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Abstract: Since physical parameters are much more sensitive than modal parameters, structural
parameter identification with an extended Kalman filter (EKF) has received extensive attention in
structural health monitoring for civil engineering structures. In this paper, EKF-based parameter
identification technique is studied with numerical and experimental approaches. A four-degree-of-
freedom (4-DOF) system is simulated and analyzed as an example. Different integration methods
are examined and their influence to the final identification results of the structural stiffness and
damping is also studied. Furthermore, the effect of different kinds of noise is studied as well.
Identification results show that the convergence speed and estimation accuracy under Gaussian noises
are better than those under non-Gaussian noises. Finally, experiments with a five-story steel frame
are conducted to verify the damage identification capacity of the EKFE. The results show that stiffness
with different damage degrees can be identified effectively, which indicates that the EKF is capable of
being applied for damage identification and health monitoring for civil engineering structures.

Keywords: extended Kalman filter; parameter identification; damage detection; Gaussian noise;
non-Gaussian noise

1. Introduction

Structural parameter identification is one of the most important aspects of the structural health
monitoring and has received considerable attention. As a result, various analysis methods for structural
parameter identification have been proposed and significant progress has been made over the past
few decades. Damage detection techniques can be mainly classified as frequency-domain-based and
time-domain-based methods. In particular, the time-domain analyses have been used extensively,
such as the least-squares method [1,2], Monte Carlo method [3-5], and filtering methods [6-8]. Besides,
the methods of wavelet analysis [9-11] and Hilbert-Huang transform [12-14], in which the vibration
signals are decomposed into the frequency/time-domain signals, have also received much attention.

The well-known Kalman filter (KF) [15,16] has also been applied to the system identification.
Based on the KF, Jazwinski [17] has promoted and studied the extended Kalman filter (EKF), which
extended the KF theory into the nonlinear field, with great achievements acquired. Afterwards, Yun and
Shinozuka [18] used the EKF for identification of the parameters involved in multi-degree-of-freedom
(multi-DOF) nonlinear structural dynamic systems under various output noise conditions. Corigliano
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and Mariani [19] analyzed the single-DOF and multi-DOF dynamic systems based on EKF to detect
the possible sources of the inaccuracy when the structures suffered the strength degradation. In recent
years, several approaches to EKF-based system identification have been made for damage detection in
the time domain which shows the good accuracy and arithmetic robustness. Best and Bogdanski [20]
presented a new method working iteratively in the time domain using an EKF and it can also be used
as a black box tool for model order reduction. Gonzélez [21] developed an effective methodology based
on the EKF to predict the beam tip displacement under Gaussian noises. Sen and Bhattacharya [22]
employed a constrained version of the dual EKF technique, and its robustness and efficacy was verified
by numerical analysis of a six-story shear frame and a three-dimensional space truss. Zhang [23]
proposed a new method based on an EKF with 11-norm regularization via free vibration responses,
which shows good robustness and excellent accuracy of damage identification with the unknown initial
structural state. Jin [24] presented a novel real-time structural damage detection method by integrating
an EKF and dynamic statistical process control, with which high detection accuracy was provided.

Generally speaking, the EKF is particularly suitable for real-time damage identification. However,
inappropriate integration methods and integration steps will have negative effect on identified results,
especially when it is applied to practical structures. On the other hand, observations are usually
contaminated with all kinds of noises affecting the convergence of the algorithm and accuracy of the
target structural parameters as well, which also should be investigated in depth. In this paper, the EKF
will be studied focusing on identification of both stiffness and damping of multi-DOF systems, which
are the two most important parameters of structural dynamic systems. Numerical simulation is firstly
carried out to choose the suitable integration method and integration step. After that, the identification
accuracies under different levels of both Gaussian and non-Gaussian noises are analyzed and compared.
To verify the capability of EKF to identify the structural parameters as well as the damages for real
structures, experiments on a five-story steel frame structure are further conducted.

