
applied  
sciences

Article

Development of Image Processing for Crack
Detection on Concrete Structures through Terrestrial
Laser Scanning Associated with the Octree Structure

Soojin Cho 1, Seunghee Park 2, Gichun Cha 3 and Taekeun Oh 4,*
1 Department of Civil Engineering, University of Seoul, Seoul 02504, Korea; soojin@uos.ac.kr
2 School of Civil, Architectural Engineering and Landscape Architecture, Sungkyunkwan University,

Gyeonggi 440-746, Korea; shparkpc@gmail.com
3 Department of Convergence Engineering for Future City, Sungkyunkwan University, Gyeonggi 440-746,

Korea; ckckicun@naver.com
4 Department of Safety Engineering, Incheon National University, Incheon 406-772, Korea
* Correspondence: tkoh@inu.ac.kr

Received: 18 October 2018; Accepted: 21 November 2018; Published: 23 November 2018 ����������
�������

Featured Application: This work proposes practical image processing to identify main cracks on
concrete surfaces by TLS associated with the octree structure.

Abstract: Terrestrial laser scanning (TLS) provides a rapid remote sensing technique to model 3D
objects but can also be used to assess the surface condition of structures. In this study, an effective
image processing technique is proposed for crack detection on images extracted from the octree
structure of TLS data. To efficiently utilize TLS for the surface condition assessment of large structures,
a process was constructed to compress the original scanned data based on the octree structure.
The point cloud data obtained by TLS was converted into voxel data, and further converted into an
octree data structure, which significantly reduced the data size but minimized the loss of resolution
to detect cracks on the surface. The compressed data was then used to detect cracks on the surface
using a combination of image processing algorithms. The crack detection procedure involved the
following main steps: (1) classification of an image into three categories (i.e., background, structural
joints and sediments, and surface) using K-means clustering according to color similarity, (2) deletion
of non-crack parts on the surface using improved subtraction combined with median filtering and
K-means clustering results, (3) detection of major crack objects on the surface based on Otsu’s
binarization method, and (4) highlighting crack objects by morphological operations. The proposed
technique was validated on a spillway wall of a concrete dam structure in South Korea. The scanned
data was compressed up to 50% of the original scanned data, while showing good performance in
detecting cracks with various shapes.

Keywords: terrestrial laser scanning; 3D scan data; octree data structure; crack detection; image
processing; Otsu’s method; K-means clustering

1. Introduction

1.1. Background and Purpose of the Study

Terrestrial laser scanning (TLS) is a system that can acquire the three-dimensional (3D) position
information of an object remotely with a laser. Terrestrial laser scanning has been increasingly used in
the surveys of buildings, bridges, and collapsed rock slopes because it allows easy and rapid surveying,
even in the lack of access due to its contactless data collection. Terrestrial laser scanning is mainly
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developed for the purpose of providing a rapid and accurate remote sensing for 3D objects modeling
but can be also used to monitor the structural condition. Moreover, TLS shows an equivalent capacity
in damage detection and deformation (or volumetric change) evaluation to conventional photographic
methods [1].

For the detection of damages such as crack, spalling, and abrasion, Anil et al. [2] showed
the feasibility of TLS by presenting that the measurable width, depth, and orientation of cracks
according to the sampling interval of the laser scanner, and the range of the laser beam. Giri and
Kharkovsky [3] proved that a laser displacement sensor can measure a cracks’ width up to 0.7 mm
on a concrete specimen. Laefer et al. [4] configured the fundamental mathematics to determine the
detectable minimum crack width with a terrestrial laser scanner in unit-based masonry by a parametric
study using orthogonal offset, interval scan angle, crack orientation, and crack depth. Li et al. [5]
proposed a crack detection method based on a second derivative image processing of thermal images
from laser heated spots, comparing with the dye penetrant inspection. Kim et al. [6] presented
a detection technique that can simultaneously localize and quantify spalling defects on concrete
surfaces using TLS. Valenca et al. [7] developed an automatic method based on image processing and
laser scanning in assessing cracks in bridges. The captured images were orthorectified by geometric
information surveyed by TLS, and then an image processing was performed for crack characterization.
Xu et al. [8] suggested an automatic crack detection method through TLS for concrete beam surfaces
using a few simple imaging processes techniques such as conversion to gray scale, median filtering,
and thresholding.

