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Featured Application: The parameter identification of solar cell and photovoltaic module are
used for evaluation, control and optimization of photovoltaic systems.

Abstract: In this paper, a Firefly algorithm is proposed for identification and comparative study of
five, seven and eight parameters of a single and double diode solar cell and photovoltaic module
under different solar irradiation and temperature. Further, a metaheuristic algorithm is proposed
in order to predict the electrical parameters of three different solar cell technologies. The first is
a commercial RTC mono-crystalline silicon solar cell with single and double diodes at 33 ◦C and
1000 W/m2. The second, is a flexible hydrogenated amorphous silicon a-Si:H solar cell single diode.
The third is a commercial photovoltaic module (Photowatt-PWP 201) in which 36 polycrystalline
silicon cells are connected in series, single diode, at 25 ◦C and 1000 W/m2 from experimental
current-voltage. The proposed constrained objective function is adapted to minimize the absolute
errors between experimental and predicted values of voltage and current in two zones. Finally, for
performance validation, the parameters obtained through the Firefly algorithm are compared with
recent research papers reporting metaheuristic optimization algorithms and analytical methods.
The presented results confirm the validity and reliability of the Firefly algorithm in extracting the
optimal parameters of the photovoltaic solar cell.

Keywords: solar cell; metaheuristic algorithm; electrical parameters; analytical methods; firefly
algorithm; statistical errors

1. Introduction

The use of renewable energy sources is rapidly developing, and the application of solar energy
focusing on photovoltaic systems is becoming increasingly popular [1,2]. The major challenge in
photovoltaics system is posed by the instability, nonlinearity and complexity of the current-voltage
and power-voltage characteristics equation. The relation between photovoltaic current and voltage is
both implicit and nonlinear [3–6] and it depends on several factors such as module temperature, solar
radiation and its distribution, spectrum, cable losses, dust accumulation, shading and soiling [7,8].
Therefore, it is vital to produce a more accurate mathematical model that can better reveal the
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actual behavior and represent the relationship between current and voltage. In this context, many
mathematical models have been developed in the literature to describe the electric, dynamic and
thermal behavior of photovoltaic cell/module with a different level of complexity. In particular,
the solar cell can be modelled as a static model for DC/DC (direct current), or as a dynamic model
for DC/AC (alternating current) with capacitance and parallel dynamic resistance, with diode and
photocurrent as proposed in [9–11]. They can be classified globally into two categories: implicit
and explicit models [12,13]. The former [5,14–16] need iterative numerical methods to solve the
nonlinear current-voltage equation. On the other hand, the latter models are based on simple analytical
expressions [4,17–22]. Different physical models were compared on photovoltaic power output
prediction in [23] and available models of solar cell are presented in [24]. A different photovoltaic model
used for 24-hour-ahead forecasting using neural network is presented in [25], while a comparison
between physical and hybrid methods is given in [26] and artificial neural network models are
employed in [27]. These models differ mainly by the number of diodes, the presence or absence
of a shunt resistor, and by the numerical methods used to determine the unknown parameters.
Further, the two diodes model is known as the most accurate model for representing the equivalent
electrical circuit. While the single diode model is the most commonly used of the two types; in the
simplified four-parameter model neglecting shunt resistance by assuming it as infinite value, and
in five-parameter models by maintaining the effect of the shunt resistance. The five and seven
parameters models evaluate the photocurrent, the saturation current, the series and shunt resistors
and the quality factor of the diode. The eight parameters model adds build-in voltage, thickness,
average mobility-lifetime.

The exponential non-linearity of current-voltage equations causes many difficulties in prediction
and extraction of the electric, dynamic or thermal parameters [28] while, the implicit models are not
capable of determining the behavior of the photovoltaic cell/module under many effects. Furthermore,
solar cell models have multi-modal objective functions and model parameters vary with operational
conditions such as temperature and irradiance. The main problem is to identify the optimal parameter
values such as photo-generated current, diode saturation current, series resistance, and diode quality
factor. Over the years, various papers have been presented and developed different techniques to
identify the optimal values of the electric parameters to describe the behavior of the characteristics.
These can be categorized into analytical methods, numerical methods and metaheuristic methods.
There are several analytical and numerical (generally gradient-based) methods, as described in Table 1.

Table 1. A list of analytical and numerical methods employed in the literature.

Optimization Method Reference

Least squares and Newton-Raphson method [29]
Iterative curve fitting [30]
Lambert W-functions [20,31–35]

Integral-based linear least square identification method [36,37]
Linear interpolation/extrapolation [38]

Chebyshev polynomials [39]
Taylor’s series expansion [40]

Padé approximants [41]
Symbolic function [42]

Analytical mathematical method [43–45]
Simple methods based on measured points [46]

Metaheuristic methods are powerful in local searches, but they tend to get trapped in locally
optimal values and depend on the photovoltaic module’s manufacturer’s data such as open circuit,
short circuit, and maximum power points. Since the photovoltaic cell has triple non-linearity in
current-voltage, power-voltage and in intrinsic parameters, deterministic methods cannot extract
parameters accurately based on current, voltage and current derivatives with respect to the voltage at
short circuit current, maximum power and open circuit voltage. The derivation imposes several model
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restrictions such as convexity, continuity and differentiability conditions; moreover, the approximations
also reduce accuracy. Due to their great potential in modern global optimization resolution for nonlinear
and complex systems, the use of metaheuristic bioinspired optimization algorithms to carry out
minimizing procedures has received considerable attention. Metaheuristic methods are stochastic
methods inspired by various natural phenomenon, as listed in Table 2. They have been proven
to be a promising alternative to deterministic methods applied to the parameter identification of
solar/photovoltaic models.

Table 2. A list of metaheuristic methods employed in the literature.

Metaheuristic Methods Reference

Levenberg-Marquardt algorithm combined with Simulated Annealing [47]
Artificial Bee Swarm [48]
Artificial Bee Colony [49]

Hybrid Nelder-Mead and Modified Particle Swarm [50]
Firefly Algorithm [51–53]

Self-Organizing Migrating Algorithm [54]
Pattern Search [55]

Genetic Algorithm [56,57]
Simulated Annealing algorithm [58]

Repaired Adaptive Differential Evolution [59]
Particle Swarm Optimization [60]

Bird Mating Optimization approach [61]

However, the cited algorithms are usually trapped at local optima and they have large error
values [62]. In fact, the performance of these algorithms highly depends on the settings of specific
parameters, such as, for instance, the mutation probability, crossover probability, and the selection
operator in the genetic algorithm, as well as the inertia weight, and social and cognitive parameters in
particle swarm optimization. Therefore, researchers are still searching for powerful algorithms capable
of predicting the optimal parameters of different technology under various conditions with less errors.