2. EKF-Based Parameters Identification

For a linear n-DOF dynamic system, the motion equation can be written as:

MY(t) 4+ CY(t) + KY(t) = F(t) 1)
where M, C, and K are the mass, damping, and stiffness matrices, respectively; vectors Y(f), Y(t)
and Y(t) denote displacement, velocity, and acceleration response, respectively; F(t) is the external
force vector.
Its state space equation can be expressed as:

X(t) = AX(t) + BF(t) )
_ )Y@ _ 0, I, | on
where X(t) = { Y(t) }, A= [ MK M- | and B = M-l | where 0,, and I, are an

n-order zero matrix and an n-order unit matrix, respectively. The matrix exponential function of e—At
is introduced to solve Equation (2).
Let ®(t, to) = eAl!=%), which is the state transition matrix. The system state at any time t can be

obtained as: t

X(t) = ®(t, to)X(to) + | P(t,T)BF(T)dT 3)
to
Equation (3) is a continuous state equation. However, the continuous expression of external
excitation time history function is often very difficult to be obtained, and discretization of the equation
is therefore required. The discrete equation can be written as:

te+1
X(te1) = P@ter, i) X(t) +/t D(ty41, T)BF(T)dT )
k
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The uniform sampling is usually assumed, and the external excitation can be regarded as linear
within the small interval [t, f; 1], and can be calculated by:

F.—F
F(t) = F — - (t - 1) (5)
where At =ty 1 — t;.
Let s = T — t;. Equation (4) can be finally expressed as:

Xir1 = Op Xy + T + Cr (6)

P = AN
I, = (A —-1)A™'B
Cr = [At — (A% —T)A"A'B(F — Feyq) /At

where X is the system state at time k, and Fy and Fj,; are the sampled values at the time kand k + 1,
respectively. Thus, the discrete-time state equation of linear dynamic system is then obtained.

Kalman [15] proposed the traditional KF in 1960, which is an optimal linear recursive estimator
designed for linear time-varying dynamic systems. By using the linearized models, EKF expands its
identification ability to nonlinear systems. In order to identify the parameters of the deterministic
dynamical system by the EKF, the structural parameters can be considered as the state variables. Thus,
the corresponding discrete formulation of the parameters identification problem in the EKF can be
expressed as:

te1
X1 = X + /t f(X, F)dt + wy @)
Z=h(X)+v ®)

where X} and Z are the state vector and the observation vector, respectively; wy is the process noise
represented by zero-mean white Gaussian noises with a covariance matrix Q, and v is the observation
noise represented by zero-mean white Gaussian noises with a covariance matrix R, and the function
h(X) is the theoretical solution of structural response at the measure point x.

The EKF algorithm is realized using a sequence of equations which generate a time-varying
estimate of state error covariance and Kalman gain. The procedure of the EKF algorithm can be
computed as:

State prediction:

~ . te+1
Xew =X+ [ X Pt ©)
tk X:Xk
Error covariance prediction:
Py1 = OP@f + Q (10)
Gain matrix: .
Ki1 = P HY 4 (Hk+1Pk+1le+1 + Rk+1) (11)
State filtering:
X1 = Xi1 +Kipq [Zk+1 - h<}~(k+1)} (12)
Error covariance update:
pk+1 = (I - Kk+1Hk+1)Pk+1 (13)
where Q is the system noise, R is the observed noise, ®; = AM ~ T4+ AAt, A = % Xk
=k
and H, = %

X=X; 1
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Equation (12) combines Euler integration of the system using the time step T with state and
parameter adaptation driven by the output error. Due to the Euler integration, T must be very small so
as to ensure the filter accuracy.

