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Abstract: Megawatt-scale wind turbine technology is nowadays mature and, therefore, several
technical improvements in order to optimize the efficiency of wind power conversion have been
recently spreading in the industry. Due to the nonstationary conditions to which wind turbines
are subjected because of the stochastic nature of the source, the quantification of the impact of
wind turbine power curve upgrades is a complex task and in general, it has been observed that
the efficiency of the upgrades can vary considerably depending on the wind flow conditions at the
microscale level. In this work, a test case of wind turbine control system improvement was studied
numerically and through operational data. The wind turbine is multi-megawatt; it is part of a wind
farm sited in a complex terrain in Italy, featuring 17 wind turbines. The analyzed control upgrade is
an optimization of the revolutions per minute (rpm) management. The impact of this upgrade was
quantified through a method based on operational data: It consists of the study, before and after the
upgrade, of the residuals between the measured power output of the wind turbine of interest and an
appropriate model of the power output itself. The input variables for the model were selected to be
some operational parameters of the nearby wind turbines: They were selected from the data set at
disposal with a stepwise regression algorithm. This work also includes a numerical characterization
of the problem, by means of aeroelastic simulations performed with the FAST software: By mimicking
the pre- and post-upgrade generator rpm–generator torque curve, it is subsequently possible to
estimate how the wind turbine power curve changes. The main result of this work is that the two
estimates of production improvement have the same order of magnitude (1.0% of the production
below rated power). In general, this study sheds light on the perspective of employing not only
operational data, but also a sort of digital replica of the wind turbine of interest, in order to reliably
quantify the impact of control system upgrades.

Keywords: wind energy; wind turbines; aeroelasticity; control and optimization

1. Introduction

Megawatt-scale wind turbines are currently a mature technology. On one side, the current
frontiers of research mainly deal with increasing the size of wind turbines and, therefore, the capacity
factor, but there are still several open challenges (as, for example, the control of mechanical loads [1,2])
and, therefore, wind turbines having a rated power above 7 MW are, at their present state, mainly
prototypes. On the other side, considerable attention has recently been devoted to the optimization of
operating wind farms featuring megawatt-scale wind turbines. The optimization problem can involve
the mutual interaction between the wind turbines or can deal with the energy conversion efficiency of
each wind turbine. As regards the former issue, the fields of research are layout optimization [3–7],
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cooperative wind turbine control [8–10], and yaw active control for wake mitigation [11–15]. As regards
the latter issue, several types of wind turbines retrofitting for power production improvement are
possible: They can be aerodynamic and based on the modification of the blade profile (installation of
vortex generators, passive flow control devices, Gurney flaps, and so on [16–20]), or they can involve
the control system and deal with the management of the blade pitch [21], the rotor rpm, the cut-out
wind speed, and the high wind speed cut-in (defined as the wind speed at which the wind turbine
starts producing again after a gust) [22–24].

Certain attention has therefore been recently devoted in the scientific literature to the study of
wind turbine power upgrades: The scientific interest is basically motivated by the fact that wind
turbines operate under nonstationary conditions because the source is stochastic. Therefore, the impact
of an upgrade cannot be estimated by simply studying the total production in pre- and post-upgrade
periods. At least some meaningful indication can be obtained by studying how the wind turbine power
curve (i.e., the relationship between wind speed and power output) changes after an upgrade. However,
as discussed, for example, in Reference [25], the study of the power curve might be insufficient for
evaluating the impact of an upgrade. This can be due to the fact that the power of a wind turbine has
multivariate dependencies (on climate conditions and on working parameters) and the study of the
power curve disregards them all, except for wind speed and, possibly, air density [26]. Furthermore,
another problem regarding the study of the power curve is that wind speed is commonly measured
through cup anemometers placed behind the rotor and the undisturbed wind speed is estimated by the
wind turbine control system through a transfer function, generally computed from field campaigns in
flat terrain. This implies that the precision of the wind speed measurements in complex environments
might not be enough in order to distinguish a variation of a wind turbine power curve that is of the
order of few percents.