Metaheuristic bioinspired algorithms have been suggested for parameter extraction and have
become an important part of modern optimization. Most metaheuristic algorithms are based on
natural or artificial swarm intelligence. Particle swarm optimization is a good example, it mimics the
swarming behavior of bees and birds [62]. Recently, a new metaheuristic search algorithm called the
firefly algorithm (FA) has been proposed and developed by X. Yang [63]. The FA is a nature-inspired
stochastic optimization algorithm based on the flashing patterns and behavior of swarming fireflies [64].
The FA has become an increasingly valuable tool of swarm intelligence that has been applied in almost
all areas of optimization, as well as in engineering practice [65]. It uses a kind of randomization by
searching for set solutions, inspired by the flashing lights of fireflies in nature. This algorithm differs
from many swarm intelligence techniques [65] for these two features:

• the first is the so-called local attraction, since the light intensity decreases with distance
(the attractions of fireflies can be local or global and depend on the absorbing coefficient);

• the second is related to the subdivision of fireflies and their regrouping into subgroups because
a neighboring attraction is stronger than a long-distance attraction, and each subgroup will swarm
around a local mode, making the firefly algorithm suitable for multimodal global optimization
problems [66].

In [67] the authors provide a detailed background and analysis of the firefly algorithm and test it
in a wide range of problems to solve multi-objective dispatch problems.

In this paper, the authors propose a comparison among bioinspired algorithms for the prediction
of solar cell and photovoltaic module parameters. The goal is to minimize the multi-objective functions
adapted to minimize the absolute errors between experimental and calculated current-voltage data
under inequality constraint functions. Three different cases are examined as follows: single and double
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diode models of a commercial mono-crystalline silicon solar cell (R.T.C France company) at 33 ◦C,
based on current-voltage experimental data recorded in [29]; (ii) flexible dual junction amorphous
hydrogenated silicon a-Si:H solar cell under standard sunlight, based on data obtained in a light
intensity of 1000 W/m2 and at a temperature of 300 K [54]; (iii) a Photowatt-PWP 201 photovoltaic
module which 36 polycrystalline silicon cells are connected in series and the data is measured at
an irradiance of 1000 W/m2, and a temperature of 25 ◦C [29]. To verify the performance of the proposed
approach and the quality of the obtained results, statistical analyses are carried out to measure the
accuracy of the calculated parameters and model suitability. The results obtained are compared with
recent techniques such as the Biogeography-Based Optimization algorithm with Mutation strategies
(BBO-M) [68], Levenberg-Marquardt algorithm combined with Simulated Annealing (LMSA) [47],
Artificial Bee Swarm Optimization algorithm [48], Artificial Bee Colony optimization (ABC) [49],
hybrid Nelder-Mead and Modified Particle Swarm Optimization (NM-MPSO) [50], Repaired Adaptive
Differential Evolution (RADE) [59], Chaotic Asexual Reproduction Optimization (CARO) [69] for solar
cell single and double diodes. For organic flexible hydrogenated amorphous silicon, a-Si:H solar cell
will be compared with the Quasi-Newton (Q-N) method and Self-Organizing Migrating Algorithm
(SOMA) [54]. The optimal parameters of Photowatt-PWP 201 are compared with the Newton-Raphson [29]
Pattern Search (PS) [55], Genetic algorithm (GA) [56] and Simulated Annealing algorithm (SA) [58].
The obtained results are in accordance with experimental data, there is good agreement for most of the
extracted parameters and the proposed algorithm outperformed the compared techniques.

2. Presentation and Modelling of the Solar Cell

The electrical behavior of the solar cell is modelled by its outputs current versus voltage
characteristic. Further, a solar cell is mathematically modelled in two common methods [24,70],
single diode (SDM) and double diode (DDM), with consider parasitic phenomena by series and shunt
resistances. Moreover, the flexible hydrogenated amorphous silicon a-Si:H solar cell with loss current
Irec is paralleled with the original photo-generated current source and the current sink representing the
recombination current in the i-layer of a P-I-N solar cell [71–75]. The two models are given in Figure 1.
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Figure 1. Equivalent circuit solar cell model: (a) single and double diode, (b) flexible hydrogenated
amorphous silicon a-Si:H.

The current-voltage behavior of a solar cell is described according to the electrical intrinsic
parameters and nonlinear implicit equation, for a given illumination and temperature.

I = Iph − ISD1

[
exp

(
V + IRs

a1VT

)
− 1
]
− SISD2

[
exp

(
V + IRs

a2VT

)
− 1
]
− V + IRs

RP
(1)

where, Iph is the photocurrent, ISD1 and ISD2 are the saturation currents, a1 and a2 are the diffusion and
recombination diode quality factors; Rs and Rp are the resistances in series and parallel, respectively,
VT is the thermal voltage (which will be defined in the followings), and:

S =

{
SDM for Open = 0
SDDM for Close = 1

(2)
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The current-voltage characteristic of a flexible solar cell is:

I = Iph

(
1−

d2
i

(µτ)e f f [Vbi − (V + IRs)]

)
− Is

[
exp

(
(V + IRs)

aVT

)
− 1
]
− V + IRs

RP
(3)

where, the voltage Vbi represents the built-in field voltage over the i-layer, in single junction amorphous
silicon solar cells, and in [76] it has been determined to be in the range 0.9 V; di represents the thickness
of the i-layer, the effective µτ-product (µτ)eff represents average mobility-lifetime product for election
and hole, and quantifies the quality of the active layer in terms of recombination of photo-generated
carriers. The thermal voltage is VT = KT/q where K is Boltzmann’s constant, T is the cell absolute
temperature in Kelvin and q is the electronic charge, a is the diode quality factor.

The photocurrent Iph describes the irradiation dependent recombination in i-layer and reduced
by the recombination current, as follows:

Irec = Iph

[(
µτ

d2
i

)
(Vbi − (V + IRs))

]−1

(4)

where, Irec is the current sink and it represents the recombination current in the i-layer of a P-I-N;
the current through the diode represents the diffusion process of charge carriers and the last term
represents the shunt leakage current Ip and is modelled as a space charge limited current [77,78].

