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Abstract: When the level set algorithm is used to segment an image, the level set function must
be initialized periodically to ensure that it remains a signed distance function (SDF). To avoid this
defect, an improved regularized level set method-based image segmentation approach is presented.
First, a new potential function is defined and introduced to reconstruct a new distance regularization
term to solve this issue of periodically initializing the level set function. Second, by combining the
distance regularization term with the internal and external energy terms, a new energy functional is
developed. Then, the process of the new energy functional evolution is derived by using the calculus
of variations and the steepest descent approach, and a partial differential equation is designed.
Finally, an improved regularized level set-based image segmentation (IRLS-IS) method is proposed.
Numerical experimental results demonstrate that the IRLS-IS method is not only effective and
robust to segment noise and intensity-inhomogeneous images but can also analyze complex medical
images well.
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1. Introduction

Image segmentation plays an important role in image processing and image understanding [1].
It is an important portion of almost all computer vision fields for real-world engineering applications,
ranging from object extraction to complex medical images, satellite images, video and traffic
surveillance systems, etc. [2]. As a preprocessing stage, it segments an image into different
homogeneous regions according to a certain consistency. At present, it is still a challenge to deal
with noise, low contrast with weak edges, intensity inhomogeneity, and complex backgrounds for
image segmentation [3]. Over the past several decades, many great techniques and methodologies for
image segmentation have been developed to overcome these drawbacks.

The recently developed methods of image segmentation can be roughly divided into two
categories: traditional methods and soft computing methods [2]. Since the former methods are simple
and easy to implement, they have been widely applied and provide exact solutions to potential and
practical applications. In general, considering their form of operation, these methods can be grouped
into different classes of clustering, thresholding, boundary tracking, region-based segmentation,
and edge-based segmentation, among others [4]. In the last few years, many clustering-based
models have been used in image segmentation. In particular, those algorithms based on K-means
clustering, fuzzy c-means clustering (FCM) and spectral clustering are the most widely used in image
segmentation problems [5]. Wang et al. [6] presented an adaptive segmentation method for crop
disease images based on K-means clustering to improve the accuracy and stability of disease spot
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segmentation. As the FCM algorithm is sensitive to noise and selection to the initial cluster centers,
some improvements to the FCM model have been investigated for both the estimation of the intensity
inhomogeneity and segmentation of magnetic resonance image data [7]. Ramudu et al. [8] combined
kernel FCM clustering with particle swarm optimization to develop a global region-based image
segmentation method with a fast level set model. Hu et al. [9] proposed an adaptive kernel-based FCM
clustering with spatial constraints model to automatically control the influence of the neighborhood
pixels on the central pixel. However, its drawbacks include the slow convergence of the iteration
and over smoothing when suppressing noise [10]. He et al. [11] investigated an incremental spectral
clustering method for stream image segmentation. It is known that for traditional spectral clustering, a
scaling parameter needs to be fixed artificially, and obtaining its optimal value is very difficult in a
Gaussian kernel function. Thus, handling the scaling parameter is a sensitive task. To solve this issue,
Zelnik-Manor and Perona [12] constructed a self-tuning method for spectral clustering and image
segmentation with a local scaling parameter. Goyal et al. [13] studied a fuzzy similarity measure-based
spectral clustering method for noisy image segmentation, which improves the robustness to the
influence of noise. However, most of these models share some common drawbacks, such as the
cluster number needing to be given in advance and the sensitivity to selecting initial cluster centers.
In addition, when low-level features are considered to make the representations in most algorithms,
some crucial information may be lost. As a result, the segmentation performance may be degraded for
some images to some extent. Over several years, the thresholding-based image segmentation method
has drawn broad attention, and numerous thresholding techniques have been developed. Since they
are simple and robust to noisy images, the threshold-based segmentation methods have been widely
applied. The most representative method is the Otsu between-class variance. However, its computation
grows exponentially when more threshold values are incorporated [14]. Tobias and Seara [15] presented
image segmentation by histogram thresholding using fuzzy sets according to the similarity between
gray levels, which is easy to implement and has a low computational burden. However, it does not
consider the spatial contextual information in the threshold selection process. Singla and Patra [16]
designed a fast context-sensitive threshold selection technique to solve image segmentation problems.
Ananthi et al. [17] investigated L-interval-valued intuitionistic fuzzy sets and set the least entropy
as the threshold to segment the image. However, the method may lead to increased computation
time, especially when dealing with multithreshold image segmentation [18]. Gao et al. [19] introduced
an enhanced artificial bee colony optimizer into multilevel threshold image segmentation. For the
traditional interactive image segmentation, the robots only work for region-based methods, excluding
the important class of approaches that rely on the boundary tracking paradigm. Then, Spina and
Falcao [20] proposed robot users to simulate human user behavior when segmenting an image through
the addition of anchor points close to the object’s boundary. Miranda et al. [21] developed an optimum
user-steered boundary tracking approach for image segmentation, which simulates the behavior of
water flowing through a riverbed. However, the inefficiency of these approaches lies in the fact
that they cannot deal with real-life complex problems that are tolerant of partial truths, imprecision,
uncertainty, and approximations [2]. Note that none of these methods are good at segmenting a variety
of images, and they usually perform well in one class of images while performing poorly in another
class of images. In recent years, the active contour model (ACM) [22] has become one of the most
promising frameworks and effective and accurate methods for image segmentation. Currently, most
existing ACMs can be categorized into two basic classes: edge-based models and region-based models,
according to image features for segmentation.