For the deformation or deflection of structures, Tsakiri et al. [9] took advantage of planes fitted to
point clouds extracted from the TLS data when gauging the displacement for monitoring of structural
deformation. The plane model is suitable for small areas; thus the section is divided into grid cells.
As for monitoring of tunnels, Van Gosliga et al. [10] configured the tunnel model with a cylinder to
detect deformations in a bored tunnel. Chang et al. [11] analyzed the deformation of a structure
surface by statistical regression such as a polynomial function. Koch [12] proposed the lofting
method by estimation of control points and the method showed good accuracy in the 3D non-uniform
rational b-splines (NURBS) surface. Jafaru et al. [13] presented a 3D point cloud change analysis
approach for tracking small movements over time through a combination of a direct point-wise
distance metrics in conjunction with statistical sampling. Khaloo and Lattanzi [14] suggested an
algorithm to identify structural anomalies in 3D point clouds of infrastructure systems by linear and
non-linear transformations from RGB to non-RGB spaces.

Above these, many researchers have carried out various studies on the damage detection
and deformation quantification on various structures by TLS or other equivalent methods, such
as photography [15–20]. Although these studies have evaluated TLS for the purpose of structural
health monitoring, the data capacity, resolution, and accuracy of crack recognition are still pointed out
as drawbacks of TLS [21,22].

More specifically for damage detection algorithms, the data from photogrammetry, laser
scanners [23], and microwave [24] have been utilized, and the associated imaging processing methods
such as edge detection techniques [25], histogram matching, image filtering and change detection [26],
and automatic thresholding [27] have been proposed by many researchers. Also, in conjunction with
image processing, a logical classification has been applied to find and identify various types of defects
for the reduction of inspection time and efforts. Sinha et al. [28] used classification of neuro-fuzzy
networks and Khanfar et al. [24] applied the fuzzy logic technique to find concrete structural defects.
Moon and Kim [29] used neural networks to detect cracks from images, and Kawamura et al. [30] used
genetic algorithms to extract crack patterns from digital images. In many papers, the classification
methods show a diversity of algorithms, which means that the operational environment is different
from place to place. For example, there are many stains, sediments, joints, efflorescence, and
micro-cracks on the surface of structures, and it is not easy to distinguish them from the major
structural cracks.
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1.2. Scope and Method of Research

In this study, an effective technique is proposed to detect main cracks on a concrete structure by
applying imaging processing algorithms appropriate to images extracted from the octree structure of
TLS data. The proposed technique aims to overcome the pre-mentioned drawbacks while fully taking
advantage of the contactless measurement of TLS. To respond to the drawbacks of the data capacity,
resolution, and accuracy of crack recognition, a data compression scheme is proposed based on octree
data structure, which has been applied to various research fields such as computer graphics, robotics,
etc. [31–36] and proved to be a reasonable approach in terms of memory usage and search speed [37,38].
Moreover, an improved algorithm using a 3D significant eigenvector-based shape descriptor allows
the octree method to provide a better image recognition [39].