This problem has therefore stimulated some interesting studies in the scientific literature about
the ex-post assessment of wind turbine power upgrades through the analysis of operational data.
For example, in Reference [25], a modification of the Gaussian kernel regression method [27] is
proposed for computing the impact of two wind turbine upgrades: Pitch optimization and vortex
generator installation on the wind turbine blades. The former test case is generated artificially by
synthesizing the data according to the logic of pitch angle optimization; the latter test case, instead,
is studied through the operational data of a wind turbine. Vortex generator installation is studied
also in Reference [28]: The employed methods are the kernel plus of Reference [25] and the so-called
power-power approach. The power–power approach is based on the study of the variation (before
and after an upgrade) of the power difference between the wind turbine of interest (the target) and a
reference wind turbine. Its weakness consists of the fact that it needs vast data sets in order to provide
meaningful results: The authors of [28] have addressed this problem by employing time-resolved data
sets with sampling time of the order of the second, rather than ten minutes, like the typical Supervisory
Control And Data Acquisition (SCADA) data. Some proposals to overcome this issue have been
formulated in References [21,29]: The idea is that the power–power approach can be generalized by
modeling the power of the wind turbine of interest as a function of operation variables of more than
one reference near wind turbines. If an upgrade has a non-negligible effect on the performances of the
wind turbine, it can be detected as a variation in the behavior of the residuals between model estimates
(when the model is trained with pre-upgrade data) and measurements.

A common lesson arises from the above discussed studies: It is important, when possible, to study
wind turbine power curve upgrades in real environments because the flow conditions at the microscale
level can be relevant for the efficiency of the upgrade. At the same time, it would be important
and cost-saving to have reliable estimates of the impact of wind turbine power upgrades that are
based on numerical models or simulations. The objective, on one hand, is having at our disposal
a second piece of advice to the data-based validation. On the other hand, if a model is reliable for
estimating the impact of an upgrade, it can be used as a first or preliminary piece of advice before
the installation of the upgrade. The present work deals exactly with this kind of problems. A real
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test case is studied: A multi-megawatt wind turbine sited in Italy in a considerably complex terrain
has undergone optimization of the rotor rpm management in order to reach the most appropriate
induction level. The objective of the work is twofold:

• Employing operational data to provide an estimate of the impact of the upgrade after some
months of operation;

• validating a purely numerical framework (based on aeroelastic simulations of the wind turbine of
interest) for estimating the impact of the control optimization.

The data-driven method is formulated on the grounds of the discussion in Reference [30]:
A multivariate linear model is selected, whose target is the power of the upgraded wind turbine
and whose input variables are operation variables (power, rpm, blade pitches, and so on) of the nearby
wind turbines. The input variables are selected based on their statistical significance by means of a
stepwise regression algorithm [31].

The aeroelastic simulations were performed using the open-source FAST (fatigue, aerodynamics,
structures, and turbulence) v8 software, developed at the National Renewable Energy Laboratory
(NREL) in Golden, Colorado. The control upgrade was taken into account in the simulations based on
the generator rpm–generator torque curve, by mimicking the operational curves before and after the
upgrade. Several aeroelastic simulations were run: From these, it was possible to estimate an average
pre- and post-upgrade power curve. By weighting these power curves against wind distribution,
the impact of the control upgrade on the production was estimated.

The main result of this work is that the data-driven and the numerical estimates of the upgrade
display a good level of agreement. This result supports the use of numerical simulations for studying
this kind of control upgrades, once they are fed with some input that is specific to the site (for example,
turbulence intensity, wind intensity distribution) and to the technology (in this case, rotor rpm–power
curves before and after the upgrade).

Summarizing, the structure of the manuscript is the following: In Section 2, the test case is briefly
described. Section 3 is devoted to the production improvement estimate based on operational data
analysis: The method and the results are presented. Section 4 is devoted to the upgrade assessment
based on the numerical simulations: The framework and the results are described. Finally, Section 5 is
devoted to conclusions and some further direction of this work.

2. The Test Case

In Figure 1, the layout of the wind farm of interest is reported. The upgraded wind turbine (T7) is
indicated in blue.

The wind farm under investigation has recently attracted some attention in the wind energy
scientific literature because it is an interesting test case for the study of wind flow, wake–terrain
interactions and wind turbine performances in complex terrain [32,33]. In particular, it has been one of
the test cases of the International Energy Agency project about wind flow over complex terrain at the
microscale level [34].

The wind turbines have 93 meters of rotor diameter and 80 meters of hub height above ground
level. The cut-in wind speed is 4 m/s and the cut-out wind speed is 32 m/s [24]. The rated power is
2.3 MW. Notice that, in the following, all the data in the graphs will be normalized on the rated values
(for example power, rpm, etc.).