3. Numerical Simulations

3.1. Numerical Model

A four-DOF linear system is considered in this paper as shown in Figure 1. The mass, stiffness
and damping of each story are 200 kg, 7200 N/m, and 120 N-s/m, respectively. Assuming the structure
is excited by the Hanshin earthquake wave, which has the peak ground acceleration (PGA) of 0.5 g as
shown in Figure 2, the motion equation of the structure can be written as:

Mx + Cx + Kx = —MI4><1g (14)
ny
M = "
ms3
Ty
ki +ky  —ka
K — —ko ko + k3 —k3
—k3 ks +ky —ky
—ks ks
c1+tc —Cp
C— —Cp cy +c3 —C3
—C3 c3+Cq4 —C4
—C4 €4
T

x:[xl X2 X3 X4

where M, C, and K are the mass, damping, and stiffness matrices, respectively, and vectors x, x and
x denote the displacement, velocity, and acceleration response, respectively; ¢ and I, are the
earthquake acceleration and four-order unit column vector, respectively; —Mg is the equivalent
external force vector caused by the base movement. The dynamic response can be calculated using
Newmark-f method (yis 1/2, 3 is 1/6, and the time step is 0.02 s).

ma=200 kg
X4

ks=7200 N/m
=120 N.s/m

x3

k3=7200 N/m
=120 N.s/m

m2=200 kg
X2

k2=7200 N/m
=120 N.s/m

mi=200 kg

X1

k1=7200 N/m
1=120 N.s/m

Figure 1. Schematic diagram of the four-degree-of-freedom system.
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Figure 2. The Hanshin earthquake wave.

In this paper, the observation vector is the absolute acceleration of structure which can be
expressed as:

X, :52+I4><1g (15)
The stiffness k; (i = 1, 2, 3, 4) and damping ¢; (i = 1, 2, 3, 4) are the system parameters to be
identified. Therefore, the augmented state vector can be expressed as:
. T
X= [ x x © } (16)

T
whereez[kl e kg o1 e g

Then, the system equation and the observation equation can be written as:

ti1 .
Xi+1 :Xk+/t f(X,g)dt—l—wk (17)
X
fX8) =4 —Ig =M [(O) 3+ (K)y]
081
i, = h(X)+v (18)

h(X) = —M"! [(c)qﬂ (K)kl_x}

In the actual operation, the system equation has the system noise, and the observation equation
also has the observation noise (observation error). Therefore, the covariance matrix of the system noise
and the observed noise are assumed as follows: Q = 107° - I;4, and R = I;. Moreover, the initial

N T
state vector Xy = [ 0.01-Ipxq 0.01-I44q 0.7k-I4x1 0.7c- Iz } and the covariance matrix

Py = 10° - I are given. With this, the stiffness and damping parameters of the four-DOF system can
be identified by the EKF algorithm.

3.2. Parameter Identification with Different Integration Methods

In EKEF, realizing the state prediction (Equation (9)) is a critical issue for accurately identifying
the structural parameters, especially the damping. In this paper, three integral methods, such as the
rectangular integration, the trapezoidal integration and the fourth-order Runge-Kutta integration,
are introduced to identify the stiffness and damping of the structure. Their corresponding estimation
results will then be compared and discussed.
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The f(X, F) can be regarded as an invariant constant if the At = f; 1 — #; is small enough. Then, the
rectangular integral can be introduced to the state prediction, and Equation (9) can be approximated as:

X1 = X +f(Xi Fe) - At (19)

A trapezoidal approach to approximating each area can be used to improve the accuracy of the
approximate value, known as the improved Euler integration or trapezoidal integration. The f(X, F)
can be approximately regarded as linear in the interval [ty, t;, 1], and Equation (9) can be expressed by:

~ N 1 N “
Xiy1 = Xi + 5 [f(Xk, Fe) - At + f(Xii1, Fes) - At (20)

The n'"-order Runge—Kutta integration can approximately calculate n values in each step. Actually,
the rectangular integration and the trapezoidal integration can be also regarded as the first-order and
second-order Runge-Kutta integration, respectively. Here, the fourth-order Runge—Kutta integration
was introduced to solve the state prediction problem, and can be expressed as:

~ N 1
Xiy1 = X + E(Afl + 20f, + 20f; + Af) (21)

Ay = F(X, Fe) - At
Af, = f(Xx + A1 /2, Feyay2) - At
Ay = f(Xi + 8 /2, Feya ) - At
Af, :f(Xk + A3, Fk+1) At

where Fi 1,5 = F(tgy1/2) = F(tx +1/2 - At), and the linearity is also assumed in the interval [f, t;;1].