The proposed method is summarized by the following work procedures. First, a shape information
model that can maintain the shape change in structure throughout the laser scan data was constructed.
The shape information model uses an octree data structure through point-cloud processing and
voxelization, and it can efficiently downsample and visualize a large-scale scan data. To respond
to the diversity of operation environments in detecting cracks, a combination of image processing
algorithms, such as K-means clustering [40], subtraction with median filtering [41], binarization [42],
and morphological operations were proposed. The crack detection procedure involved the following
steps: (1) segmentation for preprocessing, (2) classification of an image into 3 categories (i.e.,
background, structural joints, and sediments, and surface) using K-means clustering according to
the color similarity, (3) conversion to gray scale and image enhancement using median filtering and
improved subtraction, (4) deletion of non-crack parts on the surface by K-means clustering results,
(5) detection of major crack objects on the surface based on the Otsu’s binarization method, and (6)
highlighting crack objects by morphological operations. The overall workflow is presented in Figure 1.
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Then, the proposed technique is validated on a spillway wall of a concrete dam structure in South
Korea. The test wall is larger than 100 m2 and has many cracks with various shapes. The wall also has
many structural joints and contaminated by serious sediments, which are expected to significantly
impede the detection of cracks on the wall surface. The wall is scanned by a Leica ScanStation C5
model at 32 m distance. Along with the original scanned data, the compressed data up to 30%, 50%,
and 80% are prepared by the proposed octree data structure. Then, the proposed crack detection
procedure is applied to original and compressed images, and the results from the images are compared
with the visual inspection result to validate the performance of the proposed technique.

2. TLS Measurement and Data Compression

2.1. 3D Laser Scanning

Terrestrial laser scanning is a technology that helps users easily collect data and generates a 3D
virtual model of the physical asset using point clouds as a set of points in 3D space. Laser scanning
refers to deflection of the laser beam due to movement of the reflector (mirror), reflection of the laser
beam on the object surface, and reception of the reflected laser beam. The laser scanning method
includes a triangulation method, a phase difference method, and a time-of-flight method [43]. Laser
scanning consists of on-site installation, positioning scan, surface scan, and post-processing of point
group coordinate data. The hardware required to operate the laser scanner in the field includes
a scanner, a laptop computer, a power supply, and a conveying and a mounting device. When the
hardware installation is finished, the scan angle is adjusted to set the scan range on a target object [44].

Since the entire model is achieved by merging the point group coordinate values obtained by
each scan, a reference point (reflection target) should be provided to the target point so that at least
four reference points are overlapped for each adjacent scanning point. The reference point installed
at this time may be absolute coordinates, or relative coordinates around the installation position of
the laser scanner. Point coordinate values are accumulated in database (DB) form and can be restored
as a 3D image using a post-processing program or numerical analysis of the degree of deformation
compared with the original design drawing.

2.2. Voxelization and Octree Data Structure

Voxelization conceptualizes geospatial spaces and express them as volume elements (voxels)
using voxel data structures. A voxel is a rectangular parallelepiped block defined in terms of its length
(l), width (w), and height (h) and voxel position is indexed by column (i), row (j) and layer (k). The laser
scanning point (x, y, z) is transformed to the position of the voxel (i, j, k) [45].

Octree is a data representation method that creates a bounding box for a given shape, and stores
it as a visualization object if the shape is contained in the hexahedron equally divided in the x, y,
and z coordinates [46]. The octree divides the bisected space in each direction of the x, y, and z axes
into eight subspaces and expresses them in a finer area. The eight sub-spaces can be stored in a tree
structure as an element called a node, and the depth level of the octree is determined by the number of
divided bounding boxes [47]. In this study, the 3D object model (Voxel model) is first generated to
easily remove empty nodes by checking empty cells in the sub and left nodes. Thus, it is efficient to
implement segmentation and octree in the spatial properties of 3D objects rather than in irregularly
distributed point clouds.

Octree has the largest number of leaf nodes corresponding to NL = 8D, and this is equivalent
to a 3D grid with a resolution of 2D × 2D × 2D. Figure 2 shows the number of nodes according to
the octree depth level. Here, octree is used to improve processing speed and to save space, and the
depth first (DF)-representation proposed by Tamminen [48] is the most popular way to encode octree.
This method sequentially stores the information of the nodes encountered in a depth-first search of
the octree, and each node is displayed by black, white, and gray, as shown in Figure 2. A black node
indicates that the area is full. A white node means it is completely empty, and a gray node means
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the node is partially black. The gray nodes here indicate that further segmentation may be required.
The hexes marked as black or white no longer split. An octree can be set to a level of depth to be
divided or can be repeatedly divided by setting the size of the bounding box.
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3. Image Processing

The point cloud data obtained by the TLS is compressed by the octree data structure, and it can
be converted to an image. To detect cracks from the converted image, a series of image processing
techniques are used. Image processing for crack detection on concrete surfaces involves the following
seven steps: (1) K-means clustering, (2) conversion into the gray-level image, (3) median filtering and
improved subtraction, (4) removal of unnecessary parts using K-means clustering, (5) binarization,
(6) morphological closing, and (7) blob removal using area and eccentricity. These seven steps are
tabulated in Table 1.