In Equations (1) and (3), the five, seven and eight parameters which define the current versus
voltage relation of solar cell and photovoltaic module, vary in accordance with solar irradiance,
cell temperature and depend on reference values reported on datasheet.

3. Problem Formulation

The solar cell can be modelled by using the single diode model, double diode or multi-diode
models. The objective function is defined from Equations (1) and (3), several research papers use
different functions, for example, [48–50,59,68,69] use the root mean square error (RMSE), [47] use the
sum of squared error (SSE). In [55,58] the individual absolute error (IAE) is used and [79] use the mean
absolute errors (MAE). However, the objective function was used to minimize the vertical distance
between the experimental points and the theoretical curve. In this paper, we use separate fitting for
different regions in the current-voltage characteristics (Figure 2), because the current error is more
important for small voltages due to the strongly varying slope of the curve, while the voltage error is
more important for large voltages approaching an open circuit.

During the optimization process, each i-th solution is defined by a vector Xi, where X is
a candidate set of parameters defined as follows:

• for a single diode: X = x1 =
[

Iph ISD a RS RP

]
;

• for a double diode: X = x2 =
[

Iph ISD1 ISD2 a1 a2 RS RP

]
;

• for a flexible solar cell: X = x3 =
[

Iph di µτ Vbi Rs I0 a Rsh

]
.

The objective functions must be minimized with respect to the limits of parameters x1, x2 and x3.
The Equations (1) and (3) is rewritten in the following homogeneous equations.

For a single and double diode:

F1/2(V, I) = I − Iph + ISD1

[
exp

(
V + IRs

a1VT

)
− 1
]
+ SISD2

[
exp

(
V + IRs

a2VT

)
− 1
]
+

V + IRs

RP
(5)

For flexible hydrogenated amorphous silicon, a-Si:H:

G(V, I, x3) = I − Iph

(
1−

d2
i

(µτ)e f f [Vbi − (V + IRs)]

)
+ Is

[
exp

(
(V + IRs)

aVT

)
− 1
]
+

V + IRs

RP
(6)
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The cost function of current error ε1 near the short circuit (zone 1) is:
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The cost function of voltage error ε2 is the horizontal distance between the experimental point
and calculated curve; it is defined near the open circuit (zone 2) as:

ε2 =

√
1

m2
∑

Zone2

(
Vi(Vi, Ii, x)−VPV_ exp−i

)
2 (8)

Where m is the number of experimental data, Vi and Ii are the i-th simulated and experimental
current and voltage value, respectively. The overall objective function, i.e., the global error ε in the
two zones, is the sum of current and voltage errors and is defined as:

f (X) =ε = ε1 + ε2 (9)

The objective function constraints for each model are presented in the following equations.
For a single and double diode:

minεSD min εSD

subject to



0 ≤ Iph ≤ 1
0 ≤ ISD ≤ 1× 10−7

1 ≤ a ≤ 2
0 ≤ RS ≤ 0.5
0 ≤ RP ≤ 100

subject to



0 ≤ Iph ≤ 1
0 ≤ ISD1 ≤ 1× 10−7

0 ≤ ISD2 ≤ 1× 10−7

1 ≤ a1 ≤ 2
1 ≤ a2 ≤ 2
0 ≤ RS ≤ 0.5
0 ≤ RP ≤ 100

While, for flexible hydrogenated amorphous silicon, a-Si:H:
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minεF

subject to



0 ≤ Iph ≤ 0.8A
0 ≤ di ≤ 4 nm
0 ≤ µτ ≤ 5× 10−5 cm2/V
0 ≤ Vbi ≤ 1 V
0 ≤ IS ≤ 4× 10−18A
1 ≤ a ≤ 1
0 ≤ RS ≤ 0.5 Ω
0 ≤ RP ≤ 20 Ω

4. Firefly Optimization Algorithm

The Firefly algorithm is a swarm intelligence algorithm for optimization problems. It was
introduced in 2009 at Cambridge University by Yang [64], and it is inspired by the flashing patterns
and behavior of tropical fireflies at night, and it is flexible and easy to implement. The Firefly algorithm
is a bio-inspired metaheuristic algorithm and a random optimization, which is capable of converging
to a global solution of an optimization problem. It uses the following three idealized rules [63–67]:

1. No sex distinctions, i.e., fireflies are attracted to other fireflies regardless of their sex.
2. The degree of the attractiveness of a firefly is proportional to its brightness, thus for any

two flashing fireflies, the less bright one will move towards the brighter one; the more brightness,
the less the distance between two fireflies. If there is no brighter firefly, it will move randomly.

3. The brightness of a firefly is determined by the value of the objective function.

The basic rules of this algorithm were designed to primarily solve continuous problems. To design
the Firefly algorithm properly, two critical issues need to be defined: the attractiveness and the variation
of the light intensity.

4.1. Attractiveness

In the Firefly algorithm, the variation of the light intensity and the formulation of the attractiveness
play a vital role. The intensity of light or brightness I

(
rij
)

is inversely proportional to the square
of the distance rij [64,66] and the relative brightness of each firefly is expressed in the following
Gaussian form:

I
(
rij
)
= I0e−λr2

ij (10)

where, I
(
rij
)

is the light intensity at a distance rij, I0 is the maximum brightness (the absolute brightness
at the source point rij = 0) which is related to the objective function value. The higher value of the
objective function is the higher I0 is and λ is the light absorption coefficient, which is set to reflect that
brightness increases gradually with the increase in distance and the absorption of the medium rij is the
Euclidean distance between firefly i and firefly j. The attractiveness of each firefly [56] is expressed in
the form

β
(
rij
)
= β0e−λr2

ij (11)

where, β0 is the maximum attractiveness (the attractiveness at rij = 0, the largest value of the firefly

to attract another, is typically set to 1). However, computationally, computing 1/
(

1 + λr2
ij

)
is easier

than e−λr2
ij [64] and the intensity can be written as:

I
(
rij
)
=

I0

1 + λr2
ij

(12)
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Similarly, the attractiveness of a firefly can be approximated as follows:

β
(
rij
)
=

β0

1 + λr2
ij

(13)

4.2. Distance and movement

We suppose a firefly located at xi =
(
xi

1, xi
2 . . . xi

k
)

is brighter than another firefly located at

xj =
(

xj
1, xj

2 . . . xj
k

)
, the firefly located at xi will move towards xj. The distance between any two fireflies

i and j at xi and xj is the Euclidean distance given by [64,66] as follows:

rij =
∣∣xi − xj

∣∣ =
√√√√ d

∑
k

(
xi,k − xj,k

)2
(14)

where, d is the dimension, xi,k is the k-th component of the spatial coordinate xi of i-th firefly the
movement of a firefly i is attracted to another more attractive firefly j and the update location is
determined by

xi+1 = xi + β0e−λr2
ij
(
xj − xi

)
+ α

(
rand− 1

2

)
(15)