The basic idea of the ACM framework is to attract the curve toward the true boundary of an
object based on an energy minimization model. The two main shortcomings of ACM algorithms
are as follows: (1) the sensitivity to the initial position and (2) the difficulties related to topological
changes [23]. Until now, scholars [22–41] have investigated a large amount of ACM algorithms for the
performance improvement of image segmentation. In 1988, Osher and Sethian [24] first presented a
level set model, which is the most successful and important part of the ACM family. The evolution of
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the level set function is controlled by partial differential equations that describe the image, which drives
the zero level set to move toward the target edge of the image. This model is a numerical method for
interface tracking and shape modeling that avoids tracking and parameterizing the curve as it evolves
and can flexibly deal with topological changes. Hence, the calculation accuracy is high, and the related
algorithm is stable. In addition, the numerical calculations required by the level set method can be
performed on a Cartesian grid without the need to parameterize the points on the contour. Due to the
abovementioned advantages, it has become a very useful tool for segmenting images [25–28]. To solve
all these issues, it is necessary to explore new ways or directions for image segmentation to achieve
better overall performance. Thus, we focus on studying the ACM algorithm in this paper to identify a
new image segmentation method.

Thus far, there are many variations to the level set model, which can roughly be divided into three
categories: edge-based methods [29–31], region-based methods [32–35], and hybrid methods [36–44].
The geodesic active contour [45] is the most typical of the edge-based methods, but these methods
have one very marked disadvantage: they are very sensitive to the initial position of the level set and
can easily divulge the weak edges [46]. To address the above defects, the Chan Vese (CV) model [33],
as the most typical of region-based level set methods, was studied. The CV method is insensitive to
the initial position and independent of the image gradients so that it can handle images with weak
edges [46]. The hybrid level set methods associate the edge-based models with region-based models
for image segmentation [41–44].

Note that this CV method, as a global segmentation model, has all the merits of the region-based
level set model, but this model cannot segment heterogeneous images well when the intensity is not
homogenous [23]. Many real-world images, especially medical images, exhibit intensity inhomogeneity.
Researchers [47–55] have proposed different solutions to address this issue. For example, Lv et al. [47]
integrated fuzzy decisions and the local energy functional and presented a robust ACM to segment
preprocessed vessel images. Vese and Chan [48] introduced the Mumford and Shah method to develop
an image segmentation algorithm with a multiphase level set model. However, this algorithm is
still time-consuming to compute, which limits its application. Li et al. [49] studied a region-based
ACM and designed a local binary fitting (LBF) method, which enables the extraction of accurate
local image information. However, the model is sensitive to the initial position and noisy images.
Zhang et al. [50] introduced a local image fitting (LIF) energy functional to extract the local image
information, and proposed a Gaussian filtering method for variational level set to regularize the
level set function, which can be interpreted as a constraint on the differences between the original
image and the fitting image. Zhang et al. [51] exploited a local image region statistics-based
improved ACM (LSACM) and provided a level set method in the presence of intensity inhomogeneity
that is robust to noise while suppressing the intensity overlapping to some extent. He et al. [52]
investigated an improved scheme for a region-scalable fitting method. However, a defect of this
method is its sensitivity to the initialization position. Shi and Pan [53] investigated a local and global
binary fitting model that can segment an inhomogeneous image with less iteration and avoid the
reinitialization of the curve evolution. Li et al. [27] designed a type of level set evolution called
distance regularized level set evolution (DRLSE), which eliminates the costly process of reinitialization,
uses the simple difference method to decrease the computational complexity, and improves the
evolution efficiency [54]. According to this analysis, most of the existing approaches are sensitive to
the initialization. Furthermore, some methods are unable to handle images with noise and intensity
inhomogeneity. All of these drawbacks limit their practical applications. Thus, we focus on solving the
abovementioned issues in this paper.