3.2.1. Stiffness Identification

Identification results of stiffness and damping of the four-DOF system were used to compare
the effect of the three integration methods. During such an analysis, the integration time step is
adopted with a small value of 0.02 s. To make things easier, the influence of noise is not considered
here. The estimation results of the stiffness by the three integration methods are shown in Figure 3.
Obviously, the identification results by the three integration methods are in good agreement with the
actual value, and the estimation precisions are all higher than 98%.

Moreover, the effect of time step on the identification results of the stiffness by the three integration
methods was also discussed, in which the 2" story was selected as the analyzing target. From Figure 4,
it can be found the relative errors of stiffness estimates are very small, and even the simple rectangular
integral can achieve good results. Nevertheless, the error slightly increases with the increased time
step, especially when the time step is larger than 0.005 s.
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Figure 3. Stiffness estimation by three integration methods: (a) rectangular integration; (b) trapezoidal
integration; (c) fourth-order Runge-Kutta integration.
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Figure 4. Relative stiffness errors by three integration methods.

3.2.2. Damping Identification

Although the performance of the three integration methods is satisfactory for the stiffness
estimation, the damping of multi-DOF system is often difficult to be identified. Poor integration
methods often make the identified damping results far away from the actual values. From Figure 5,
it can be seen that the rectangular integration and the trapezoidal integration perform poorly even
when the time step is set to be as small as 0.005 s. Relative damping errors with the rectangular
integration and trapezoidal integration reach as high as 30% and 15.1%, respectively. Still, it should
also be noted that the trapezoidal integration algorithm is better than the rectangular integration
algorithm for estimating the damping. Obviously, the fourth-order Runge-Kutta integration estimates
the damping perfectly, which almost converges to the actual damping value.
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Figure 5. Damping estimation by three integration methods: (a) the 1°¢ story; (b) the ond story; (c) the
3 story; (d) the 4™ story.

The relative errors of the damping with the three integration methods were compared and are
shown in Figure 6. It can be clearly found that the time step is very sensitive for the rectangular
integration and the trapezoidal integration to identify the damping. Good results cannot be achieved
until the time step reaches 0.001 s. However, the time step has little effect on the Runge-Kutta
integration; good and stable results can be obtained although the time step is 0.025 s. By comparison,
the fourth-order Runge-Kutta integration proves to be a good choice in such applications rather than
the rectangular integration and the trapezoidal integration.

160
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80

40
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A N N N N A
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Figure 6. Relative damping errors by three integration methods.
3.3. Parameter Identification under Gaussian and Non-Gaussian Noises

Simulation models with Gaussian noises dominate the research field of structural parameter
identification. Normally, it is assumed that the noise has a Gaussian distribution, and its rationality can
be proved by the central limit theorem. However, considering the real structures are often subjected to
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the complex environment, it contains more or less non-Gaussian noise actually. In the case when the
non-Gaussian noise is prominent, the system tends to be unsuitable if the Gaussian hypothesis is still
made. Therefore, it is of great theoretical and practical significance to study the structural parameter
estimation under non-Gaussian noises.

The distributions of Gaussian and non-Gaussian noises are shown in Figure 7. The noise is added
to the absolute acceleration x, to simulate the observed acceleration. When the noise has a Gaussian
distribution, the observed acceleration x;; is:

Xm = Xq+a-RMS; - random; (22)

where g is the Gaussian noise level, RMS % is the root mean square value of the absolute acceleration,
and random; is the standard normal distribution.
The observed acceleration x, with the additive non-Gaussian noise can be expressed as:

Xp=X,+a- RMS}&a - randomy (23)

where random; follows the t distribution with the DOF being 2 and the mean value being 1.