The first term is the current position of a firefly [66], the second term is used for considering
a firefly’s attractiveness to light intensity seen by adjacent fireflies and the third term is used for
the random movement of a firefly in case there are not any brighter ones. The coefficient α is
a randomization parameter determined by the problem of interest, while rand is a random-number
drawn from a Gaussian distribution or uniform distribution at time t, if β0 = 0, it becomes a simple
random walk. In the implementation of the algorithm we will use β0 = 0, α = 0.25 and the
attractiveness or absorption coefficient λ = 1 which guarantees a quick convergence of the algorithm to
the optimal solution. The concept of the firefly-based algorithm is presented in Figure 3. Moreover,
Figure 4 shows the here considered implementation of FA for the specific problem and cost function
given in Equation (9), as defined in Section 3.
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drawn from a Gaussian distribution or uniform distribution at time t, if 𝛽0 = 0, it becomes a simple 

random walk. In the implementation of the algorithm we will use 𝛽0 = 0 , 𝛼 = 0.25  and the 

attractiveness or absorption coefficient λ = 1 which guarantees a quick convergence of the algorithm 

to the optimal solution. The concept of the firefly-based algorithm is presented in Figure 3. Moreover, 

Figure 4 shows the here considered implementation of FA for the specific problem and cost function 

given in Equation (9), as defined in Section 3. 

 

Figure 3. A conceptual view of the firefly algorithm relationships, including locations 𝑥, distance 𝑟, 

brightness 𝐼(𝑟), and attractiveness 𝛽(𝑟). 
Figure 3. A conceptual view of the firefly algorithm relationships, including locations x, distance r,
brightness I(r), and attractiveness β(r).
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5. Results, Discussions and Comparison

In order to evaluate the efficiency of the Firefly algorithm in the estimation of the solar cell, the
photovoltaic module and the array parameter extraction, the results are compared with analytical
methods, numerical methods and metaheuristic algorithm to validate the effectiveness of the algorithm.
In order, to compare it with other algorithms, a benchmark commercial solar cell and benchmark
photovoltaic module are selected in single diode, double diode and photovoltaic module models are
considered. The study test cases are designated as follows:

• Test scenario 1: Apply to commercial solar cell for both single diode and double model under
standard irradiance level with relevant example comparisons to other methods.

• Test scenario 2: Apply to a flexible hydrogenated amorphous silicon a-Si:H photovoltaic cell using
single diode module.

• Test scenario 3: Apply to a commercial photovoltaic array using the single diode model,
with 36 solar cells connected in series.

The current-voltage measurements are collected from [29,54] and have been widely used by
different papers to test electric circuit models, modelling or translate the current versus voltage and
technique for parameter extraction. Furthermore, statistical analyses are carried out to measure the
accuracy of the estimated parameters and model suitability.

5.1. Case 1: Single and Double Diode Model (RTC France Company)

The proposed algorithm is applied first to extract the electrical intrinsic parameters values for
single and double diode models of a 57-mm-diameter commercial (RTC France) silicon solar cell under
1000 W/m2 at 33 ◦C. The extracted parameters are compared with those found by: Biogeography-Based
Optimization algorithm with Mutation strategies (BBO-M) [68], Levenberg-Marquardt algorithm
combined with Simulated Annealing (LMSA) [47], Artificial Bee Swarm Optimization algorithm [48],
Artificial Bee Colony optimization (ABC) [49], hybrid Nelder-Mead and Modified Particle Swarm
Optimization (NM-MPSO) [50], Repaired Adaptive Differential Evolution (RADE) [59], Chaotic
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Asexual Reproduction Optimization (CARO) [69], and the results for each model are reported in
Tables 3 and 4.

Table 3. Comparison of various parameter identification techniques for single diode model (RTC France
Company). FA: Firefly Algorithm; BBO-M: Biogeography-Based Optimization with Mutation strategies;
RADE: Repaired Adaptive Differential Evolution; LMSA: Levenberg-Marquardt algorithm combined
with Simulated Annealing; CARO: Chaotic Asexual Reproduction Optimization; ABC: Artificial Bee
Colony optimization; NM-MPSO: hybrid Nelder-Mead and Modified Particle Swarm Optimization.

Approaches
Parameter

Iph (A) I0(µA) a Rs (Ω) Rp (Ω)

FA 0.76069712 0.4324411 1.45245666 0.03341059 53.40180803
BBO-M 0.76078 0.31874 1.47984 0.03642 53.36227
RADE 0.760776 0.323021 1.481184 0.036377 53.718526
LMSA 0.76078 0.31849 1.47976 0.03643 53.32644
CARO 0.76079 0.31724 1.48168 0.03644 53.0893
ABC 0.7608 0.3251 1.4817 0.0364 53.6433

NM-MPSO 0.76078 0.32306 1.48120 0.03638 53.7222

Table 4. Comparison of various parameter identification techniques for a double diode model
(RTC France Company).

Approaches
Parameter

Iph (A) I01 (µA) I02 (µA) a1 a2 Rs (Ω) Rp (Ω)

FA 0.760820 0.591126 0.245384 1.0246 1.3644 0.036639 55.049
RADE 0.760781 0.225974 0.749347 1.451017 2.0000 0.036740 55.485443
CARO 0.76075 0.29315 0.09098 1.47338 1.77321 0.03641 54.3967
ABSO 0.76078 0.26713 0.38191 1.46512 1.98152 0.03657 54.6219
ABC 0.7608 0.0407 0.2874 1.4495 1.4885 0.0364 53.7804

NM-MPSO 0.76078 0.22476 0.75524 1.45054 1.99998 0.03675 55.5296

To confirm the accuracy of the extracted optimal values found by the Firefly algorithm,
the calculated currents for the single and double diode model by optimized parameters are summarized
in Tables 5 and 6 compared with individual absolute error (IAE).

IAE = |Imeasured − Iestimated| (16)

Table 5. Calculated current and compared IAE for single diode (RTC France Company).