Table 1. Seven image processing steps for the crack detection.

Step Operation

1 K-means Clustering: Divide original image into three images according to color similarity

2 Convert original image into gray-level image

3 Subtract median-filtered image from original gray-scale image to remove background

4 Remove image parts according to structural joints, sediments, etc. using segment information
obtained by k-means clustering

5 Binarization using Otsu’s method (threshold = 0.2 × Ostu’s threshold)

6 Morphological closing to connect slightly-separated pixels

7 Remove blobs (i.e., pixel groups) with the controlled area and eccentricity

3.1. K-Means Clustering

K-means clustering is one of the most famous unsupervised learning methods [40]. K-means
clustering aims to partition unlabeled data into K clusters using the distance between each pair of data,
and the cluster to be included is determined to minimize the mean distance in each cluster. Given
a set of data x = {x1, x2, · · · , xk} where each data has the dimension, K sets S = {S1, S2, · · · , Sk} are
determined to minimize the within-cluster variance as

argmin
S

K

∑
i=1

∑
x∈Si

‖x− µi‖2 = argmin
S

K

∑
i=1
|Si|Var(Si) (1)
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where µi, |Si|, Var(Si) denote mean value (i.e., centroid), count, and variance of data in Si, respectively.
Based on the law of total variance [49], the minimizing the within-cluster variance equals to maximizing
the out-of-cluster variance.

The basic algorithm of K-means clustering starts from selecting K points as the initial centroids.
Then the K clusters are initially formed by assigning all points to the closest centroid and the centroid
of each cluster is computed. Then reforming of K clusters and recomputing the centroid of each
reformed cluster is repeated until the centroids do not change.

In the image processing, the data corresponds to the color vector in each pixel, and the Euclidean
distance of the color vector represents the dissimilarity of the colors of the pixels. By applying K-means
clustering, the image can be segmented into K pieces of pixels according to their color similarity
corresponding to the concrete surface conditions. Figure 3 shows an example of image segmentation
by K-means clustering. The original image in Figure 3a is segmented into three differently colored
images in Figure 3b. The blue segment (BS) illustrates the background, and the green segment (GS)
illustrates the concrete surface. Notably, the red segment (RS) highlights the sediments and structural
joints that are generally dark-colored in the original image, even compared to the cracks on the concrete
surface. Since the sediments and structural joints are the biggest impediments in identifying cracks
from the images, the third segments obtained at this step will be used in Step 4 to tweeze out the
impediment for successful image processing.
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Figure 3. Image segmentation by K-means clustering (K = 3). (a) Original image; (b) Image segmented
by K-means clustering (K = 3).

3.2. Conversion into the Gray-Scale Image

As a next step, the conversion of the true color image (RGB) into a gray-level image by removing
hue and saturation information while maintaining luminance is done. In this process, the amount of
image data decreases. Specifically, the RGB color of 24-bit ((28)3 = 16,777,216 color) is converted into
8-bit gray-level (28 = 256 level).