45 N/(; 4.5
Lo 0, 0,
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= 8
2 15F Q15
R e R
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(a) (b)

Figure 7. The distribution curves of Gaussian and non-Gaussian noises: (a) 10% root mean square RMS
for Gaussian noise; (b) 10% root mean square for non-Gaussian noise.

3.3.1. Parameter Identification under Gaussian Noises

In numerical analysis, based on the previous analysis and discussion, the fourth-order Runge-
Kutta integration is selected, and the integration time step is adopted as 0.02 s. The identified
results at different Gaussian noise levels (low noise level conditions) are shown in Figure 8. Notably,
the identified curves of the stiffness and damping are almost in accordance with the actual values even
when the noise level reaches 10%, which indicates that the parameters of the four-DOF system can be
identified precisely by the EKF under Gaussian noises.
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Figure 8. Identification results under different Gaussian noise levels: (a,c,e,g) are the stiffness ky, ky, k3,

and kg4, respectively; (b,d,f,h) are the damping ¢y, ¢y, c3, and ¢4, respectively.

3.3.2. Parameter Identification under Non-Gaussian Noises

Parameter estimation at different non-Gaussian noise levels (low noise level conditions) is also
conducted, as shown in Figure 9. The identified results of the stiffness and damping also can converge

fairly fast. However, the identified damping has deviated from the true value when the non-Gaussian
noise level reaches 10%. Furthermore, the comparison of the estimation results between the EKF with
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Gaussian and that with non-Gaussian is listed in Table 1. It can be clearly seen that the identification
accuracies of the stiffness and damping with EKF are affected more by the non-Gaussian noise than
that by the Gaussian noise. When the non-Gaussian noise level reaches 10%, the maximum estimation
error of damping reaches 19.436%. Hence, the identified values by EKF may be inaccurate when
subjected to a certain level of non-Gaussian noise.
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Figure 9. Identification results under different levels of non-Gaussian noise: (a,c,e,g) are the stiffness

k1, ko, k3, and kg4, respectively; (b,d,f,h) are the damping ¢y, ¢2, c3, and ¢y, respectively.
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Table 1. Estimation errors of the identified results under Gaussian and non-Gaussian noise conditions.

2% Noise 5% Noise 10% Noise
Gaussian Non-Gaussian Gaussian Non-Gaussian Gaussian Non-Gaussian

kq —0.008 0.024 —0.018 —0.360 0.554 0.744

ko —0.010 —0.418 0.163 —2.881 —2.236 —3.701
ks —0.118 0.161 —0.381 1.504 0.822 3.013

ky —0.231 —0.656 —0.632 —2.782 —1.112 —4.697
c1 —1.223 —2.519 —0.676 8.475 —2.091 13.992
[ 0.515 1.678 1.547 —6.665 3.140 19.436
c3 1.147 5.020 —-0.911 0.398 3.356 —4.037
c4 —0.292 —0.749 0.078 13.508 6.556 18.886

4. Experiments

4.1. Excitation System

An excitation system was used for the experiment as shown in Figure 10. The generated specified
vibration waveform signal by the computer was then put into the power amplifier. After that, the
amplified signal actuated the vibration exciter to output the expected force which was used to excite
the frame structure. Here, a vibration exciter, Modal Shop 2100E11, was adopted in the experiment.
It is a lightweight electrodynamic modal exciter, and is capable of providing 440 N of peak force

excitation in a small footprint weighing just 15 kg.

Structural model
Vibration exciter

C t
ompater Power amplifier

Figure 10. Experiment setup.