Item VExp (V) IExp (A) ICalculated (A) FA (A)
Individual Absolute Error (IAE)

RADE BBO-M NM-MPSO

1 −0.2057 0.7640 0.76407143 7.1420 × 10−5 9.5590 × 10−5 6.0000 × 10−6 8.7000 × 10−5

2 −0.1291 0.7620 0.76263790 6.3789 × 10−4 6.6611 × 10−4 6.0400 × 10−4 6.6200 × 10−4

3 −0.0588 0.7605 0.76132213 8.2213 × 10−4 8.5473 × 10−4 8.1700 × 10−4 8.5400 × 10−4

4 0.0057 0.7605 0.76015347 3.4652 × 10−4 3.5034 × 10−4 3.6400 × 10−4 3.4600 × 10−4

5 0.0646 0.7600 0.75905434 9.4565 × 10−4 9.4298 × 10−4 9.4600 × 10−4 9.4500 × 10−4

6 0.1185 0.7590 0.75804099 9.5900 × 10−4 9.5528 × 10−4 9.4300 × 10−4 9.5700 × 10−4

7 0.1678 0.7570 0.75702642 2.6419 × 10−5 9.5100 × 10−5 1.2000 × 10−4 9.1000 × 10−5

8 0.2132 0.7570 0.75614154 8.5846 × 10−4 8.4950 × 10−4 8.1700 × 10−4 8.5800 × 10−4

9 0.2545 0.7555 0.75509107 4.0892 × 10−4 4.1823 × 10−4 3.6100 × 10−4 4.1300 × 10−4

10 0.2924 0.7540 0.75367808 3.2191 × 10−4 3.2967 × 10−4 2.7600 × 10−4 3.3600 × 10−4

11 0.3269 0.7505 0.75111180 6.1180 × 10−4 8.9542 × 10−4 9.5300 × 10−4 8.8800 × 10−4

12 0.3585 0.7465 0.74691657 4.1656 × 10−4 8.5737 × 10−4 9.1400 × 10−4 8.4800 × 10−4

13 0.3873 0.7385 0.73945849 9.5848 × 10−4 1.6042 × 10−3 1.6680 × 10−3 1.5960 × 10−3

14 0.4137 0.7280 0.72757692 4.2308 × 10−4 5.9912 × 10−4 5.8300 × 10−4 6.0400 × 10−4
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Table 5. Cont.

Item VExp (V) IExp (A) ICalculated (A) FA (A)
Individual Absolute Error (IAE)

RADE BBO-M NM-MPSO

15 0.4373 0.7065 0.70650197 1.9700 × 10−6 4.4631 × 10−4 4.8500 × 10−4 4.5200 × 10−4

16 0.4590 0.6755 0.67551809 1.8089 × 10−5 1.9600 × 10−4 2.3000 × 10−4 2.0600 × 10−4

17 0.4784 0.6320 0.63102588 9.7411 × 10−4 1.1090 × 10−3 1.2710 × 10−3 1.1170 × 10−3

18 0.4960 0.5730 0.57300627 6.2700 × 10−6 9.1027 × 10−4 1.1120 × 10−3 9.2000 × 10−4

19 0.5119 0.4990 0.49898281 1.7190 × 10−5 4.9902 × 10−4 5.6300 × 10−4 4.9000 × 10−4

20 0.5265 0.4130 0.41270839 2.9160 × 10−4 4.9030 × 10−4 6.1200 × 10−4 4.9200 × 10−4

21 0.5398 0.3165 0.31629674 2.0325 × 10−4 7.1532 × 10−4 9.8500 × 10−4 7.1800 × 10−4

22 0.5521 0.2120 0.21218495 1.8495 × 10−4 1.0468 × 10−4 1.4200 × 10−4 1.0200 × 10−4

23 0.5633 0.1035 0.10350897 8.9700 × 10−6 7.8397 × 10−4 1.2540 × 10−3 7.7900 × 10−4

24 0.5736 −0.0100 −0.01025607 2.5607 × 10−4 7.5437 × 10−4 1.2680 × 10−3 7.5100 × 10−4

25 0.5833 −0.1230 −0.12309841 9.8410 × 10−5 1.3775 × 10−3 2.5370 × 10−3 1.3810 × 10−3

26 0.5900 −0.2100 −0.21005316 5.3159 × 10−5 8.0320 × 10−4 1.4690 × 10−3 8.0700 × 10−4

Table 6. Calculated current and compared IAE for double diode (RTC France Company).

Item VExp (V) IExp (A) ICalculated (A) Individual Absolute Error (IAE)