Appl. Sci. 2018, 8, 2639 4 of 14

Figure 1. The layout of the wind farm.

On 1 March 2018, the control system upgrade was installed on the turbine T7 and, therefore,
the rotor rpm–power curve changed: The idea underlying this intervention was that the rotor rotational
speed schedule is adjusted in order to reach the most appropriate induction level, while maintaining
adequate angles of attack along the blade. The resulting operational curve is reported and compared
against the pre-upgrade one in Figure 2.

3. Operational Data Analysis: Methods and Results

The data sets at disposal are the following:

• Dbe f goes from 1 September 2017 to 1 March 2018. It is a period during which the standard rotor
rpm–power curve was operating.

• Da f t goes from 1 March 2018 to 1 July 2018. It is a period during which T7 was operating with the
improved rotor rpm–power curve.

In Figure 2, the power–rotor rpm curve for, respectively, the data sets Dbe f and Da f t is reported.
The difference between the two is appreciable: After the upgrade, a lower rotational speed was needed
to extract the same amount of power as before the upgrade.
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Figure 2. The rotor rpm–power curves before and after the upgrade.

Unfortunately, it was impossible to study the impact of the upgrade using the power curve
analysis. As discussed, for example, in Reference [30], the T7 wind turbine underwent an aerodynamic
retrofitting: Vortex generators and passive flow control devices were installed on the blades. After this
intervention, prior to the control upgrade, the wind speed measurements at turbine T7 provided by
the control system were biased: This is discussed in Reference [30] through the study of the power
factor Cp. Therefore, without a reliable wind speed measurement at turbine T7, it was impossible to
study the power curve and the effect of the upgrade must be estimated using other methods.

The objective is therefore to estimate the power output of T7, denoted as y in the following, as
a function of on-site conditions. Given the fact the wind speed measurements at T7 are unreliable
and the operating parameters of T7 cannot be used in this task (because they change for given wind
conditions, after the control upgrade), the critical point is deciding what variables opportunely define
the on-site conditions and the relation between them and the power of T7. The decision is possibly
to employ all the other 16 wind turbines in the farm as reference; the following measurements are
available and can in principle be selected as input variables for modeling the power output of T7:

• The nacelle wind speed,
• the power output,
• the individual blade pitch angles,
• the rotor revolutions per minute,
• the generator revolutions per minute,
• the high speed rotor temperature.

The rationale is that if one trains a model with pre-upgrade data and validates it against a pre-
and a post-upgrade data set, a difference should arise in the behavior of the residuals if the upgrade is
really effective. One of the most important points in this kind of procedure is having an argument for
selecting the most appropriate input variables for the model among all the possible measurements at
our disposal in the wind farm. This problem is solved based on the stepwise regression algorithm [31]:
It is an iterative algorithm for automatically selecting the most appropriate inputs for a multilinear
regression task. Starting from an initial model, at each iteration of the algorithm, an input term is added
to or removed from the model. The decision about keeping it, removing or restoring it is based on the
p-value of an F-statistics, i.e., by testing the performance of the model with and without that potential
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term. If one input variable has a p-value which is greater than an exit tolerance (that is, if it is unlikely
that the hypothesis of a zero coefficient in the linear model can be rejected), that variable is discarded.
Therefore, it is important to study the results of the stepwise regression algorithm: Basically, the idea
is that a loose bound (high values) on the p-value leads to larger models that reliably produce lower
errors but are less solid, while a strict bound (small values) on the p-value leads to smaller models that
can produce higher errors but are more solid. In this case, selecting a compromise is quite easy based
on K-fold cross-validation [35] for the sensitivity study of the p-value selection. The procedure goes as
follows: The data set Dbef is divided J times randomly in two subsets. (K− 1)/K of the data are used
for training and the remaining 1/K are used for validation. K is selected to be 10 for this study, because
short validation folds stretch the capabilities of the model to the limit. J has been set to 300 to increase
the statistical significance of the study. The performances of the linear model are quantified for each
of the J runs of the cross-validation for a given p-value in terms of the mean absolute error between
model estimates and measurements. In this case, the main feature of the results of the cross-validation
is the following: The order of magnitude of the mean absolute error does not vary considerably when
varying the p-value, while the input selection sensibly depends on the p-value. In particular, for a
large p-value, the model is not as stable as for a small p-value: When the p-value is large, several
different final input selections are obtained along the J runs of the cross-validation. This behavior (in
particular the fact that the mean absolute error saturates quickly to a lower bound) can probably be
interpreted as the effect of the remarkable complexity of the terrain and therefore of the wind flow
(discussed by other points of view, for example, in References [32,33]). Therefore, the final decision
is for a stable model that is obtained when p-value ≤ 10−8. Notice that p-values up 10−15 have been
tested: Therefore, the choice should be considered solid. The selected input variables for modeling the
power of T7 are:

• The power of T6;
• the power of T9;
• the rotor rpm of T8.