In this study, an image segmentation method based on an improved regularized level set model is
investigated. A type of energy functional in our model consists of three parts: an external energy term,
an internal energy term and a distance regularization term. Since the external energy is introduced,
the inhomogeneous images can be efficiently segmented. Moreover, the reinitialization step can be
avoided by employing a distance regularization term with a new potential function. As a result,



Appl. Sci. 2018, 8, 2393 4 of 19

the time costs and iterations are greatly reduced. Notably, a curve of the level set evolution can
automatically stop on the true boundaries of objects. The results of our study indicate that the
proposed IRLS-IS method not only segments inhomogeneous images and noisy images but also
effectively analyzes complex medical images.

The rest of the article is organized as follows. In Section 2, we briefly review some background
knowledge. A regularized level set model is improved to avoid the reinitialization step. The proposed
IRLS-IS model maintains a stable evolution speed during the evolution process and successfully
completes image segmentation. All of these processes are investigated in Section 3. Several experiments
are conducted on some synthetic and real images, and the results are discussed in Section 4. Section 5
presents our conclusions.

2. Related Work

2.1. Chan Vese (CV) Model

The original CV model is on the basis of the evolution of the curve. A continuous curve is used to
represent the segmentation target area, and it is controlled by the energy functional. Then, the energy
functional of the curve’s independent variable transforms the segmentation problem into a function
for minimizing the energy. The image will be divided when the energy functional is close to the
minimum [33]. The CV model is an ACM based on global information. By adding the area and the
length of the curve, the CV model can be used as a smooth constraint on the evolution of the curve for
detecting objects.

Assume that u is a given image, and then the energy functional [40,55] can be written as

ECV(u, C) = µ
∫

Ω δ(ϕ)|∇(ϕ)|dxdy + v
∫

Ω H(ϕ)dxdy + λ1
∫

Ω|u− c1|
2H(ϕ)dxdy

+λ2
∫

Ω|u− c2|2(1− H(ϕ))dxdy,
(1)

where µ, ν, λ1 and λ2 denote the corresponding coefficients, all of which are positive constants.
Generally, λ1 = λ2 = 1, Ω is a given image domain, φ is a level set function, H is the Heaviside function,
δ is the Dirac delta function, c1 describes the average gray value in the target area and the background
area in evolution curve C, and c2 denotes the average gray value in the target area and the background
area outside evolution curve C. For the energy functional, the first two terms are regular terms that
represent the length of the curve and the area inside the curve, respectively. The latter two terms are
collectively called the fidelity terms and are responsible for attracting the evolution curve C to the
target contour.

According to the calculus of variations and the gradient descent model, the partial differential
formula can be obtained by minimizing Ecv(u, C). Then, the partial differential equation is expressed as

∂ϕ

∂t
= δ(ϕ)

[
µ · div

∇ϕ

|∇ϕ| − λ1|u− c1|2 + λ2|u− c2|2
]

, (2)

where div ∇ϕ
|∇ϕ| is the curvature of the level set, and c1 and c2 need to be updated at each iteration.

To ensure the stability and the validity of the level set evolution, φ must be near the SDF, especially
close to the zero level set model. The SDF has good properties, such as |∇ϕ|= 1 , which make the rate of
change of the level set function uniform everywhere. Therefore, the SDF is used to keep the evolution
of the level set model stable [56,57]; that is, the initial level set function is an SDF. After several
iterations, the level set function is periodically reinitialized to the SDF. However, this reinitialization
forces the CV model to be an SDF. As Gomes and Faugeras [58] revealed a disagreement between the
theory and its implementation in the practical application of the level set method, a general scheme
to solve these issues so far has not been obtained, and the process of the reinitialization is usually
performed in a special manner. It is therefore necessary to investigate a new distance regularization
term to avoid reinitialization [18].
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2.2. Distance Regularization Term

Arnold [59] notes that the function φ, which meets |∇ϕ|= 1 , is an SDF plus a constant [60].
According to the above analysis, Li et al. [61] designed an algorithm without reinitialization.
The algorithm uses the following energy penalty term to weaken the deviation between the level set
function and the SDF [62,63]. Meanwhile, the introduction of the penalty term can improve the speed
of the image segmentation. Then, the energy penalty term is given as

P(ϕ) =
∫

Ω
p(|∇ϕ|)dxdy, (3)

where the potential function is described as

p(s) =
1
2
(s− 1)2. (4)

Thus, with the calculus of variations and the steepest descent model [64], a gradient flow formula
corresponding to the energy functional P(φ) is obtained as

∂ϕ

∂t
= div(dp(|∇ϕ|)∇ϕ), (5)

where div(•) is the divergence operator and dp is a function defined by Li et al. [27,54] according to the
function relationship, written as

dp(s) =
p′ (s)

s
. (6)

From Equations (4) and (6), dp(s) = 1− 1
s can be obtained as the diffusion ratio of the level

set evolution.

3. Proposed Method

3.1. New Distance Regularization Term

In this subsection, this deviation between the level set function and the SDF has been offset by
the regularization of the traditional level set model; therefore, compared with the traditional level set
function, our method as an extended CV model has the advantages of a more accurate computation
and a more stable evolution process.