3.3. Median Filtering and Improved Subtraction

The obtained gray-level image is processed with improved subtraction processing. Subtraction
processing typically eliminates the slight variation such as shadings or irregularly noticeable
components. Thus, it is for elimination of the noise as well as the illuminated components from
cracks. Figure 4 illustrates how the subtraction finds cracks against the other objects including shading.
Illuminance of the original gray-level visualizes objects in the image, and the median filtering removes
out sharp illuminance changes that represent small noises or cracks and remains smoothed background
image representing concrete surface, large objects, and shading. Then, the subtraction of the original
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image from the filtered image removes out the background image while remaining objects with sharp
illuminance. Since the crack is visualized by very low illuminance profile with shape change, the crack
object can be highlighted from the subtracted image, if combined with subsequent image processing to
remove out small noises.
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The median filtering converts the gray-level image to a smoothed one. The subtracted image is
obtained by the Equation (3).

Is(xi) = max

{
medianxj∈Rj I(xj)− I(xi)

0

}
(2)

where Is (xi) is the intensity of the pixel xi, Ri is the neighborhood of that pixel, and I(xj) is the intensity
of the pixels in Ri. When the result of the subtraction is a negative number, the result is represented
with 0.

In addition, the subtraction result from the Equation (2) was used to get an enhanced image by
a manually decided threshold value T. The thresholding operation is processed by the Equation (4).

IIS(x, y) = max

{
2× Is(x, y) if Is(x, y) > T

Is(x, y) if Is(x, y) ≤ T

}
(3)

where IIS(x,y) and Is(x,y) are the results of the improved and the original subtraction method,
respectively. The threshold value T is determined manually. By this process, the illuminance difference
between cracks and noises is larger and it improves the noise reduction for the next step.

3.4. Removal of Unnecessary Parts Using K-Means Clustering

In Section 3.1, RS data have been separated using the K-means clustering to remove out the parts
corresponding to the structural joints and sediments. However, the gradient at the boundary of RS
data may still be included at the boundary of the adjacent GS data. Since objects with a linear and thin
shape are to be identified during the image processing, the gradient remaining at the boundary of
the GS data can be misrecognized as cracks. In this study, the GS data is dilated by 5 pixels and the
overlap of the dilated RS data and the GS data is removed from the GS data, resulting in erosion of the
GS data at the interface with RS data as shown in Figure 5. This process can significantly minimize the
false recognition of cracks.
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3.5. Binarization

Binarization is the simple and intuitive method in image segmentation. Object pixels can be
simply extracted from background by image binarization. This step converts an input gray-level image
to a binary image where the values of points are expressed by 0 (black) or 1 (white). The pixel whose
intensity is greater than a threshold T is assigned into 1, and the pixel whose intensity is equal to or
smaller than T is assigned into 0.

There are various binarization methods according to the method of determining the threshold
T, and Otsu’s method [42] is the most widely used binarization method. The Otsu method selects
a threshold T by minimizing the within variance of two groups separated by the thresholding operator.
The method enables automatic thresholding, but it requires assuming a bimodal distribution of
gray-level images. Considering the cracks are a small portion of the image and have high intensity
against the background (after removing the dilated RS data) in the subtracted image, the threshold
determined by Otsu’s method can be modified to minimize identification of the other objects against
cracks. This in this study, 0.2 times T (=0.2 T) is used to binarize crack objects.

3.6. Morphological Operation: Closing and Blob Removal

Morphological operations were pursued to analyze binary images based on the form and structure
of the image. Morphological operations included labeling, dilation, erosion, closing, opening, etc.
Among various operations, morphological closing aims to fill the holes between the objects in the
binarized image (i.e., connected pixel groups), and in this study it was used to connect crack objects by
filling the small breaks between the objects and build a large crack object. The maximum filling size as
set as 2 pixels not to distort the original crack objects.

After the morphological closing, blobs that had small areas and small eccentricity (ratio between
the major and minor axes of an object) as shown in Figure 6 were finally removed out. In this study,
the objects with areas smaller than 100 pixels or eccentricity smaller than 0.3 in the original image were
removed out.
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Figure 7 shows an example showing how the seven image processing steps in Table 1 affected
the original image to the end of crack identification. The figure shows that the cross-shape cracks on
the original image are highlighted against the structural joints, sediments, and noises by proceeding
the steps.

