E00 +
E0 − E00

1 + δ(jωτE)
−k + (jωτE)

−h + (jωβτE)
−1 (4)

ν∗2S2P1D(ω) = ν00 +
ν0 − ν00

1 + δ(jωτν)
−k + (jωτν)

−h + (jωβτν)
−1 (5)

whereω is the pulsation (ω = 2πf, where f is the frequency), E0 and ν0 are the high frequency modulus
and Poisson’s ratio, E00 and ν00 are the low frequency modulus and Poisson’s ratio, k and h are
dimensionless constants such as 0 < k < h < 1, δ is a dimensionless constant, and β is a dimensionless
constant related to Newtonian viscosity η by η = (E0 − E00) βτE. τE and τν are characteristic time
constants of the complex modulus and Poisson’s ratio linked by a constant ratio. The values of the
characteristic times vary only with temperature. The time temperature superposition principle (TTSP)
is verified for asphalt mixes in the linear and nonlinear domains [31–33] so it is possible to calculate
the characteristic time at any given temperature using Equation (6):

τ(T) = aT(T)τref (6)

where τref is the characteristic time at the reference temperature (τE or τν) and aT is the shift factor at
the temperature T defined by the Williams–Landel–Ferry (WLF) equation [34]:

log(aT) = −
C1(T− Tref)

C2 + T− Tref
(7)

where C1 and C2 are the two constants of the WLF equation and Tref is the reference temperature.

4. Dynamic Tests

4.1. Measurement of the Frequency Response Functions (FRFs)

First, the specimens used for complex modulus tension–compression test were sawed to separate
the glued upper and lower metallic caps before performing the dynamic measurements. An impact
hammer equipped with a load cell (PCB model 086E80) was used as an external source of excitation.
The order of magnitude of the maximum strain induced in the specimen by the impact is of about
0.1 µm/m [18,21]. The impact hammer was automated with a solenoid piston programmed with a
microcontroller (Arduino Uno R3) to improve the repeatability of the test and to allow measurements
directly inside a thermal chamber. This automated system was inspired by systems previously
developed by Norman et al. in 2012 and Brüggemann et al. in 2015 [35,36]. The response of the
materials was recorded with an accelerometer (PCB model 353B15). The impact hammer and the
accelerometer were connected to a signal conditioner (PCB model 482C15) and the signal conditioner
was connected to a data acquisition device (NI USB-6356) connected to a computer. To achieve free
boundary conditions, soft foam was placed under the specimens during the tests. In this study, only the
longitudinal compression mode of vibrations was considered. For this mode of vibrations, the impact
is applied in the centre of one short side of the cylinder while the acceleration is measured in the
centre of the opposite short side. The experimental set up for the dynamic tests corresponding to the
longitudinal mode of vibrations is presented in Figure 2.

The measurements were recorded with a sampling frequency of 1 MHz by using a MATLAB
application which was specifically developed for this test. Measurements were performed at five
temperatures (−20, 0, 15, 35 and 50 ◦C) and five impacts were applied at each temperature. The applied
force and the acceleration were recorded for each impact. The experimental data in time domain were
then converted in frequency domain with a 1 Hz resolution using the Fast Fourier Transform (FFT).
Figure 3 shows an example of the signals in time and frequency domains for specimen GB5-3 at 14.7 ◦C
(measured temperature with a probe at the surface of the specimen).
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Figure 3. Dynamic test experimental data for specimen GB5-3 at 14.7 ◦C (5 hits): (a) force in time
domain; (b) acceleration in time domain; (c) force in frequency domain; and (d) acceleration in
frequency domain.

As shown in Figure 3, the frequency spectrum of the impact contains energy up to 20 kHz, which is
the maximum frequency considered for the calculations of frequency response functions (FRFs) in this
study. FRFs were calculated from the frequency domain signals as follow:

H(f) =
(

Y(f)·X ∗ (f)
)

/
(

X(f)·X ∗ (f)
)

(8)

where H is the FRF, Y is the FFT of the measured acceleration, X is the FFT of the applied force,
X* is the complex conjugate of the applied force and the bar above corresponds to the arithmetic
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average from the five impacts. The five FRFs corresponding to each of the five impacts and the
averaged FRF (Equation (8)) for specimen GB5-3 at 14.7 ◦C are displayed on Figure 4. Figure 4 shows
that the six FRFs overlaps, which confirms the very good repeatability of the test.Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 18 
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Quality of the measurements was also checked with the coherence function. The coherence
is a value between 0 and 1 that indicates how much of the vibratory response recorded with the
accelerometer is due to the impact. For a value of 1, the response is fully explained by the impact while
decreasing values indicate that something has disrupted the test. Coherence function is calculated
according to Equation (9):