4.2. Experimental Model and Damage Cases

The performance of the EKF for damage identification was verified by a five-story steel frame
experiment. Three different damage cases were considered with the corresponding experimental
models shown in Figure 11. Case 1 represents the intact case with no damage occurred. However,
in cases 2 and 3, certain extents of damages were introduced to the 5% and 4™ stories, respectively.

£7
g1
3

Case 1

Case 2

Case 3

Figure 11. The sketch of the five-story steel frame under different damage cases.
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In the damage design, the stiffness reduction was simulated by reducing the cross section area of
the columns. In terms of this steel frame, the story stiffness was composed by the lateral stiffness of
4 steel bars. Hence, the theoretical stiffness of each story can be calculated by the following equation:

ki = 4%(1’ =1,2,3,4,5) (24)
where k; is the stiffness of it story; E is the elastic modulus of the bar and equal to 2.06 x 10° N/mm?;
I is the moment of inertia and equal to bi>/12; I is the height of each story and equal to 350 mm.
Columns with three different sizes were considered as shown in Figure 12, consistent with the
three damage cases. Then, the damage case 2 was achieved by replacing the columns of 5% story.
The same action was made to the 4 story to realize the damage case 3. Columns’ parameters of
theoretical and actual story stiffness are tabulated in Table 2. Considering the manufacturing error of
the steel bars as well as the installing effect, the static test method was further developed to determine
the actual story stiffness with steel bars of three different sizes. In each story, there were four columns

and their sizes were assumed to be the same.

Specification 1

H 40 mm

H
4 mm

Specification 2

iy
4

rd
mm

Specification 3

I | -
"k

' 350 mm 1 4mm

Figure 12. Three specifications of the steel bars in the experiment.

Table 2. The parameters of the steel column bars and the story stiffness.

g . Theoretical Story Measured Actual Story
Specification Size (mm) Stiffness (N/mm) Stiffness (N/mm)
1 350 x 40 x 4 49.20 47.17
2 350 x 36 x 4 44.28 42.22
3 350 x 32 x 4 39.36 36.48

For the intact case (case 1), all columns had the size of specification 1. Structural damage was
then introduced by replacing the initial columns with the thinner columns (specification 2 or 3) so
that the story stiffness was decreased. The details of the three damage cases can be found in Table 3.
Actually, the damage degree, which was defined as the reduction extent of the story stiffness in this
paper, of each case is 0%, 10.5%, and 22.7%, respectively.

Table 3. The details of damage cases.

Damage Cases  Initial Stiffness =~ Damaged Stiffness =~ Damage Location = Damage Degree (%)

Case 1 47.17 47.17 None 0
Case 2 47.17 4222 5th story 10.5
Case 3 47.17 36.48 4th story 22.7
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4.3. Experiment Implementation

The accelerometer has the advantages of high precision, high sensitivity, low power consumption,
small size and good linearity. It is widely used in applications, such as dynamic testing, parameter
identification, health monitoring, of practical structures [25,26]. In the experiment, accelerometers (model
991C, developed by the Institute of Engineering Mechanics of Chinese Earthquake Administration)
were mounted on the slabs of each story to collect the horizontal accelerations of each floor as
the observations, while the exciter was anchored on counterforce wall exerting force on the slab
of the 5™ story, as shown in Figure 13. As shown in Figure 14, the model 991C accelerometer
applied in this experiment had two output interfaces, one for acceleration and the other for velocity,
but only acceleration output was collected and analyzed here. It inherits the excellent characteristics of
passive servo vibration sensors, possessing good impact resistance with no need for zero adjustment
before testing, and is suitable for vibration measurement in many occasions. The main performance
specification of the accelerometers is listed in Table 4. Acceleration data were collected by the Quantum
X data acquisition system produced by HBM Co. Ltd. The sampling frequency of the signal was
set to be 50 Hz for all cases. The total masses of the five stories including the sensor weight were:
my =24.99 kg, my = 24.94 kg, m3 = 24.93 kg, my = 24.75 kg, and m5 = 24.80 kg.