Figure 7. Example of the proposed image processing.
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4. Construction of Octree-Based Shape Information Model

4.1. Test-Bed and Equipment

Laser scanning was performed on the spillway left wall of a concrete dam structure in South Korea.
Figure 8 shows the panoramic picture of the TLS measurement setup, and the scan was performed
on the second wall surrounded by red lines. The left and right heights of the wall were 11.741 m and
10.118 m, respectively, and the width was 10.00 m. Figure 9 and Table 2 show the enlarged view of the
target structure and the information of main crack pattern map through visual inspection. It should
be noted that the cracks do not represent the stains, sediments, efflorescence, and microcracks on
the surface.
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Table 2. The width and approximate length of cracks.

No. Width (mm) Length (mm) No. Width (mm) Length (mm)

1 0.2 1070 11 0.1 770
2 0.2 1810 12 0.1 1560
3 0.2 1840 13 0.1 670
4 0.2 650 14 0.1 810
5 0.2 960 15 0.1 1330
6 0.2 1350 16 0.1 890
7 0.2 640 17 0.1 620
8 0.2 450 18 0.1 850
9 0.2 1480 19 0.2 1500

10 0.1 740

In this study, we used the Leica ScanStation C5 model as specified in Table 3 to scan the test-bed.
The minimum and maximum measurement distance was 31.907 m and 31.918 m, respectively. The left
and right angles were 11◦ and 11.5◦ and the up and down angles were 90◦ and −45◦ as presented in
Table 4. The scan mode was set to high-resolution mode, the scanning time was about 28 min and 12 s,
and the scan data (PTS format) size was 19.56 MB. The 3D scan data had x, y, and z coordinates at each
point. Linux Ubuntu 12.04.2 LTS and C++ were used to configure the octree shape information model
and development programming language, respectively.

Table 3. Specifications of the terrestrial laser scanner.
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4.2. Construction and Visualization of an Octree-Based Shape Information Model

Figure 10 shows the target image obtained from the 3D laser scan data with 1,367,274 points
extracted from the target spillway wall. The octree-based shape information model was constructed
according to the flow chart shown in Figure 11. The first step was to convert the scan data from pixels
to voxels (in 3D pixels). The second step was to convert the voxel model to the octree data structure,
and the last step was the creation of an octree-based shape information model.
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Figure 11. Process of building the octree information model.

The first step (i.e., the creation of a voxelization model) involved converting the point-cloud data
to the voxel type. In this step, the point cloud was read on the basis of each X, Y, and Z direction.
The read data was reconstructed as a voxel model and was used to generate the root node in the octree
data structure. The voxel model stores the x, y, and z coordinate values and depth, height, and width
values of the 3D object model. These were used as input parameters in building the octree information
model. The algorithm consists of a numerical code for generating an octree data structure via a voxel
model, and it determines the octree resolution by setting a res value. After creating the octree, the inner
nodes of the octree were iteratively divided until they reached the res value. After the segmentation
was completed, the center point (x, y, z) of the 3D object and the depth, height, and width values
were sequentially read and stored in the inner nodes of the octree. If all the point values were stored,
the empty areas were removed and the octree file was finally created.
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Octovis [50], a viewer program with a 3D tool kit, was used to identify the shape information
of the generated octree. The number of points on the target wall was originally 1,367,274, and the
file size was 19.56 MB and it was reduced to about 30%, 50%, and 80% as presented in the Table 5
to confirm that cracks could be detected even at a small number of points. Also, the extracted scan
images according to the compression ratio is shown in Figure 12.

Table 5. The number of compressed points and data size by octree structure.