It is known that for the level set model, a potential function must have a point with a minimum
on s = 1, and the goal of constructing a new potential function is to keep |∇ϕ|= 1 in the vicinity of the
zero level set model. Then, owing to a new potential function, the regularized level set function can
reserve an SDF throughout the process of evolution. Thus, a new potential function is constructed as

p(s) =
1
2
(s− 3)2 + 6 ln(s + 2)− (2 + 6 ln 3). (7)

Due to the existing proportional relationship between the diffusion ratio and the potential function,
a diffusion ratio can be defined as

dp(s) = 1− 3
s + 2

. (8)

Based on the energy penalty term Equation (3) and the defined potential function Equation (8),
a new distance regularization term is defined as

P(ϕ) =
∫

Ω
(

1
2
(|∇ϕ| − 3)2 + 6 ln(|∇ϕ|+ 2)− (2 + 6 ln 3))dxdy. (9)

The new distance regularization term corrects the deviation of the level set function and the SDF.
Meanwhile, this term ensures that the level set evolves without requiring periodic initialization and
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can avoid a sharp or flat shape. Therefore, the reinitialization step can be avoided during the level
set evolution.

3.2. New Energy Functional

The distance regularization term is employed to ensure the stability and the validity of the level
set evolution [65]. To accurately segment an image, the energy functional should contain an external
energy term and force the evolution curve to move toward the target edge.

On the basis of the distance regularization term, by combining the internal and external energy
terms, a new energy functional is given as

E(ϕ) = µP(ϕ) + λEint(ϕ) + νEext(ϕ). (10)

To minimize the impact of noise in the process of segmenting images, the external energy term Eext

(φ) is utilized, where the Laplacian of a Gaussian (LoG) filter is contained. The LoG filter is employed
to maintain the sensitivity during the evolution of the level set and then drive the zero level set to
move toward the target edge. Based on the above descriptions, assume that φ is a level set function,
and then the Eext (φ) is expressed as

Eext(ϕ) =
∫

Ω
(∆Gσ ∗ I)(H(−ϕ))dxdy, (11)

where ∆ is the Laplacian operator, Gσ denotes the Gaussian kernel function, Gσ*I describes the
convolution operation of I with Gσ, and the Heaviside function H(x) can be described as

H(x) =
1
2

[
1 +

2
π

arctan
x
ε

]
. (12)

Then, the internal energy term is expressed as

Eint(ϕ) =
∫

Ω
δ(ϕ)|∇ϕ|dxdy, (13)

where |∇ϕ| is the gradient mode of φ, and δ(x) is the Dirac delta function and can be written as

δ(x) =
1
π

ε

ε2 + x2 . (14)

Thus, a new energy functional is constructed by combining our proposed distance regularization
term with the internal and external energy terms. The new energy functional is described as

E(ϕ) = µ
∫

Ω ( 1
2 (|∇(ϕ)| − 3)2 + 6 ln(|∇(ϕ)|+ 2)− (2 + 6 ln 3))dxdy

+λ
∫

Ω δ(ϕ)|∇(ϕ)|dxdy + v
∫

Ω (∆Gσ ∗ I)(H(−ϕ))dxdy,
(15)

where µ, λ and ν are greater than zero.
The calculus of variations and the steepest descent model [64] are introduced to minimize E(φ),

and the corresponding partial differential equation is expressed as

∂ϕ

∂t
= µdiv((1− 3

(|∇ϕ|+ 2)
)∇ϕ) + λδ(ϕ)div(

∇ϕ

|∇(ϕ)| ) + νδ(ϕ)(∆Gσ ∗ I). (16)

3.3. Regularized Level Set Model-Based Image Segmentation Algorithm

The flowchart of the proposed IRLS-IS method is outlined in Figure 1.
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Figure 1. The process of the proposed improved regularized level set-based image
segmentation method.

After the abovementioned procedures of image segmentation, the detailed steps of the proposed
IRLS-IS method can be summarized as follows.

Algorithm 1. IRLS-IS

Input: An original image
Output: The result of image segmentation
Step 1: Initialize parameters δ, µ, λ and ν

Step 2: Set the level set function φ0(x, y)= 1
Step 3: ComCompute the Dirac delta functionStn
Step 4: For n = 1: iterNum
Step 5: Calculate ∆Gσ∗I, that is, the Gaussian kernel function in [66] is convolved with image I, and then the
Laplacian operator is applied
Step 6: Compute div ∇ϕ

|∇ϕ| to determine the curvature of the level set function
Step 7: Compute dp(s) using Equation (8)
Step 8: Update the level set function
Step 9: If min ∂ϕ

∂t is found by using Equation (16), then output the result
Step 10: Else return to Step 4
Step 11: End for

For the IRLS-IS algorithm, the computational complexity mainly focuses on Step 5. In Algorithm
1, Step 5 is the most time-consuming to calculate the Gaussian convolution, and its time complexity
is approximately O(K2 × N), where typically K < 7 when a K × K Gaussian convolution kernel is
implemented in the spatial domain on an image with N pixels. Hence, the time complexity of IRLS-IS
is close to O(N). Note that the computational complexity of reinitialization is O(N2) [50]. Since the
IRLS-IS has eliminated the reinitialization step, its time costs and iteration operations are drastically
reduced. Therefore, the computational complexity of our IRLS-IS method is lower than that of the
other related level set models [33,48,67–69].