This input variable selection is reasonable: In the wind energy literature, it is widely discussed
that the low precision of nacelle cup anemometers leads to the idea of using wind turbine rotors (and
therefore, power and/or rpm) as probes of the wind conditions [36]. Furthermore, T6, T8, and T9 are
the nearest wind turbines with respect to T7, although T8 and T9 are sited at a quite different altitude.
The resulting model can easily be interpreted as a generalization of the power–power method, because
a model has been obtained for the power of the target wind turbine (T7) as a function of meaningful
variables of three references nearby wind turbines (T6, T8, T9), instead of only one.

The procedure therefore goes as follows: Input measurements are normalized and organized in
a matrix xtrain. The pseudo-inverse of xtrain is used to compute the weights of the linear regression
model as:

W = x†
train · ytrain, (1)

where W is a column vector and ytrain is the column vector of the T7 power measurements in the
training data set. Finally, the estimated power output vector ŷvalid on a given validation data set is
computed as a linear combination of the input variables, weighted using W :

ŷvalid = xvalid ·W . (2)

The data set is appropriately pre-filtered: The request is that the wind turbines T6–T7–T8–T9
(input and output of the model) are producing output and that the power of T7 is below rated. This
second condition is requested because an upgrade is not effective when the produced power is rated.

The procedure to compute the effect of the upgrade is the following. The data sets at disposal are
organized in this way:
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• Dbe f is randomly divided in two subsets: D0 ( 2
3 of the data) and D1 ( 1

3 of the data). D0 is used for
training the model and constructing the weight matrix W , and D1 is used for the pre-upgrade
data set employed for validating the model.

• Da f t is the post-upgrade data set employed for validating the model. For notation consistency,
it is also referred to equivalently as D2.

The residuals between the measurement y and the simulation ŷ, for the data sets D1 and D2, are
studied. The focus is on how the residuals vary after the upgrade. Therefore, consider Equation (3)
with i = 1, 2.

R(xi) = y(xi)− ŷ(xi). (3)

For i = 1, 2, one computes:

∆i = 100 ∗
∑x∈Datai

(y(x)− ŷ(x))

∑x∈Datai
y(x)

. (4)

The quantity ∆ = ∆2 − ∆1 is a percentage estimate of the production improvement.
It is possible to repeat the above procedure several times: This kind of bootstrap technique allows

to simulate the repeatability of the tests. This is done as follows: At each run of the model, a different
D0 (training set) and D1 (pre-upgrade validation dataset) are selected, while the whole D2 is kept as a
validation data set at each run. One could decide to randomly select a subset of D2 as the post-upgrade
validation data set but, in this work, the decision has been to take it fixed as a whole because it is
shorter than the pre-upgrade data sets.

In Figure 3, for a sample selection of D1, the sets R(x1) and R(x2) are plotted after being averaged
in intervals of 10% of the rated power.

0 20 40 60 80 100
Power (%)

−3

−2

−1

0

1

2

3

4

R 
(%

)

D1 dataset
D2 dataset

Figure 3. The average difference between measurements and simulation (Equation (1)) of the power of
T7, for data sets D1 and D2 and for a sample run of the model.

Figure 3 is consistent with the intuitive expectation about the upgrade of interest: The effect
of the upgrade is visible below rated power (i.e., before the rpms saturate) as a change in the mean
difference between measurements and model estimates. When the rpms saturate, approaching rated
power, the residuals between model estimates and measurements have a similar behavior because the
upgrade is not effective.
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Basically, for each run of the model, an estimate of the energy improvement ∆ can be obtained from
Equation (4): This procedure has been repeated several times and the average energy improvement
is computed as ∆̄ = 1.0%. In other words, the estimate is that T7 has produced, after the adoption
of the control system upgrade, 1.0% more than it would have done without the upgrade. Recall that
this percentage refers to the production below rated power, consistently with the adopted criteria for
filtering the data sets. If one wants to estimate how much this improvement amounts to in terms of
annual energy production, one can assume a certain wind distribution or deduce it from long-term
data and project the ∆̄ estimate on the data set of interest.