Div. Data
Points Octree Level Point

Compression (%) Data Size (MB)

Original 1,367,274 1 0 19.56
Case1 934,061 9 31.6 13.36
Case2 678,319 10 50.3 9.7
Case3 269,942 11 80.2 3.86
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4.3. Image Processing for Crack Detection

The validity of the proposed algorithm was evaluated for the extracted images from. The original
snapshot resolution was 1513 × 810 pixels, but 3026 × 1620 pixels (×2 resolution) was applied
for precise crack detection and it was composed of RGB color. First, the original and compressed
images were processed using the procedure described in the Table 1. Based on the compression rate,
the accuracy of crack detection through the proposed imaging process was evaluated as shown in
Figure 13. In case 3, the cracks were hardly recognized due to the poor resolution, so the result was not
presented. As a result, most major cracks were identified well even in the Case 2 with compression
rate of 50%, and some minor cracks due to drying shrinkage of concrete were recognized as well. The
optimum values of the parameters for each case are shown in Table 6 and will be applied generally
within the range in the table for other cases.

Table 6. The parameter optimization of three cases.

Factors Original Case 1 Case 2

K-means clustering A 300 × 550, 600 ×
100, 500 × 200

300 × 550, 600 ×
100, 500 × 200

300 × 550, 600 ×
100, 500 × 200

Median filter size B 20 16 14

Segmentation level C 23 17 15

Control of area,
Eccentricity D >100, >0.3 >100, >0.3 >100, >0.3
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Figure 13. The image results by the proposed method for three cases. (a) Crack map by visual
inspection; (b) Original image; (c) Case 1; (d) Case 2.

For quantitative comparison of each case, true positive (TP), false negative (FN), and number of
false positive (FP) were analyzed and calculated in Figure 14 and Table 7. The quantitative analysis
presents the evaluation of accuracy and error in comparison with the crack pattern map detected by
visual inspection. For the quantification, two preconditions are assumed: (1) A crack is regarded as
a noise and removed if its length was less than 450 mm (the smallest crack length) in the crack pattern
map. (2) A crack was considered to be TP if its length was in line with more than 50% of one by visual
inspection. As a result, it was confirmed that the accuracy of crack detection in the original image
was best among all the cases in terms of TP, FN, and number of FP, and that the accuracy decreased
according to the compression rate. However, it should be noted that the accuracy in even case 2
showed 84% in TP. In the original image, all the cracks were identified, but were not fully satisfied with
crack lengths by visual inspection. In cases 1 and 2, the identified crack lengths were often exceeded
with ones by visual inspection, which can be considered to be overestimated by resolution reduction.

In comparison of the number of FP for each case, the errors increased sharply according to the
compression rate due to erroneous recognition of the joints and sediments as cracks. Thus, it concludes
that the higher the resolution, the higher the probability that the K-means clustering accurately
recognizes the crack group.

Table 7. Quantitative comparison of the three cases.

No. True Positive False
Negative Number of False Positive

Original 100% (19/19) 0% (0/19) 0
Case 1 95% (18/19) 5% (1/19) 10
Case 2 84% (16/19) 16% (3/19) 15
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Figure 14. The cracks identified by the proposed method for three cases. (a) Crack map by visual
inspection; (b) Original image; (c) Case 1; (d) Case 2.

For comparative evaluation, Talab’s method [51] was applied to the original image as well.
Talab’s method was developed to detect cracks in photographic images, and it has the following
summarized steps.

1. Convert RGB image to grayscale.
2. Use the Sobel edge detector to find the edges with masks and get the value of the edge image.
3. Use Otsu’s thresholding value to obtain the binary image.
4. Find the connected areas in the binary image with the controlled area and put them to

the background.

First, Talab’s method for a clear crack case with some stains was applied and compared with the
proposed one, as presented in Figure 15. The results in Figure 15 show that Talab’s method detected
some undesirable areas such as stains, making it difficult to distinguish them from the major and
minor cracks on the concrete surface.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 19 

 
 

(a) (b) 

  

(c) (d) 

Figure 14. The cracks identified by the proposed method for three cases. (a) Crack map by visual 

inspection; (b) Original image; (c) Case 1; (d) Case 2. 

For comparative evaluation, Talab’s method [51] was applied to the original image as well. 

Talab’s method was developed to detect cracks in photographic images, and it has the following 

summarized steps. 