CF(f) =
(

X ∗ (f)·Y( f )
)2

/
((

X(f)·X ∗ (f)
)
·
(

Y(f)·Y ∗ (f)
))

(9)

where CF is the coherence function, Y and Y* are the FFT of the measured acceleration and its complex
conjugate, X and X* are the FFT of the applied force and its complex conjugate and the bar above
corresponds to the arithmetic average. The coherence functions of specimen GB5-3 for the five tested
temperatures are presented in Figure 5. For all temperatures, the coherence function is very good with
values close to one for frequencies higher than 1000 Hz. It is therefore recommended to not use the
frequencies below 1000 Hz.
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4.2. Calculation of FRFs with the Finite Element Method (FEM)

Numerical FRFs were calculated with the finite element method (FEM) considering linear
viscoelastic behaviour and the dynamic test boundary conditions. Figure 6 shows the FEM mesh and
boundary conditions used for the FEM calculation of the FRFS.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 18 
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FRFs were calculated at the desired frequencies by resolving the following three-dimensional
equation of motion in frequency domain:

− ρω2u−∇·σ = 0 (10)

where ρ is the bulk density of the material,ω is the angular frequency, u is the displacement vector,
∇ is the gradient tensor operator and σ is the Cauchy stress tensor. Free boundary conditions are
assumed to solve Equation (10) except at the impact point where a cyclic load eiωt is applied in the
direction of the impact. Since the load amplitude is unity, the calculated FRFs correspond to the
calculated acceleration in direction Z (direction of vibration of the accelerometer in physical tests).
Back analysis was performed considering two LVE behaviour models successively, as explained below.

4.3. Determination of the Material LVE Properties from Dynamic Tests

The LVE properties of the material were determined from the FRFs measured with the dynamic
tests in two steps. The first step is a back-calculation of the complex modulus of the material at
each tested temperature. Two methods, presented in the next sections, were used for this purpose.
They consist in optimizing the constants of the LVE model used to calculate FRFs so that calculated
FRFs match the experimental measured FRFs using dynamic tests at the considered temperature.
The second step, which is the same for the two proposed methods, consists in using the complex
modulus values determined in the first step at each temperature to fit a 2S2P1D model and a WLF law
simulating the global LVE behaviour of the material. This operation is similar to what is done with the
tension–compression test data.

4.3.1. First Method: Optimization of the 2S2P1D Model Constants to Match Experimental FRFs

Among the 10 constants of the 2S2P1D model, only four constants (E0, k, δ and τE) have a
significant influence for the considered range of frequencies involved during dynamic tests and need to
be optimized. The complex Poisson’s ratio has a very small influence on the calculation of the FRFs
below 20 kHz. Poisson’s ratio cannot be back-calculated with this procedure; however, it is necessary to
assume values for constants ν00, ν0 and τν to back-calculate the complex modulus at each temperature.
For each tested temperature, the vector X of the four constants (E0, k, δ and τE) to be identified was
optimized iteratively so that the calculated FRFs match the experimental FRFs. The values of the six
other constants were fixed to classical values for AM: E00 = 100 MPa, ν0 = 0.19, ν00 = 0.45, h = 0.53,
β = 250 and τν = 31.6τE. Only the values of the experimental FRFs at frequencies around the resonance
frequencies are used as input in the optimization according to previous studies [19–21] that showed
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their meaningful importance. Ten frequencies were selected along each resonance peak and the error
function to minimize was defined as follow:

Error =
Npeaks

∑
j=1

10

∑
i=1

∣∣∣∣∣∣
∣∣∣HExpji

∣∣∣− ∣∣∣HCji

∣∣∣∣∣∣HExpji

∣∣∣
∣∣∣∣∣∣
 (11)

where HExp is the experimental FRF, HC is the calculated FRF, Npeaks is the number of resonance peaks,
j is the index of the peak and i is the index of the frequencies. The number of peaks considered for the
optimization at each temperature corresponds to the number of peaks that are visible below 20 kHz
(maximum considered frequency with our experimental device). This number is given in Table 2 for
each temperature.

Table 2. Number of peaks considered for the optimization of the 2S2P1D model constants at
each temperature.