4. Experimental Results

4.1. Experiment Preparation

To demonstrate the performance of our IRLS-IS model on various representative synthetic and
real images of different characteristics, more comprehensive results for all contrasted algorithms
should be obtained and analyzed. Following the experimental techniques for image segmentation
designed by Ji et al. [34], these selected images are mostly corrupted with one or more degenerative
characteristics, including additive noise, low contrast, a low signal-to-noise ratio, weak edges,
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and intensity inhomogeneity. Some related parameters that are set in the process of image segmentation
are illustrated in Figure 2; the original images can be found in [3,42,50]. All of the compared models in
this paper are performed in MATLAB version R2014a in a Windows 7 environment using a 3.20 GHz
Intel (R) CPU with 4 GB of RAM.
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Figure 2. The segmentation results of a blood vessel using different parameter values: (a) The original
image (left) and the segmentation results of our method with ν = 0.15 and different σ; (b) The original
image (left) and the segmentation results of our method with σ = 2.6 and different ν.

Figure 2 shows the IRLS-IS method involves two parameters to be manually set. Figure 2a
illustrates the original image (left) and the experimental results (right) by setting σ = 4, 3.2, 2.6, and 2
with ν = 0.15. Figure 2b shows the original image (left) and the experimental results (right) by setting
ν = 0.4, 0.2, 0.15, and 0.1 with σ = 2.6. The other related parameters are set as ∆t = 5, λ = 5 and µ = 0.01.

It is well known that the objective of image segmentation is to segment the whole image domain
into several distinct regions in line with the regional consistency. To the best of our knowledge, most
existing image segmentation techniques [2] only segment the target regions of images, which are
usually not identified by tags and have no special contents. Our proposed IRLS-IS method is different
from the approaches for the semantic segmentation of an image [70–73], in which the task is to predict
the pixel-level category labels and recognize the objects in the image and segment them.

4.2. Segmentation of Single-Objective Images

In this subsection, the goal is to test the effectiveness of our method in terms of the segmentation of
the single-objective images. The DRLSE model [27] can maintain the regularity of the level set function,
particularly the desirable signed distance property in the vicinity of the zero level set. The LBF
model [49], as a region-based ACM for image segmentation in a variational level set framework,
effectively uses local image information to segment the intensity-inhomogeneous images. The LIF
model [50] has less computational complexity than the LBF model and does not need reinitialization
for image segmentation. The LSACM [51] includes two-phase level set models and yields closed-form
solutions for the estimated parameters in the distribution. These representatives ACM algorithms
are four state-of-the-art level set methods published recently for image segmentation. They show
improvements over the classical ACM and are specially selected based on the level set method for
comparison experiments. The chosen parameters for the four models can be found in [27,49–51].
The experimental results are demonstrated in Figure 3, and the original images shown in Figure 3a can
be found in [52,74]. Following the experimental techniques for image segmentation in [26–51] in which
the boundaries of objects were labeled in red, we used the same techniques to mark the boundaries of
the target regions in this paper.

As shown in Figure 3, the Row 3, and Row 4 images are two real-world images, and the other
images are synthetic images. Some unnecessary objects are obtained by the DRLSE and the LBF
models in the second and third columns, and the corresponding experimental results are illustrated in



Appl. Sci. 2018, 8, 2393 9 of 19

Figure 3b,c, while the LIF model cannot deal with the second and third images in the fourth column of
Figure 3. The reason for the segmentation failure is that the LIF model relies on global information,
and so it cannot segment images with a weak boundary. The segmentation results are ideal for
the fourth image in the fifth column, and the experimental results are demonstrated in Figure 3e.
As seen from Figure 3f, the IRLS-IS model succeeds in segmenting the images. It follows that perfect
segmentation is primarily due to the external energy term, which can efficiently solve this defect of the
weak boundary and obtain good segmentation results. This outcome states that the IRLS-IS algorithm
efficiently completes the segmentation of single-objective images with a weak boundary.
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Figure 3. Comparisons of the five models in segmenting single-objective images: (a) The original
image; (b) The segmentation results of the DRLSE model; (c) segmentation results of the LBF model;
(d) The segmentation results of the LIF model; (e) The segmentation results of the LSACM model;
(f) The segmentation results of the IRLS-IS model. DRLSE: distance regularized level set evolution;
LBF: local binary fitting; LIF: local image fitting; LSACM: local image region statistics-based improved
active contour model; IRLS-IS: improved regularized level set-based image segmentation.