FA RADE NM-MPSO

1 −0.2057 0.7640 0.76404800 4.7990 × 10−5 9.2680 × 10−5 2.3000 × 10−5

2 −0.1291 0.7620 0.76265838 6.5837 × 10−4 6.5394 × 10−4 5.9800 × 10−4

3 −0.0588 0.7605 0.76138191 8.8191 × 10−4 8.5755 × 10−4 8.3200 × 10−4

4 0.0057 0.7605 0.76020876 2.9123 × 10−4 3.3747 × 10−4 3.3000 × 10−4

5 0.0646 0.7600 0.75912329 8.7671 × 10−4 9.4000 × 10−4 8.9500 × 10−4

6 0.1185 0.7590 0.75806245 9.3754 × 10−4 9.4935 × 10−4 8.8000 × 10−4

7 0.1678 0.7570 0.75700411 4.1100 × 10−6 9.6350 × 10−5 1.8700 × 10−4

8 0.2132 0.7570 0.75750201 5.0201 × 10−4 8.5535 × 10−4 7.5700 × 10−4

9 0.2545 0.7555 0.75557754 7.7540 × 10−5 4.1885 × 10−4 3.2300 × 10−4

10 0.2924 0.7540 0.75409595 9.5950 × 10−5 3.3126 × 10−4 2.7700 × 10−4

11 0.3269 0.7505 0.75031932 1.8060 × 10−4 8.9511 × 10−4 8.9600 × 10−4

12 0.3585 0.7465 0.74651818 1.8185 × 10−5 8.4939 × 10−4 7.9800 × 10−4

13 0.3873 0.7385 0.73873379 2.3370 × 10−4 1.6021 × 10−3 1.4950 × 10−3

14 0.4137 0.7280 0.72816539 1.6540 × 10−4 6.1216 × 10−4 7.2900 × 10−4

15 0.4373 0.7065 0.70628557 2.1442 × 10−4 4.5162 × 10−4 3.4400 × 10−4

16 0.4590 0.6755 0.67594242 4.4242 × 10−4 1.9888 × 10−4 2.5900 × 10−4

17 0.4784 0.6320 0.63286049 8.6045 × 10−4 1.1123 × 10−3 1.0990 × 10−3

18 0.4960 0.5730 0.57381689 8.1689 × 10−4 9.2523 × 10−4 8.4500 × 10−4

19 0.5119 0.4990 0.49879214 2.0785 × 10−4 4.9417 × 10−4 5.8600 × 10−4

20 0.5265 0.4130 0.41276355 2.3644 × 10−4 4.9125 × 10−4 5.7100 × 10−4

21 0.5398 0.3165 0.31674212 2.4212 × 10−4 7.1918 × 10−4 7.5300 × 10−4

22 0.5521 0.2120 0.21202519 2.5196 × 10−5 1.0831 × 10−4 8.8000 × 10−5

23 0.5633 0.1035 0.10350359 3.5935 × 10−6 7.7968 × 10−4 8.2700 × 10−4

24 0.5736 −01000 −0.01049021 4.9021 × 10−4 7.5539 × 10−4 7.1100 × 10−4

25 0.5833 −0.1230 −0.12300588 5.8808 × 10−6 1.3767 × 10−3 1.3880 × 10−3

26 0.5900 −0.2100 −0.21005362 5.3621 × 10−5 8.0501 × 10−4 8.6500 × 10−4

Furthermore, to understand the quality of the curve fit between Firefly algorithm values and
experimental data, the results are compared to other algorithms. The compared statistical analysis for
each model is presented in Tables 7 and 8. The compared statistical criteria indicates that the Firefly
algorithm ranks the overall lowest values for relative error (RE), median absolute error (MAE), residual
sum of squares (SSE), and root mean square error (RMSE). The statistical errors are used to show the
performance with the definitions as follows:

RE =
Imeasured − Iestimated

Imeasured
(17)
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MAE =
m

∑
i=1

|Iestimated − Imeasured|
m

(18)

SSE =
m

∑
i=1

(Imeasured − Iestimated)
2 (19)

RMSE =

√
1
m

m

∑
i=1

(Imeasured − Iestimated)
2 (20)

Table 7. Statistical result for single diode model (RTC France Company).

Item FA BBO-M RADE LMSA CARO ABC NM-MPSO

Total IAE 9.92230 × 10−3 21.3000 × 10−3 17.7036 × 10−3 21.5104 × 10−3 18.1550 × 10−3 20.5000 × 10−3 17.700 × 10−3

RMSE 5.138165 × 10−4 9.8634 × 10−4 9.8602 × 10−4 9.8640 × 10−4 9.86650 × 10−4 9.86200 × 10−4 9.8602 × 10−4

SSE 5.723673 × 10−6 2.52997 × 10−5 1.5625 × 10−5 2.5297 × 10−5 1.65385 × 10−5 25.7000 × 10−6 15.6295 × 10−6

MAE 3.81630 × 10−4 8.1923 × 10−4 6.8090 × 10−4 8.2732 × 10−4 6.98260 × 10−4 7.8846 × 10−4 6.8077 × 10−4

IAE: Individual Absolut Error, RMSE: Root Mean Square Error, SSE: Sum of Squares Error, MAE: Mean
Absolute Error.

Table 8. Statistical result for double diode model (RTC France Company).

Item FA RADE CARO ABSO ABC NM-MPSO

Total IAE 8.570300 × 10−3 17.7093 × 10−3 69.330 × 10−3 17.768 × 10−3 20.3929 × 10−3 17.356 × 10−3

RMSE 4.548499 × 10−6 9.82480 × 10−4 9.8260 × 10−4 9.8344 × 10−4 9.8610 × 10−4 9.8250 × 10−4

SSE 5.379100 × 10−6 15.6338 × 10−6 16.9587 × 10−6 15.3457 × 10−6 25.600 × 10−6 14.9455 × 10−6

MAE 3.2963 × 10−4 17.7093 × 10−3 69.330 × 10−3 17.768 × 10−3 20.3929 × 10−3 6.6754 × 10−4

From Tables 7 and 8, we observe that the five and seven electrical parameters identified by the
Firefly algorithm are close and more accurate than those found by all other compared algorithms.
The performance of the proposed algorithm provides the lowest values for the statistical criteria, IAE,
RMSE, SSE and MAE when compared to the other methods. Therefore, the Firefly algorithm is ranked
first in achieving the lowest IAE, RMSE, SSE and MAE, while the Repaired Adaptive Differential
Evolution algorithm and hybrid Nelder-Mead and Modified Particle Swarm Optimization (NM-MPSO)
are ranked second and third, respectively. Therefore, the optimal parameters identified by the proposed
Firefly Algorithm are very accurate because they are close to the real parameters of the system. The
individual absolute error (IAE) and the relative error RE for each measurement using optimal values
founded by the Firefly algorithm are illustrated in Figures 5 and 6, respectively. The Firefly algorithm
performs better than the reported methods.
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The current-voltage and power-voltage characteristics resulting from extracted parameters by
the Firefly algorithm along with experimental data are compared to estimated data to investigate the
quality of the identified parameters. This is illustrated in Figures 7 and 8. The two figures show the
reconstructed single diode model is in good agreement with experimental data and are very close to
each other.
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compared with the Firefly algorithm show good performance with the experimental data for single
and double diode.
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5.2. Case 2: Organic Flexible Hydrogenated Amorphous Silicon a-Si:H Solar Cell

The Firefly algorithm, based on a parameter estimation method is used to extract the eight optimal
parameters of flexible dual junction amorphous silicon solar cell under standard sunlight, based on
data obtained in light intensity of 1000 W/m2 and at a temperature of 300 K. The experimental data are
used from [48]; only the open circuit voltage Voc and short circuit current Isc are obtained. Moreover,
the optimal parameters are compared with several other techniques based on the same experimental
data. The extracted optimal parameters by Firefly algorithm have been reported in Table 9, compared
with the Quasi-Newton method and Self-Organizing Migrating Algorithm. Since it is difficult to extract
the flexible amorphous silicon solar cell circuit model parameters and the research is still comparatively
rare, the Quasi-Newton (Q-N) method and Self-Organizing Migrating Algorithm (SOMA) [48] have
been chosen for comparison because in [29,48] they were demonstrated to provide good results for
parameter extractions.

Table 9. Comparison among different parameter extraction of flexile silicon a-Si:H solar cell.