Temperature (◦C) −20 0 15 35 50

Number of peaks 1 1 1 1 2

The optimization was performed in MATLAB with the “fminsearch” algorithm and the
optimization was stopped when the error and the parameter tolerance of 1% is reached (e.g., when the
variation of the error and of all the values of the four constants to be identified is less than 1% between
two iterations of the algorithm). The final vector Xf of the four constants (E0, k, δ and τE) was then
used with the three fixed constants related to the complex modulus (E00, h, and β) to back-calculate
the complex modulus at the resonance frequencies of the peaks used as input for the optimization at
the considered temperature. The optimization procedure to identify the four 2S2P1D model constants
(E0, k, δ and τE) at each temperature is explained in Figure 7.
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4.3.2. Second Method: Constant Complex Modulus Obtained from the First Resonance Peak Only

The second method is a simplified approach that does not require, in the first step, a rheological
LVE model considering the frequency and temperature dependence. At each tested temperature,
a constant complex modulus value and a constant real Poisson’s ratio of 0.3 were considered.
A numerical sensitivity analysis was performed to evaluate the influence of the norm and phase
angle of the complex modulus and the real value of the Poisson’s ratio on the calculation of FRFs.
The influence of each LVE constant was evaluated from FRFs calculated for five values taken in the
range of variation of the considered LVE constant while the two others are fixed. Table 2 lists the
five values considered for each LVE constant and the corresponding fixed values of the two others.
Some results are shown on Figure 8 for a cylinder with similar dimensions than those used in this
study and with a density of 2400 kg/m3. It is shown in Figure 8 that the norm of the complex modulus
has an important influence on the first resonance frequency but not on the amplitude. It is the reverse
for the phase of the complex modulus, while Poisson’s ratio has little influence on both the frequency
and the amplitude.
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To confirm the observation raised in Figure 8, the relative standard deviations (RSD) for the first
resonance frequency and amplitude were calculated for the three studied constants. Results are given
in Table 3. They confirm the previous observations and also indicate that the norm of the complex
modulus has really no impact on the peak amplitude while the phase has a very little influence on
the frequency. The Influence of the Poisson’s ratio can be considered as negligible when compared
with the influence of the two other constants. Observations presented in Figure 8 and Table 3 justify
the assumption of a constant real value of 0.3 for the Poisson’s ratio. In addition, the identification of
the norm and phase of the complex modulus can be separated into two steps: the norm can be
determined by dichotomy from the first resonance frequency and then the phase can be determined by
dichotomy from the corresponding amplitude. This process was repeated iteratively until the error on
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the amplitude is less than 0.1%. Figure 9 shows the principle of the back-calculation of the complex
modulus using the first resonance peak of the FRFs.

Table 3. Influence of E, ϕ and ν on the first resonance frequency and FRF amplitude. When one of the
constants varies, the two other constants are fixed at the values listed in the left column.

E (GPa) 20 25 30 35 40 RSD (%)

ϕ = 8◦ f (Hz) 11,580 12,940 14,180 15,320 16,380 13.5
ν = 0.25 Amplitude (m/s2) 12.1 12.1 12.1 12.1 12.1 6 × 10−4

ϕ (◦) 1 4 8 12 16 RSD (%)

E = 30 GPa f (Hz) 14,120 14,140 14,180 14,240 14,340 0.6
ν = 0.25 Amplitude (m/s2) 97.7 24.4 12.1 8.0 5.9 130.8

ν 0.05 0.15 0.25 0.35 0.45 RSD (%)

E = 30 GPa f (Hz) 14,400 14,320 14,180 13,980 13,760 1.8
ϕ = 8◦ Amplitude (m/s2) 11.2 11.8 12.1 12.3 12.4 4.0Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 18 
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4.3.3. Summary and Remarks on the Two Methods

Differences between the two proposed methods concern the first step in which the complex
modulus is back-calculated at each temperature, while the second step is identical for the two
methods. First, the assumptions on the Poisson’s ratio value are different in the two methods.
In the first method, the Poisson’s ratio is a complex number, which depends on the frequency and on
the temperature, and is modelled with the 2S2P1D model assuming the values of constants ν00, ν0 and
τE/τν. In the second method, a constant real value of Poisson’s ratio equal to 0.3 is assumed. Another
difference is that all resonance peaks under 20 kHz are considered in the first method while only
the first resonance peak is used in the second method. Consequently, the second method gives only
one value of the complex modulus at each temperature while the first method gives values for each
resonance frequency. This difference is not essential in this study since 50 ◦C is the only temperature for
which two peaks were observed. However, it can be interesting to evaluate more than one value of the
complex modulus at each temperature. Finally, in the first method, four constants are evaluated at each
temperature using a complex algorithm. In the second method, only two constants are evaluated using
a simple dichotomy process. The second method is therefore very easy to apply and time-effective
compared to the first method. Figure 10 highlights the main differences between the first step of the
two methods and gives the principle of the second step that is identical for the two methods. Note that,
even though the same constant h is fixed for the back-calculation at each temperature (in the first
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step of first method), a different constant h value can be obtained during the calibration process of the
second step.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 18 
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dynamic tests.