4.3. Segmentation of Multiobjective Images

This portion of our experiments considers the segmentation of multiobjective images. The IRLS-IS
method is compared with the abovementioned four methods (DRLSE, LBF, LIF, and LSACM).
The original multiobjective images and the segmentation results of the five models are demonstrated
in Figure 4, and the original images shown in Figure 4a are from [28,34]. The images are synthetic
images. As shown in Figure 4b,d, the DRLSE and LIF models failed to segment the multiobjective
images. Row 3 of Figure 4c shows that the LBF model cannot detect the true boundary. The object
boundaries are precisely extracted by the LSACM algorithm and our IRLS-IS model, and the results are
illustrated in Figure 4e,f. The results indicate that our IRLS-IS method effectively extracts the objects in
the multiobjective images.

4.4. Segmentation of Noisy Images

The following subsection describes an experiment on the segmentation of noisy images. We still
choose the above four models in Subsection 4.3 for some comparison experiments. Figure 5 shows
the original images with different intensity noise and the comparison results of the five segmentation
methods, where the original images without noise in Figure 5a are coming from [75,76]. In Figure 5,
Row 1 and Row 6 are the original images and the segmentation results, respectively. Row 2 and Row 3
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present noisy images (zero mean, variance 0.04 and 0.06) and the segmentation results, respectively.
Row 4 and Row 5 also present noisy images (zero mean, variance 0.1 and 0.3) and the segmentation
results. Figure 5b,e show that the DRLSE and LSACM algorithms cannot eliminate the interference
of noise and fail to segment the images. It can be observed from Figure 5c,d that the LBF and LIF
models could analyze the images without Gaussian noise well, but for the Gaussian noisy images,
they perform segmentation poorly. As shown in Figure 5f, the object boundaries are accurately
extracted by our IRLS-IS method. The improvements in the results are mainly due to the external
energy term, which can successfully address the noise problem. It can be clearly seen that the IRLS-IS
model effectively eliminates the noise interference and completes the segmentation of the noisy image.
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Figure 5. Comparisons of the five models in segmenting noisy images: (a) The original image; (b) The
segmentation results of the DRLSE model; (c) The segmentation results of the LBF model; (d) The
segmentation results of the LIF model; (e) The segmentation results of the LSACM model; (f) The
segmentation results of the IRLS-IS model.

4.5. Segmentation of Medical Images

This part of our experiments is to verify the segmentation performance of medical images. First,
we chose two simple medical images to demonstrate the segmentation performance of our IRLS-IS
method. Figure 6 shows the original images and the segmentation results of the five compared
methods, where the original simple medical images can be obtained from [42,75], while the compared
models are still DRLSE, LBF, LIF, and LSACM. The compared four models cannot segment the first
image, and the results are shown in Row 1 of Figure 6. The second image in the second column shows
that most of the boundaries are obtained by the DRLSE model. However, the internal details are not
recognized; the results are illustrated in Figure 6b. The object boundaries are not accurately extracted
by the LBF, LIF, and LSACM algorithms, as depicted in Figure 6c,d,e. The IRLS-IS model initializes
the level set function as a constant, and this gets rid of the dependency on the initialization position,
so the proposed IRLS-IS method can process some simple medical images efficiently. The segmentation
results demonstrate that our IRLS-IS model achieves satisfactory results for simple medical images.
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Figure 6. Comparisons of the five models in segmenting simple medical images: (a) The original image;
(b) The segmentation results of the DRLSE model; (c) The segmentation results of the LBF model;
(d) The segmentation results of the LIF model; (e) The segmentation results of the LSACM model;
(f) The segmentation results of the IRLS-IS model.

Next, we continued testing our algorithms with two types of complex medical images. It is still a
challenge to segment some complex medical images, because these medical images not only contain
noise and intensity inhomogeneity but also have less obvious boundaries. To verify the efficiency
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and feasibility of our proposed IRLS-IS method on complex medical images, three existing methods,
namely, the LSACM algorithm [51], the cross entropy-based model (CEM) [46] and the local hybrid
image fitting model (LHIF) [77], are selected to conduct further comparative experiments, and the
results are presented in Figure 7, where the original image Figure 7a is from [34,77] and Figure 7c,d
were previously obtained by Wang et al. [77].