Algorithm Iph (µA) d (m) µτeff ( cm2

V ) Vbi (V) Rs (Ω) I0 (A) a Rsh (Ω)

FA 0.3167 5.8065 × 10−8 3.3306 × 10−5 0.9895 0.4242 3.0691 × 10−14 2 13.4978
Q-N 0.3043 5.8065 × 10−8 4.8812 × 10−5 0.9759 0.4242 3.0691 × 10−14 1.9998 11.9138

SOMA 0.3181 4.9743 × 10−8 3.3277 × 10−5 0.9963 0.4706 3.0783 × 10−14 1.9931 13.9288

To verify and validate the performance of the quality of the results, statistical analyses were
carried out to measure the accuracy of the estimated parameters. The estimated current values are
compared to experimental current by means of the following statistical errors: the individual absolute
error (IAE), Standard deviation (SD), residual sum of squares (SSE), the root mean square error (RMSE)
and the mean bias error (MBE) of the solar cell for each measurement, respectively. The statistical
errors are used to compare term by term, the difference between estimated and experimental electric
current. Generally, the lower these parameters, the more the efficiency of the model. Table 10 presents
the current calculated for the Firefly algorithm and the individual absolute error, Table 11 summarizes
the statistical errors for each measurement using the optimal values of x found by the Quasi-Newton
method and Self-Organizing Migrating algorithm [48] compared with Firefly algorithm.
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Table 10. Comparison between the calculate results of flexile silicon a-Si:H solar cell.

Experiment Current
FA Q-N SOMA

Current (A) IAE Current (A) IAE Current (A) IAE

0 7.3656 × 10−4 7.3656 × 10−4 0.0041 0.0041 8.6804 × 10−4 8.6804 × 10−4

0.0158 0.0152 6.0 × 10−4 0.0100 0.0058 0.0131 0.0027
0.0302 0.0361 0.0059 0.0305 0.0003 0.0334 0.0032
0.0619 0.0653 0.0034 0.0591 0.0028 0.0623 0.0004
0.0868 0.0744 0.0124 0.0680 0.0188 0.0715 0.0153
0.1142 0.1023 0.0119 0.0955 0.0187 0.1004 0.0138
0.1604 0.1623 0.0019 0.1549 0.0055 0.1679 0.0075
0.3044 0.3002 0.0042 0.2835 0.0209 0.3018 0.0026

Table 11. Performance indexes of flexile silicon a-Si:H solar cell.

Statistical Errors FA Q-N SOMA

Standard deviation (SD) 4.925 × 10−3 8.46 × 10−3 7.86 × 10−3

Root mean square error (RMSE) 6.1634 × 10−3 12.3924 × 10−3 7.9529 × 10−3

Residual sum of squares (SSE) 3.6384 × 10−4 1.2286 × 10−3 5.0604 × 10−4

Mean bias error (MBE) 6.62401 × 10−3 1.2424 × 10−2 7.4912 × 10−3

Figure 10 presents the compared individual absolute error of each measurement used for current
and power of optimal value x found by Firefly algorithm compared with the Quasi-Newton method
and Self-Organizing Migrating Algorithm. From Figure 10, Tables 10 and 11 we know that the Firefly
algorithm and Self-Organizing Migration Algorithm have the lowest SD, RMSE, SSE and MBE values
among these three compared methods. Furthermore, the Firefly algorithm has better performance than
the Quasi-Newton method and Self-Organizing Migration presented in [48].
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different algorithms.

In order to illustrate the quality of the extracted optimal values x3 found by the Firefly algorithm,
the extracted values of Iph, di, µτ, Vbi, Rs, I0, a and Rsh are put into Equation (3), then the current-voltage
and power-voltage characteristics of this model is reconstructed with 16 pairs of current-voltage.
The current-voltage and power-voltage characteristics resulting from the extracted parameters by
Firefly algorithm along with experimental data have been illustrated in Figure 11. The Figures show
the reconstructed model is in good agreement with the experimental data.
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The comparative statistical error used in this paper compare the difference between estimated and
experimental electric parameters, term by term. The mean bias error (MBE) provides information on
the overestimation or underestimation of the solar cell performance. Therefore, the obtained results are
more accurate than those found by Q-N and SOMA, can better reveal the actual behavior of solar cells
and the model is efficient. Generally, the lower these parameters are, the more the model is efficient.

5.3. Case 3: Commercial Silicon Photovoltaic Module Photowatt-PWP 201

The prototype of the Photowatt-PWP 201 photovoltaic module has six solar panels, two are
connected in series and three photovoltaic panels are connected in parallel. The measured voltage
and current are taken under 25 ◦C and 1000 W/m2. In this case, 26-pair current-voltage measured
values are the same as [29], which are derived from 36 polycrystalline silicon cells which are connected
in series. The extracted optimal parameters values for the photovoltaic module by Firefly algorithm
have been reported in Table 12. Moreover, the optimal parameters are compared with several other
techniques: Newton-Raphson [29] Pattern Search (PS) [55], Genetic Algorithm (GA) [56] and Simulated
Annealing algorithm (SA) [58] based on the same experimental data. The purpose of comparison is to
validate the accuracy of the Firefly algorithm in the parameter extraction process with a short time
of convergence.

Table 12. Optimal parameter values identified by FA for Photowatt-PWP 201 polycrystalline
photovoltaic module single diode compared with other methods.

Item FA Newton-Raphson PS GA SA NM-MPSO

Iph (A) 1.0306 1.0318 1.0313 1.0441 1.0331 1.0305
I0 (µA) 3.4802 3.2875 3.1756 3.4360 3.6642 3.6817

a 48.6551 48.4500 48.2889 48.5862 48.8211 48.8598
Rs (Ω) 1.2014 1.2057 1.2053 1.1968 1.1989 1.1944
Rsh (Ω) 971.1396 555.5556 714.2857 555.5556 833.3333 983.9970

The quality of the results in the extracted parameters are used to calculate the theoretical current
values and compared to experimental measurements as show in Table 13.

The optimal value of the following statistical errors: individual absolute error (IAE), relative error
(RE), root means square error (RMSE) and residual sum of squares (SSE), for each measurement using
the Firefly algorithm and other parameter extraction techniques are given in Table 14.
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Table 13. Measured and calculated current of photovoltaic module Photowatt-PWP 201 at 25 different
working conditions compared with SA and PS.

