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Abstract: The preference of one alternative over another is a useful way to express the opinion of the
decision-maker. In the process of group decision-making, preference relations are used in preference
modeling of the alternatives under given criteria. The probability is an important tool to deal with
uncertainty and, in many scenarios of decision-making problems, the probabilities of different events
affect the decision-making process directly. In order to deal with this issue, the hesitant probabilistic
multiplicative preference relation (HPMPR) is defined in this paper. Furthermore, consistency of the
HPMPR and consensus among decision makers are studied here. In this respect, many algorithms are
developed to achieve consistency of HPMPRs, reasonable consensus between decision-makers and
a final algorithm is proposed comprehending all other algorithms, presenting a complete decision
support model for group decision-making. Lastly, we present a case study with complete illustration
of the proposed model and discuss the effects of probabilities on decision-making validating the
importance of the introduction of probability in hesitant multiplicative preference relations.

Keywords: decision support system; hesitant fuzzy sets; multi-criteria group decision-making;
hesitant multiplicative set; hesitant probabilistic multiplicative set

1. Introduction

Fuzzy set theory was initially introduced by Zadeh [1] in 1965 as an extension of the classical set
theory. In classical set theory, an element either belongs to or does not belong to a set. In fuzzy set
theory, a gradual assessment of elements of a set is described with a membership function that is in
[0, 1], and it is successfully used in decision-making problems [2]. After this popular extension of set
theory, several extensions and generalizations of fuzzy sets have been introduced. These extensions
have been successfully used in several practical applications of both real life and scientific problems.
Various applications of these extensions can be found in artificial intelligence, computer science,
medicine, control engineering, decision theory, expert systems, logic, management science, operations
research, pattern recognition, and robotics [3–6]. Torra felt that there is still a need to introduce one
more extension of fuzzy set theory—the hesitant fuzzy set (HFS) theory [7]. This extension permits
several possible membership degrees of an element in unit closed interval [0, 1]. HFS provides a much
better description than the other extensions of fuzzy sets when the difficulty of establishing the
membership degree is tremendous and a specific set of possible values, instead of a single value,
is chosen as possible membership values. Many studies on HFS have been conducted, see [8–14].
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In the quest to model the real world more accurately, it was noted that the probabilities of
occurrence for different membership values in HFS must be different. HFS does not take into account
the occurrence probabilities, which can play a crucial role in decision-making. To overcome this flaw,
Xu and Zhou proposed the concept of a hesitant probabilistic fuzzy set [15], an extension of HFS.
Furthermore, they investigated several aggregation operators with properties for hesitant probabilistic
fuzzy set. Additionally, a novel algorithm was developed to handle the multi-criteria group decision
making problems for the hesitant probabilistic fuzzy set [16]. This concept was further extended to
the continuous form of hesitant probabilistic fuzzy set [17]. While Pang et al. introduced the idea of
a probabilistic linguistic term set [18], allowing a decision-maker (DM) to provide not only his opinion
in linguistic terms but also the occurrence probabilities, in an attempt to comprehend the complexities
of reality, Zhai et al. [16] proposed the notion of a probabilistic linguistic vector-term set with a novel
algorithm for group decision-making with multi-granular linguistic information.

This research work confirms the vital role of occurrence probabilities. Apart from interval
[0, 1], the Saaty’s scale 1–9 [19,20] is quite important and useful for expressing the opinion of
the decision-maker. Xia and Xu [21] defined the hesitant multiplicative set (HMS) in order to
express membership degrees in Saaty’s scale. However, the HMS has the same deficiency as HFS,
as the occurrence probabilities are not studied. Therefore, it is an important research problem to
study HMS in a hesitant probabilistic environment. In this paper, we extend HMS as a hesitant
probabilistic multiplicative set (HPMS), by assigning the probabilities to membership degrees expressed
in Saaty’s scale. For practical group decision-making with the proposed HPMS, our choice is the
preference relations. The preference relations are quite elegant in making practical decision-making
flawless. A number of preference relations have been developed in this manner and used in practical
decision-making, such as multiplicative preference relations [19,20,22], fuzzy preference relations [23],
multiplicative fuzzy preference relations [24], incomplete fuzzy preference relations [25,26], linguistic
preference relations [27–29], intuitionistic fuzzy preference relations [30–34], interval-valued hesitant
preference relations [10], hesitant fuzzy preference relations [21,35–37], and hesitant multiplicative
preference relations [21,38,39].

The main goal of this paper is to develop an efficient group decision-making support system
that will be capable of handling occurrence probabilities of multiplicative preference degrees. In this
regard, a novel notion of hesitant probabilistic multiplicative preference relations is proposed that will
model the vagueness and complexities of real life scenarios in a better way. In this line of research,
Zhou and Xu [40] proposed and studied probabilistic hesitant fuzzy preference relations and dealt
with their consistency by defining the expected consistency; however, they do not address group
decision-making. The group decision-making [24,25,41–44] is more accurate than a single person’s
decision. Any group decision support system of preference relations must address the following
critical issues.