Vibration

Exciter

Acceleration
Sensor

o 3

9910
V09001

Jy 2 B9

, A
o [ R S LA

Figure 14. Model 991C accelerometer.
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Table 4. The main performance indicators of the Accelerometer.

Technical Indicators Acceleration Velocity
Sensitivity 0.3 V-s>/m 0.7 V-s/m
Maximum range 20 m/s? 0.6m/s
Passband 0.1-100 Hz 0.1-100 Hz
Resolution 5x 1070 m/s? 2x107%m/s
Temperature range —10°C—+50 °C —10°C—+50 °C

In various cases, the Modal Shop 2100E11 was used to excite a random-force time history as
shown in Figure 15. When the structure was subjected to vibration, the horizontal acceleration response
of each story could be obtained through the acceleration sensors. To limit the length of the paper,
only parts of the results are presented here. The data of one test were depicted here to illustrate the
horizontal acceleration of each story, as shown in Figure 16.

Force excitation time-history (N)

0 20 40 60 80 100 120

Time (s)

Figure 15. The time histories of force excitation in three damage cases.

1 5th storey 1k 5th storey
0 0

a1t -1
1 1 1

1 1
1F 4th storey

WA

ak

1 1
1L 3rd storey

1k

1 1
1k 2nd storey

Horizontal acceleration response (m/s?)
(=}

Horizontal acceleration response (m/s?)
o

r 1st storey 1
0 0
1+ 1
1 1 1 1 1
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time (s) Time (s)

() (b)
Figure 16. Cont.
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!”’
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Horizontal acceleration response (m/s?)
o
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0 20 40 60 80 100 120

Time (s)

(©
Figure 16. Horizontal acceleration responses of each story in damage cases: (a) case 1; (b) case 2; (c)
case 3.

4.4. Structural Parameter Identification

Based on the EKF algorithm, the identification results for the stiffness under different damage
cases are shown in Figure 17. Identified stiffness of each story in case 1 is shown in Figure 17a, the EKF
method exhibits excellent convergence, and all identified parameters can rapidly converge to their
exact values even if the identified curve of the 5™ story has some deviation. The damaged stiffness
identification results for cases 2 and 3 are shown in Figure 17b,c, respectively. The stiffness can be
also accurately identified. These results indicate the effective identification of the EKF for structural
stiffness. Furthermore, the detection results for damage degree under different damage cases are
shown in Figure 18. The mean degree of the four tests is used to determine the degree of damage. As
shown in Figure 18a, the estimation results of each story are close to 0% when the five-story steel frame
has no damage occur. In case 2, the 4" story has the damage with the degree of 10.5%, while others
have no damage, as shown in Figure 18b. The identified damage degree is 14.3% which shows the
sufficient recognition accuracy. Meanwhile, the identified damage degree of the 4% story in case 3
is 21.3%. Considering the actual damage degree of case 3 is 22.7%, damage at case 3 actually is also
well identified. Such experimental results show that the EKF is applicable for detecting damage in
multi-DOF systems.
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5. Conclusions

This work investigated the feasibility and effectiveness of using the EKF algorithm to identify
the structural damage in multi-DOF systems. Parameter identification and damage detection have
been successfully investigated based on the numerical simulations and laboratory experiments. Firstly,
the effect of different integration methods for estimating the structural stiffness and damping was
studied. The results show the stiffness is not sensitive to the integration method, and the simple
rectangular integral can achieve good result, while the damping is very sensitive to the integral method,
which requires the fourth-order Runge-Kutta integration. Meanwhile, EKF-based identification was
also studied for structures subjected to Gaussian and non-Gaussian noises. The identification results
under Gaussian noises are better than those under non-Gaussian noises. Finally, experiments were
conducted and structural damage indicated by the decrease of stiffness was detected effectively. It is
shown that EKF is capable of being applied to damage identification and health monitoring for civil
engineering structures.
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