5. Results

5.1. Tension–Compression Tests Results

Results of the tension–compression tests for specimen WF-8 are plotted in Figure 11. A continuous
curve can be seen on the Cole–Cole diagram, which indicates that the material is rheologically simple
and that the time–temperature superposition principle (TTSP) is valid. The master curve of the norm of
the complex modulus is plotted at a reference temperature (Tref) of 15 ◦C in Figure 11. The 2S2P1D
model was fitted to the experimental data and is also plotted in Figure 11. A very good agreement
between the experimental data and the 2S2P1D model can be observed.
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The values of the 2S2P1D model and WLF equation constants obtained from the
tension–compression tests are given for all specimens in Table 4. The constants k, h, δ, β, C1 and C2

have the same values for a given material because they are only depending on the bitumen and not on
the granular skeleton as shown in previous research [27,37,38].

Table 4. Calibrated 2S2P1D constants to match tension–compression measurements.

Specimen E00 (MPa) E0 (MPa) δ k h β τE15◦C (s) C1 C2

WF-4 28 33,400 2.28 0.177 0.57 154 5.4 × 10−2 24.9 166.6
WF-6 40 37,500 2.28 0.177 0.57 154 7.0 × 10−2 24.9 166.6
WF-8 56 36,900 2.28 0.177 0.57 154 6.9 × 10−2 24.9 166.6
GB5-3 65 39,100 1.80 0.180 0.60 350 7.5 × 10−2 24.7 165.9
GB5-4 65 39,500 1.80 0.180 0.60 350 1.5 × 10−1 24.7 165.9

The measurements were recorded with a sampling frequency of 1 MHz by using a MATLAB
application which was specifically developed for this test. Measurements were performed at five
temperatures (−20, 0, 15, 35 and 50 ◦C) and five impacts were applied at each temperature. The applied
force and the acceleration were recorded for each impact. The experimental data in time domain were
then converted in frequency domain with a 1 Hz resolution using the Fast Fourier Transform (FFT).
Figure 3 shows an example of the signals in time and frequency domains for specimen GB5-3 at 14.7 ◦C
(measured temperature with a probe at the surface of the specimen).

5.2. Dynamic Impact Tests Results

The complex modulus values back-calculated at each temperature from the FRFs measurements
with the two proposed methods for specimen WF-8 are plotted, as an example, in Figure 12.
For the first method of back-calculation, one value of the complex modulus is plotted for temperatures
at which only one peak was considered for the optimization (−20, 0, 15 and 35 ◦C) and two values
are plotted at −50 ◦C because two peaks exist for this temperature. Only one value of the complex
modulus is presented for each temperature for Method 2 because the back-calculation is limited to
the first resonance frequency, as explained previously. The master curve of the norm of the complex
modulus at 15 ◦C was obtained considering the validity of the TTSP. The 2S2P1D model was fitted to
the back-calculated modulus for both methods and the two resulting 2S2P1D model curves are also
plotted in Figure 12. Good fitting of the 2S2P1D curves can be observed for both methods, which give
only slightly different results.
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The values of the 2S2P1D model and WLF equation constants fitting the results from the two
back-analysis methods are given for all specimens in Table 5 (first method) and Table 6 (second method).
Note that similarly to the results of the tension–compression tests, constants k, h, δ, β, C1 and C2 have
the same values for a given material. In addition, the same WLF equation constants can be used for
the two methods and only constant E0 differs between the first and the second method.

Table 5. Calibrated 2S2P1D constants to match complex modulus back-calculated from dynamic tests
with the first method using 2S2P1D model at each temperature. Constants E00 and β are assumed to be
100 MPa and 250, respectively.