Figure 7 presents experimental results of heart image segmentation with the four compared
models. The image size is 152 × 128. As shown in Figure 7b, the LSACM cannot extract the true
boundary of the heart image. Figure 7c illustrates that the CEM model has very poor performance
in segmenting the heart image. The true boundaries are precisely obtained by Wang’s LHIF model
and our proposed IRLS-IS model, and the results are described in Figure 7d,e, respectively. There is a
slight difference between the segmentation results of the LHIF model and the IRLS-IS model. Local
leakage exists in the upper part of Figure 7d, but this is not the case in our IRLS-IS model. However,
our model did not recognize the lower part of the right of Figure 7a, primarily because our algorithm
has a large time step. Therefore, the experimental studies pertaining to the heart image state that the
IRLS-IS algorithm efficiently eliminates the interference of intensity inhomogeneity and can achieve
better segmentation performance on this medical image of a heart.
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When segmenting images with a cerebral infarction, there are two relatively sensitive problems
with the traditional level set model [78,79]. One problem is that the boundaries between brain tissues
are often not characterized by class changes; therefore, the boundary is prone to leakage. The other
is that segmenting images of cerebral infarction is not a simple target and background segmentation
problem. The medical images always incorporate various organizations and backgrounds. Thus,
the traditional level set algorithms are not appropriate for brain images. Hence, the objective of the
following portion of our experiments is to demonstrate the effectiveness of our IRLS-IS method on a
complex cerebral infarction image. Our IRLS-IS model is compared with the DRLSE model [27] and
the LSACM algorithm [51]. Figure 8 presents the results of the segmentation experiment, where the
original cerebral infarction image can be downloaded at https://medpix.nlm.nih.gov/home (Picture
Name: Posterior Reversible Leukoencephalopathy, PRES), and the image size is 369 × 351.

Figure 8b,c show that the DRLSE and LSACM algorithms cannot segment the cerebral infarction
image. The segmentation results of our IRLS-IS method are demonstrated in Figure 8d. Since the
IRLS-IS algorithm initializes the level set function to a constant value and breaks away from the
dependence on the initialization position, our IRLS-IS method can analyze complex medical images
very well.

https://medpix.nlm.nih.gov/home
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LSACM model; (d) The segmentation results of the IRLS-IS model.

4.6. Comparative Evaluation

In addition to the visual evaluation, the DICE coefficient (Dice) [80] and the Jaccard similarity
index (JSI) [81] are often used as two important criteria for evaluating the segmentation accuracy of
a target region. Following the experimental techniques designed in [34,75], the tested images were
selected randomly from the BSDS500 database. Note that BSDS500 contains hundreds of natural
images and their ground-truth segmentation maps generated by multiple individuals [82]. To enhance
the coherency of our work with the above algorithms and compare it well with the CV model [48],
the LBF model [49], and the LIF model [50], this next batch of experiments is conducted to further test
our proposed IRLS-IS model on fifteen representative real-world color images, which are chosen from
the Berkeley segmentation data set 500 (BSDS500).

Dice characterizes spatial overlaps between the segmented regions and the ground truth, and the
formula of Dice [77] is expressed as

Dice(G, S) =
2N(A ∩ B)

N(A) + N(B)
, (17)

where ∩ represents an intersection operator, N(·) describes the number of pixels in the enclosed set,
A represents the results of the IRLS-IS model to segment images, and B describes the ground truths.
It is noted that the value of Dice is between 0 and 1. If the Dice is closer to 1, the segmentation results
are more accurate [59]. Then, the Dice results of the four compared models are depicted in Table 1,
where the best values are in bold font.

The JSI is the second statistical measure used for the quantitative evaluation in this paper, and the
formula for the JSI [83] is

JSI(s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

, (18)

where s1 describes the segmented volume and s2 denotes the ground truth. The value of JSI is from 0
to 1. It is obvious that when the value of JSI is closer to 1, the more similar s1 is to s2.

Then, the precision of segmenting the Berkeley color images is measured by the JSI value, as shown
in Table 1, where the bold font indicates the best result. As we can see from Table 1, the IRLS-IS method
achieves the best values for the Dice and JSI on the thirteen-image data. On image ID: 102061, the Dice
and JSI values of IRLS-IS are 0.01% and 0.02% less than those of CV, respectively, so they are almost the
same. On image ID: 147091, the values of IRLS-IS are 0.2% and 0.3% less than those of CV, respectively,
and then they only have subtle differences. Thus, the proposed IRLS-IS algorithm obtains the optimal
values of Dice and JSI on the selected fifteen image data. In summary, these results demonstrate that
our IRLS-IS method is indeed efficient and outperforms the three currently available approaches.
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Table 1. The Dice and JSI values of the results of image segmentation on the fifteen Berkeley color
images. JSI: Jaccard similarity index; CV: Chan Vese.