4. Numerical Analysis: Methods and Results

As discussed in Section 1, this work deals with a twofold approach to the estimate of the power
production improvement provided by wind turbine control upgrades. A validation on the basis
of numerical simulations is provided: The aeroelastic code FAST v8 [37], developed at National
Renewable Energy Laboratory, is selected.

A detailed model of the wind turbine has been set up, in particular in terms of the aerodynamics
of blades (that have been tuned thanks to the open source code QBlade [38]) and elastic properties of
blades and tower, according to the information available in Reference [39] for the wind turbine model
of interest for this study. The turning point for the purposes of this study is the representation of the
control system (especially in terms of coupling with the electric generator), needed for the code to
run the simulation. The approach called “Simple Variable–Speed Torque Control” has been chosen
for modeling the relationship between torque and rpm: It is particularly useful, given the peculiarity
of the data at our disposal (no reliable wind speed measurement is available at the site of the wind
turbine of interest, as discussed in Section 3), because it does not require the relationship between
wind and power. Actually, the relationship between generator rpm and produced power P (assuming
an unitary efficiency, in order to use the relationship Cm = P

ω = 60P
2πrpm to compute the mechanical

torque Cm) is taken from the operational data before and after the upgrade (data sets Dbe f and Da f t)
and is reproduced in the numerical simulations. The FAST code represents this relationship with
approximations in three power regions. A quadratic polynomial from zero power to maximum-power
control is used (called “Region 2”), while at rated power, a constant value of torque is set (called
“Region 3”). These two regions are connected by a very short interval of linear transition (called
“Region 2 1

2 ”). The approximation functions and the values of transition between the regions are fitted
to the operational measurements before and after the upgrade: The result of this procedure is reported
in Figure 4, where the average experimental and simulated generator rpm–generator torque curves
before and after the upgrade are shown. Notice that the post-upgrade average curve is more regular
than the pre-upgrade and for this reason, the fit results to be more precise. This fact can also be seen
from the operational data reported in Figure 2: Computing the average and the standard deviation of
the rotor rpm per power intervals, the result was that the percentage standard deviations was lower
after the upgrade. This means that the control upgrade has improved the stability of the curve through
a more appropriate selection of the rotor rpm as a function of the tip speed ratio.
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Figure 4. Numerical and experimental mechanical torque–rpm curves.

Once the pre- and post- upgrade model have been tuned, the following step is the simulation of
the wind speed and, consequently, of the electrical power. The decision has been to simulate several
time series and the average wind intensities are selected to span from cut-in to rated with 0.5 m/s
intervals. This has been done in order to resemble the typical wind speed spacing of the average
power curve computed according to the IEC guidelines [26]. The time series were generated using the
TurbSim package and an A turbulence class was selected because, on the basis of the data at disposal
for this study (despite the fact that their sampling time is 10 min), it was evaluated that the site is
considerably turbulent. A wind shear exponent of 0.2 was selected because it is a good approximation
for onshore wind farms.

Each run of the model simulates 400 s with a time step of the millisecond: In Figure 5, examples
of wind intensity, rotor rpm, and power time series are reported.
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Figure 5. Example of simulated wind, electric power, and rotor rpm time history from FAST
(fatigue, aerodynamics, structures, and turbulence).



Appl. Sci. 2018, 8, 2639 10 of 14

Subsequently, for each simulation, the average rotor rpm and electric power are computed:
In Figure 6, the simulated and measured rotor rpm–power curves are reported. This basically allows
to simulate the power curve for the wind turbine before and after the upgrade. For the purposes
of this study, it is very interesting to estimate the difference (∆P = Pa f t − Pbe f ) between the two
configurations, as shown in Figure 7 in percentage of rated power.

0 20 40 60 80 100
Power (%)

30

40

50

60

70

80

90

100

Ro
to

r r
pm

 (%
) SCADA before

SCADA after
model before
model after

Figure 6. Pre- and post-upgrade simulated and measured rotor rpm–power curves.
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Figure 7. Simulated power differences between the pre- and post-upgrade behavior.