Specimen E00 (MPa) E0 (MPa) δ k h β τE15◦C (s) C1 C2

WF-4 100 34,800 1.39 0.142 0.49 250 4.0 × 10−2 18.9 133.2
WF-6 100 38,700 1.39 0.142 0.49 250 7.0 × 10−2 18.9 133.2
WF-8 100 37,500 1.39 0.142 0.49 250 4.0 × 10−2 18.9 133.2
GB5-3 100 39,100 1.17 0.130 0.442 250 5.5 × 10−2 19.2 139.5
GB5-4 100 40,500 1.17 0.130 0.442 250 7.0 × 10−2 19.2 139.5

Table 6. Calibrated 2S2P1D constants to match complex modulus back-calculated from dynamic tests
measurements with the second method using the first resonance peak at each temperature. Constants
E00 and β are assumed to be 100 MPa and 250, respectively.

Specimen E00 (MPa) E0 (MPa) δ k h β τE15◦C (s) C1 C2

WF-4 100 36,100 1.39 0.142 0.49 250 4.0 × 10−2 18.9 133.2
WF-6 100 39,500 1.39 0.142 0.49 250 7.0 × 10−2 18.9 133.2
WF-8 100 38,500 1.39 0.142 0.49 250 4.0 × 10−2 18.9 133.2
GB5-3 100 39,800 1.17 0.130 0.442 250 5.5 × 10−2 19.2 139.5
GB5-4 100 41,100 1.17 0.130 0.442 250 7.0 × 10−2 19.2 139.5
GB5-4 100 40,500 1.17 0.130 0.442 250 7.0 × 10−2 19.2 139.5

It must be highlighted that values of constants E00 and β are assumed because they have no
influence on the complex modulus values in the frequency range involved during the dynamic tests.
The constants governing the value of the Poisson’s ratio ν00, ν0 and τν do not appear in Tables 5 and 6
because the Poisson’s ratio was not evaluated from the dynamic tests but assumptions on the values of
these constants were necessary to back-calculate the complex modulus at each temperature in the first
step of the first method. A good proximity between the results obtained with the two methods is shown
in Figure 12. The same observation was made for all specimens. To validate this visual impression,
the relative difference between the norm (in %) and the phase (in ◦) of the 2S2P1D simulated complex
modulus obtained from the two methods are plotted in Figure 13. In this figure, the relative difference
is plotted against the reduced frequency at 15 ◦C for all specimens. It is seen that the second method
considering a constant complex modulus at each temperature and a constant real Poisson’s ratio of
0.3 gives a norm slightly higher than the first method with a maximum relative difference of about
3.7%. The phase angle determined with the two methods can be considered equivalent with less
than 0.03◦ of difference, which was expected because only constant E0 of the 2S2P1D model differs
between the first and the second method. The slight differences between the two methods may
be explained by the different assumptions on the Poisson’s ratio value which is modelled with the
2S2P1D model in the first method and taken constant equal to 0.3 in the second method. However,
the two proposed methods are in very good agreement. This result is interesting because the second
simplified method does not require in the first step the use of an elaborate LVE model. In addition,
the back-calculation process is easy to perform as the two calculated constants can be identified using
dichotomy process. This new simplified approach considerably reduces the computational time and
offers great potential to back-calculate the complex modulus of AM from FRFs measurements using
the first resonance peak only.
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Figure 13. Difference between the complex modulus obtained from the two methods of analysis of the
dynamic tests plotted at a reference temperature of 15 ◦C for all specimens: (a) relative difference for
the norm of the complex modulus (in %); and (b) difference for the phase of the complex modulus
(in ◦).

5.3. Comparison between Cyclic and Dynamic Tests Results

The reduced frequency range of the tension–compression and dynamic tests is different,
as confirmed in Figures 10 and 11. The tension–compression tests cover a reduced frequency range
between approximately 10−7 Hz to 109 Hz at a reference temperature of 15 ◦C. The dynamic tests
cover a reduced frequency range between approximately 1 Hz and 1012 Hz at the same reference
temperature of 15 ◦C. Therefore, the best fit between the two tests is expected to be for frequencies
higher than 1 Hz and lower than 109 Hz for which experimental data from the two tests is available.
As the two methods of back analysis of the dynamic tests give similar results, only the complex
modulus obtained from the 2S2P1D model calibrated using the second method of analysis was chosen
for the comparison with results of the 2S2P1D model calibrated from quasi-static tension–compression
tests data. The relative difference between the norm (in %) and the phase (in ◦) of the complex modulus
from the two calibration processes are plotted in Figure 14 where the results are plotted against the
reduced frequency at 15 ◦C for all specimens. It is shown in Figure 14 that the complex modulus
simulated from the two tests are in quite good agreement for the high reduced frequencies (>107 Hz),
which was expected when dealing with dynamic measurements. The norm of the dynamic complex
modulus is around 3–5% higher than the norm of the complex modulus of the tension–compression
tests for this frequency range and there is less than 0.2◦ of difference between the phase angles from
both tests. For lower reduced frequencies (or higher temperatures), the relative difference increases
for the norm and reach a value between 12% and 30% at 1 Hz depending on the specimen with an
average value of 20.2%. The difference also increases for the phase angle but remains less than 2.5◦ for
reduced frequencies higher than 1 Hz.