1. Convert RGB image to grayscale. 

2. Use the Sobel edge detector to find the edges with masks and get the value of the edge image. 

3. Use Otsu’s thresholding value to obtain the binary image. 

4. Find the connected areas in the binary image with the controlled area and put them to the 

background. 

First, Talab’s method for a clear crack case with some stains was applied and compared with the 

proposed one, as presented in Figure 15. The results in Figure 15 show that Talab’s method detected 

some undesirable areas such as stains, making it difficult to distinguish them from the major and 

minor cracks on the concrete surface. 

   

(a) (b) (c) 

Figure 15. The comparison of the proposed method with Talab’s method for a clear crack case. (a) 

Clear crack case; (b) Talab’s method; (c) Proposed method. 
Figure 15. The comparison of the proposed method with Talab’s method for a clear crack case. (a) Clear
crack case; (b) Talab’s method; (c) Proposed method.



Appl. Sci. 2018, 8, 2373 16 of 19

Moreover, the filtering by the classification in the proposed method was more effective in our
case which had more stains, sediments, and joints, as shown in Figure 16. Thus, the proposed method
outperforms in detecting cracks with the help of properly selected image processing algorithms.
The K-means clustering significantly helped to remove many parts related to structural joints and
sediments while keeping crack objects. Based on the other image processing algorithms, such as
improved subtraction and morphological operations, the crack objects were comparably identified
while minimizing the noises. Though the quantitative accuracy was not achieved due to the difficulty in
assessing the target structure in detail, the visual comparison of Figure 16b,c clarifies the effectiveness
of the proposed method in detecting the cracks even by the scanning 30 m distant from the test
structure. After detecting the cracks using the proposed method, quantification of cracks can be done
by employing existing quantification algorithms mostly based on combination of morphological
operations, such as median filtering, morphological opening and closing, skeletonization, edge
detection, etc. [52–55]. Though the lengths and widths of cracks are not quantified in this study,
the crack widths obtained by visual inspection in Figure 16a are within 0.2 mm. According to the
Korean structural inspection guide, a crack width less than 0.1 mm leads to the grade of the inspected
structure as “a”, and width between 0.1 mm and 0.3 mm leads to “b” [56]. Thus, the proposed method
can be successfully used as a prospective alternative to the conventional visual inspection of large
structures with minimal labor and logistics time.
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5. Conclusions

This study proposed a TLS-based crack detection technique on concrete surfaces using improved
image processing associated with data compression. For the data compression, an octree-based
shape information model was constructed using laser scanning data. The octree shape information
model first transforms the scan data from pixels to voxels in 3D pixels, and the voxel model is
converted into an octree data structure to generate an octree-based shape information model. For crack
detection using the TLS data, a combination of image processing algorithms is proposed to minimize
the false recognition of cracks in diverse operation environments. The proposed algorithm can
automatically identify the existence of cracks against stains, sediment, and structural joints with
the help of K-means clustering. Furthermore, the concrete crack pattern is visualized through other
image processing algorithms such as improved subtraction with median filtering, Ostu’s method,
and morphological operations.

A validation test was carried out on a spillway wall in a concrete dam using a Leica ScanStation
C10 model located 30 m distance from the wall, and the results are summarized as follows:

(1) The original scan data 19.56 MB was compressed using the octree data structure up to the 31.6%,
50.3%, and 80.2% corresponding to the data size of 13.36 MB, 9.7 MB, and 3.86 MB, respectively.
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(2) Most major cracks as well as some minor cracks due to drying shrinkage of concrete could be
identified successfully even in the 50% compressed image of the proposed method.

(3) The identified cracks by the proposed method had good agreement with the cracks obtained by
visual inspection.

(4) The proposed method could minimize the false recognition of cracks on the structural joints and
sediments with the help of K-means clustering, compared to Talab’s method.

For further research, the proposed algorithm needs to be modified and improved with the better
accuracy and generality for various cases and other optimization methods can be applied to determine
the parameters required in the image processing. The imaging processing associated with the TLS
measurement is expected to have an important role in the visualization of cracks and the acquisition of
the exact crack information.
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