The production improvement is clearly visible below rated power (especially up to more or less
50% of the rated power) and saturates quickly to zero, approaching rated power. This is basically
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consistent with the results in Section 3, like, for example, Figure 3, where the difference in the residuals
is clear up to 50% of the rated power and oscillates around zero, approaching rated power. These
average power differences are finally employed to estimate the impact on the on-site production by
weighting them against a historical wind intensity distribution: Doing this, the final estimate is 0.9%
of improvement of the production below rated power. It is interesting to notice that this estimate is
compatible within the 10% with the one of Section 3 based on operational data elaboration.

Moreover, the results of this work shed light on the perspective of reliably employing numerical
simulations for assessing wind turbine control upgrades. A completely general framework, like
aeroelastic simulations, can be adapted to simulate a real upgrade of a real wind turbine in a real
environment by empowering it with information relatively easily obtainable: Some information
about the flow features on site (basically, the level of turbulence), the mechanical and aerodynamic
properties of the wind turbine of interest, and how the control upgrade acts (in this case, the rotor
rpm–power curves).

5. Conclusions

This work has been devoted to the numerical and data-driven study of a wind turbine control
upgrade. The selected test case is a rotor rpm management optimization on a multi-megawatt wind
turbine, from a wind farm sited in Italy in a very complex terrain, featuring 17 aerogenerators.
There were at least two major motivations for this study. The former motivation was that the
efficiency of wind turbine power upgrades can depend remarkably on site-specific conditions and it is
therefore important to formulate reliable data-based models for assessing them and to collect test cases
discussions. The latter motivation is that validating numerical frameworks for reliably simulating
wind turbine control upgrades in a real environment would be a major step forward for the industry
and for the scientific community as well.

On these grounds, in this work, the test case was studied with a twofold approach. The objective
was estimating the production improvement using, respectively, aeroelastic simulations and
operational data before and after the upgrade.

As regards the use of operation data, the adopted strategy was the formulation of a robust model
for the power of the wind turbine of interest. The model has been trained with pre-upgrade data
and validated against a pre-upgrade and a post-upgrade data set: If the model is precise enough to
resolve the upgrade of interest, a difference in the behavior of the residuals between measurements
and model estimates should be detected. In this work, the selected model for the power of the wind
turbine of interest was a multivariate linear; a point of particular interest was the selection of the most
appropriate input variables for the model: This was achieved using a stepwise regression algorithm
and the selected input variables are powers and rotor rpms of nearby wind turbines. In the selected
test case, the result was three reference wind turbines being employed.

The reliability of the numerical simulations was based on mimicking the measured (before and
after the upgrade) generator rpm–generator rpm curves. The FAST software represents this relation
through approximations (quadratic, linear, and constant) and the functions that fit best the operational
data were selected for the set up of the control system in the numerical environment. Once the pre-
and post-upgrade models for the wind turbine of interest were tuned, simulations ere run spanning
the interval of wind intensities from cut-in to rated power: Average wind intensities spaced 0.5 m/s
were selected. The flow conditions on sitewere taken into account, by selecting a class A turbulence in
the simulation of wind time series through the TurbSim package.

The above discussion clarifies that the data-driven and numerical methods are based on very
different philosophies. The former is more or less a black box, based on operational data and on
the assumption of a linear relation between several input variables from reference wind turbines
and the power of the wind turbine of interest. The latter moves from the principles of blade element
momentum theory. It is interesting that these two different methods provide results that are of the same
order of magnitude: The improvement is estimated as +1.0% of the production below rated power.
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These results therefore shed light on the possibility of successfully adopting numerical simulations for
estimating the effects of wind turbine control upgrades.

Furthermore, it should be noticed that a reliable numerical environment can be used in a predictive
way. Specifically, for this kind of problems, simulations can be employed to estimate the modification
of the mechanical loads induced by the control upgrade. This is actually the main further direction
of this work and is also particularly stimulating as regards the state of the art about these topics
in the scientific literature: Since retrofitting technologies are at their first stages as regards usage in
the industry, the cost–benefits analysis is commonly conducted only on the basis of the production
improvement estimates, but it should instead also include an analysis of the impact of the upgrades
on the residue lifetime of wind turbine components. Moreover, with the selected simulation tool,
it is possible to also study other kinds of control upgrades that have recently been spreading in
the wind energy industry, for example, pitch angle management optimization. Another interesting
further direction of this work is the study of time-resolved operational data (as done, for example, in
Reference [28]), because they have sampling time of the order of the second or less: This kind of data
would be a challenging testing ground for the reliability of the numerical simulations, also at the level
of the output time series.
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