Image ID CV LBF LIF IRLS-IS

Dice JSI Dice JSI Dice JSI Dice JSI

8068 0.9780 0.9570 0.9555 0.9149 0.8673 0.7657 0.9792 0.9592
17067 0.9093 0.8336 0.8783 0.7830 0.8303 0.7099 0.9425 0.8912
28083 0.9469 0.8991 0.9236 0.8580 0.8062 0.6753 0.9556 0.9151
29030 0.9525 0.9093 0.9432 0.8925 0.8106 0.6815 0.9634 0.9293
33044 0.9108 0.8361 0.8700 0.7699 0.8253 0.7026 0.9434 0.8929
41004 0.9763 0.9537 0.9565 0.9166 0.8769 0.7808 0.9769 0.9548
41085 0.9209 0.8534 0.8818 0.7886 0.8446 0.7310 0.9229 0.8568
86016 0.9345 0.8770 0.7868 0.6485 0.7481 0.5976 0.9536 0.9113
102061 0.9634 0.9293 0.9442 0.8944 0.8516 0.7416 0.9633 0.9291
135069 0.9914 0.9829 0.9909 0.9819 0.8202 0.6951 0.9950 0.9900
143090 0.9575 0.9185 0.9517 0.9083 0.8633 0.7595 0.9715 0.9446
147091 0.9693 0.9404 0.9387 0.8844 0.8254 0.7027 0.9673 0.9367
207056 0.9677 0.9375 0.9305 0.8700 0.8183 0.6924 0.9874 0.9482
296059 0.9470 0.8994 0.9276 0.8650 0.8283 0.7069 0.9658 0.9339
317080 0.9591 0.9214 0.9288 0.8671 0.8665 0.7645 0.9596 0.9223

The abovementioned experimental results and analyses fully demonstrate the validity and stability
of our IRLS-IS method. The new distance regularization term proposed in this paper not only avoids
the problem of reinitialization but also initializes the level set function to a constant. It effectively solves
the problem of selecting the initial size of the level set. In addition, the new distance regularization
term is more robust than that proposed by Li and allows the partial differential equations to evolve
with a large time step. Therefore, our IRLS-IS model successfully segments several noisy images and
inhomogeneous images, efficiently handles some complex medical images, and reduces the iterations
and the running time of the central processing unit (CPU) of computer.

4.7. Discussion

According to the abovementioned experimental results, our contributions to the IRLS-IS method
can be summarized as follows.

(1) Compared with Li’s DRLSE model in [18], our proposed IRLS-IS model initializes the level
set function to a constant, which solves the problem of selecting the initial size of the level set
and is insensitive to the initialization. The IRLS-IS model can eliminate the dependence on this
initial contour position so that it can segment images effectively. However, the DRLSE model is
overly reliant on the initialization location. Therefore, some numerical errors may occur during the
evolution, and occasionally the desired segmentation results may not be derived [84–86]. Because
only the local region information is used, the LBF method efficiently segments the inhomogeneous
images. However, it is very easy to get caught up in a local minimum when this initial contour is
inappropriate. Thus, the LBF method is sensitive to the initial contour of the images. In contrast to
LBF, LIF conducts the convolution before the iteration, and thus, the running time of the computing
can be reduced dramatically [87,88], but the initial contour of LBF and LIF is weak in robustness.
The global information-based CEM model is the same as the CV model and cannot achieve the satisfied
segmentation results on some inhomogeneous images.

(2) The LoG filter-based external energy term is presented. The external energy term not
only reduces the influence of noise on image segmentation but also overcomes the interference
caused by intensity inhomogeneity. Moreover, the internal energy term is introduced to regulate the
smoothness of the zero level curves and to eliminate the low occurrence and isolated regions in the
final segmentation results [23].

(3) The new distance regularization term corrects this deviation of the traditional level set function
and the SDF to avoid the expensive computation of reinitialization. In addition, the new distance
regularization term makes the IRLS-IS method evolve in a large step, and thus, the IRLS-IS method can
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improve the efficiency and generate the results of image segmentation. Therefore, our IRLS-IS model
has a lower computational complexity than Li’s DRLSE model in [27].

5. Conclusion

In this work, we have introduced a new potential function and reconstructed a distance
regularization term to compensate for the deviation between the traditional level set function and
the SDF. Furthermore, the new distance regularization term can avoid this periodically reinitialized
operation of the level set function. Our proposed distance regularization term is employed for
the evolution of the partial differential equation, which guarantees the computational accuracy
of the level set function. To efficiently validate the segmentation performance of the presented
IRLS-IS algorithm, several experiments are conducted in this study. The results fully show that our
proposed IRLS-IS method can effectively analyze noisy images and inhomogeneous images. Therefore,
the IRLS-IS algorithm not only segments the specified target well but also reduces the boundary
leakage, which improves the accuracy and robustness of the segmentation. However, taking account
into the uncertainty of medical images, such as blurred boundaries and gray matter, and because
the medical image itself has low contrast (such that the boundary between the tissue and lesions is
blurred), the proposed method will not be suitable in all situations.
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