Item VExp (V) IExp (A) ICalculated (A)
Individual Absolute Error

FA SA PS

1 0.1248 1.0315 1.02919209 2.30790 × 10−3 6.0000 × 10−5 2.2000 × 10−3

2 1.8093 1.0300 1.02743525 2.56480 × 10−3 6.4000 × 10−4 3.7800 × 10−3

3 3.3511 1.0260 1.02577555 2.24450 × 10−4 1.4100 × 10−3 2.6500 × 10−3

4 4.7622 1.0220 1.02412139 2.12140 × 10−3 3.4900 × 10−3 1.4100 × 10−3

5 6.0538 1.0180 1.02228609 4.28610 × 10−3 5.4100 × 10−3 2.4000 × 10−4

6 7.2364 1.0155 1.01990640 4.40640 × 10−3 5.2900 × 10−3 1.0100 × 10−3

7 8.3189 1.0140 1.01632679 2.32680 × 10−3 2.9600 × 10−3 3.8800 × 10−3

8 9.3097 1.0100 1.01045436 4.54360 × 10−4 830.00 × 10−6 6.4200 × 10−3

9 10.2163 1.0035 1.00062757 2.87240 × 10−3 2.8200 × 10−3 10.320 × 10−3

10 11.0449 0.9880 0.98458550 3.41450 × 10−3 3.7000 × 10−3 11.260 × 10−3

11 11.8018 0.9630 0.95960866 3.39130 × 10−3 4.0300 × 10−3 11.450 × 10−3

12 12.4929 0.9255 0.92293341 2.56660 × 10−3 3.5000 × 10−3 10.590 × 10−3

13 13.1231 0.8725 0.87243997 6.00000 × 10−5 1.0000 × 10−3 7.5600 × 10−3

14 13.6983 0.8075 0.80712359 3.76410 × 10−4 1.5200 × 10−3 7.4200 × 10−3

15 14.2221 0.7265 0.72772952 1.22950 × 10−3 4.4000 × 10−4 4.7100 × 10−3

16 14.6995 0.6345 0.63619518 1.69520 × 10−3 1.2200 × 10−3 3.0900 × 10−3

17 15.1346 0.5345 0.53538376 8.83760 × 10−4 3.6000 × 10−4 3.0700 × 10−3

18 15.5311 0.4275 0.42846560 9.65600 × 10−4 8.0000 × 10−4 1.7300 × 10−3

19 15.8929 0.3185 0.31828380 2.16190 × 10−4 7.4000 × 10−4 2.3400 × 10−3

20 16.2229 0.2085 0.20744219 1.05780 × 10−3 1.8900 × 10−3 2.5500 × 10−3

21 16.5241 0.1010 0.09791334 3.08670 × 10−3 5.3400 × 10−3 5.0500 × 10−3

22 16.7987 −0.008 −0.00863233 6.32300 × 10−4 5.9000 × 10−4 6.7000 × 10−4

23 17.0499 −0.111 −0.11145028 4.50280 × 10−4 6.0000 × 10−5 2.2800 × 10−3

24 17.2793 −0.209 −0.20961535 6.15350 × 10−4 0000000000 3.1900 × 10−3

25 17.4885 −0.303 −0.30253352 4.66470 × 10−4 2.6200 × 10−3 6.7500 × 10−3

Table 14. Comparison of performance indexes for photovoltaic module Photowatt-PWP 201.

Item FA Newton-Raphson PS GA SA

Total IAE 42.6725 × 10−3 56.8800 × 10−3 115.610 × 10−3 153.479 × 10−3 50.710 × 10−3

RMSE 2.1540 × 10−3 780.500 × 10−3 11.8000 × 10−3 6.9828 × 10−3 2.700 × 10−3

SSE 1.1600 × 10−4 2.3249 × 10−4 8.1725 × 10−4 1.2190 × 10−3 1.7703 × 10−4

MAE 1.7069 × 10−3 2.2752 × 10−3 4.6244 × 10−3 6.1392 × 10−3 2.0284 × 10−3

Table 14 proves that the Firefly algorithm has the lowest IAE, RMSE, SSE and MAE compared
to other parameter extraction techniques such as, Newton-Raphson, Pattern Search (PS), Genetic
Algorithm (GA) and Simulated Annealing algorithm (SA), since the Firefly algorithm found the
minimum value of statistical analysis in parameter extraction for the photovoltaic module.

The comparison between Newton-Raphson, Pattern Search (PS), Genetic Algorithm (GA) and
Simulated Annealing algorithm (SA) and the proposed algorithm, with the optimal value of IAE
for each measurement, is illustrated in Figure 12. This Figure shows that the FA algorithm has
better performance than the other parameter extraction algorithms. The total IAE values for each
measurement is also calculated and listed in Table 14. The total IAE value shown in Table 14 highlights
that the FA has the lowest total IAE compared to other algorithms for the photovoltaic module.
Table 14 and Figure 12 indicate that FA outperforms the compared algorithms for this parameter
extraction problem.
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Figure 12. Comparison between, (a) IAE and (b) RE using the extracted parameters by FA and
Newton-Raphson, PS, GA and SA for photovoltaic module Photowatt-PWP 201.

In order to validate the optimal values Iph, I0, a, Rs and Rp extracted by the Firefly algorithm,
they are substituted into Equation (1) to reconstruct the current-voltage and power-voltage of the
photovoltaic module. Figure 13 illustrates the current-voltage characteristics of the optimal values
extracted by FA along with the experimental data. From the results, it can be observed that the values
extracted by FA for the considered photovoltaic module fit the experimental data very well.
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photovoltaic module Photowatt-PWP 201 and the estimated results by FA.

From these two cases for the solar cell, the single diode and double diode models, the Firefly
algorithm showed the lowest statistical criteria: IAE, RMSE, SSE and MAE values among the
compared techniques. We observed that the proposed algorithm is able to extract the intrinsic electrical
parameters at the entire range of irradiance and temperature and performance, as compared to other
recent techniques.

6. Conclusions

The paper presents the application of the Firefly algorithm in order to provide an accurate
model of solar cells, single and double, and photovoltaic modules. The data required for testing
the effectiveness of the Firefly algorithm optimization technique is based on the results in previous
literature, experimental data and the nonlinear function of solar cell/photovoltaic characteristics. From
the results and the statistical analyses, it can be observed that the proposed Firefly algorithm achieves
the least root mean square error (RMSE), residual sum of squares (SSE) and mean absolute error (MAE)
comparing the estimated and experimental data. Furthermore, the reproduction of current-voltage
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characteristics predicted using the parameters extracted by the Firefly algorithm are very close to those
based on the experimental data. Moreover, the Firefly algorithm can extract the optimal parameters at
all ranges of irradiance and temperature, especially at low irradiance.
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