The differences observed in Figure 14 show that the dynamic complex modulus has a higher
norm and a lower phase angle than the complex modulus obtained from the tension–compression tests.
The differences between the two tests increase with temperature. These results are in agreement with
results from previous studies using FRFs [18–21]. The differences between the two tests could be due to
two phenomena. First, the level of strain applied is different in the two types of tests (about 50 µm/m
for the tension–compression tests and about 0.1 µm/m for the dynamic tests). It is known that AM
have a nonlinear behaviour showing a strain level dependence even at small strain amplitude [39–41].
The differences observed in this analysis are in the same direction than the observed nonlinearity:
increasing of norm and decreasing of phase angle when decreasing strain amplitude. Then, nonlinearity
may account for at least a part of the difference between the two tests. Another possibility is ageing of
the materials. The tension–compression tests were performed several months before the dynamic tests
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and this could explain why the dynamic complex modulus is stiffer. However, the overall agreement
between the two tests is satisfying.Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 18 
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Figure 14. Relative difference between the complex modulus simulated with the 2S2P1D model
calibrated from back-calculation of the dynamic tests and the complex modulus simulated with the
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The shift factors from the WLF equation obtained from the tension–compression tests and from
the dynamic tests are plotted in Figure 15. It is seen that, for the low temperatures, the agreement
between the shift factors from both tests is very good. For temperatures higher than 10 ◦C, the shift
factors of the dynamic tests tend to be higher than the shift factors of the cyclic tests and the difference
increases with temperature. The difference between the shift factors is more important for material
labelled GB5. However, there is no apparent link between the difference observed in Figure 14 for
the complex modulus and for the shift factors since the highest difference on the complex modulus
evaluation correspond to a specimen of material labelled WF.
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6. Conclusions

In this paper, conventional cyclic tension–compression tests and dynamic tests were performed to
characterize the LVE behaviour of AM on a large range of frequencies and temperatures. Two different
AM and five specimens were tested with both tests and results were analysed using the 2S2P1D model.

Two methods were studied to back-calculate the complex modulus of AM from dynamic
measurements at each temperature. It is shown that the same shift factors are found with the two
methods. Moreover, the two methods give very similar complex modulus values (less than 4% of
difference for the norm of the modulus and 0.03◦ for the phase angle) and the differences observes
may be due to the different assumptions on the Poisson’s ratio value. Therefore, the second method,
which is a new and simpler approach, appears to be a good option to obtain the complex modulus of
AM from FRFs.

The results of dynamic tests were also compared to the results of tension–compression tests.
The shift factors from both tests are very close for the low temperatures and shift factors from dynamic
tests are little higher for temperatures higher than 10 ◦C. The complex modulus obtained from dynamic
tests have a higher norm and a lower phase angle than the ones determined with the conventional
approach using cyclic tests. The differences observed between the two tests are very limited for the
high frequencies or low temperatures (less than 5% for the norm and 0.2◦ for the phase angle) and are
more important for the low frequencies or high temperatures (around 20% for the norm and 2◦ for the
phase angle at 15 ◦C and 1 Hz). Since the strain level is approximately 500 times lower in the dynamic
tests, the nonlinearity of AM with the level of strain amplitude may explain a part of the differences.
Ageing of the materials between the tension–compression and the dynamic tests may also have an
impact on the complex modulus evaluation.

The agreement between dynamic tests and the tension–compression tests is still satisfactory
on the whole frequency range. The combination of the two tests methods is useful to improve the
characterization of the LVE behaviour of AM on a wider frequency range because dynamic tests give
access to very high frequencies. The presented research shows that dynamic tests, which have the
great advantage of being cheap and rapid, can be back-analysed with a very simple model and can
provide accurately the complex modulus of AM on a wide range of frequencies and temperatures.
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