• Consistency of preference relations: Inconsistent preference relations lead to unrealistic decisions.
Consistency is like transitivity in some sense [22,27,35,38,45–47]. Therefore, the preference relation
must satisfy a certain level of consistency.

• Consensus among decision-makers: In group decision-making, the diversity in nature, social
backgrounds, education level, expertise, and experience of decision-makers may lead to
differences in opinions, but it is important in many scenarios of group decision-making to develop
a reasonable consensus between the decision-makers [22,25,35,38,41,47–49]. Thus, some measures
are needed to remove the difference in opinion to some extent.

To deal with both issues of consistency and consensus, in the HPMPR, multiplicative consistency
and weak stochastic transitivity are used for multiplicative preference degree and their occurrence
probabilities respectively, to define consistency. A novel deviation degree is introduced between
two HPMPRs, based on a consistency measure of the HPMPR, and a consensus measure among
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decision-makers is defined. A series of novel algorithms are designed to find a consistent HPMPR, make
the HPMPR acceptably consistent, and develop an acceptable consensus between decision-makers.

The paper is structured in the following way. In Section 2, some preliminary concepts are discussed
to clarify our proposed consistency and consensus measure. In Section 3, the HPMS and HPMPR
are defined, and the consistency issue of the HPMPR is discussed. Section 4 is devoted to resolving
the consensus issue, and an algorithm is presented for reaching an acceptable consensus among
decision-makers. Section 5 is dedicated to presenting a complete group decision-making model dealing
with both issues of consistency and consensus. In Section 6, a numerical analysis of the developed
model is performed in a case study in order to demonstrate the relevance of our proposal. Section 7
ends the paper with some concluding remarks.

2. Preliminaries

For convenience, let #h be the number of elements in h. Xia and Xu [21] also used Saaty’s scale
1–9 to express the membership degree in HFS, and provided the definition of a hesitant multiplicative
set (HMS).

Definition 1. [21] Consider that a fixed set X, a hesitant multiplicative set on X, is defined by a function that
gives a subset of [1/9, 9] when applied to X.

For easy understanding, Xia and Xu [21] represented the HMS as

M = {< x, bM(x) > |x ∈ X}

where bM(x) is the set of values from [1/9, 9] according to Saaty’s scale [19], indicating possible
multiplicative membership degrees of x ∈ X of the set M. They also called b = bM(x) a hesitant
multiplicative element (HME) and M the set of hesitant fuzzy elements. For further work, let #b denote
the number of elements in the HME b.

Example 1. Consider X = {x1, x2, x3}, E = {< x1, {0.2, 0.4, 0.9} >, < x2, {0.5} >, < x3, {0.1, 0.6} >},
M = {< x1, {1/6, 2} >, < x2, {1, 4, 7} >, < x3, {1/3} >}, h = {0.2, 0.4, 0.9}, and b = {1, 4, 7}.
Then, E is HFS, M is HMS, h is HFE, and b is HME.

The common problem in working in a hesitant fuzzy environment is that there is a different
number of elements in different HFEs or HMEs. Take a fixed set X = {x1, x2, x3, ..., xn} of alternatives.
The DMs can give their preferences as either HFE or HME. Xia and Xu [21] introduced the hesitant
fuzzy preference relation (HFPR) and the hesitant multiplicative preference relation (HMPR):

Definition 2. [21] For a fixed set X = {x1, x2, ..., xn}, an HMPR is expressed by a matrix B = (bij)n×n ⊆
X × X, where bij = {bs

ij | s = 1, 2, 3, ..., #bij} is an HFE giving all the possible preference degrees of the
alternative xi over xj in Saaty’s scale. Additionally, bij satisfies the following conditions for all i, j ∈ N:

bσ(s)
ij × b

(#bij−σ(s)+1)
ji = 1, bii = {1}, #bij = #bji

where bσ(s)
ij is the sth smallest value in bij, and the elements of bij are arranged in increasing order.

To make hesitant fuzzy sets more compatible with reality, Xu and Zhour [15] defined the hesitant
probabilistic fuzzy element (HPFE) and the hesitant probabilistic fuzzy set (HPFS).
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Definition 3. [15] Consider a fixed set R. The HPFS on R is defined as a mathematical symbol:

HP = {h(γi|pi)|γi, pi} (1)

where h(γi|pi) is the HPFE consisting of the elements of the form γi|pi, expressing the hesitant fuzzy information
with probabilities to the set Hp, 0 ≤ γi ≤ 1, i = 1, 2, 3, ..., #h, where #h is the number of elements in h(γi|pi),

pi ∈ [0, 1] is the respective hesitant probability for γi, and
#h
∑

i=1
pi = 1.

3. Hesitant Probabilistic Multiplicative Sets and Relations

With the introduction of probability in hesitant fuzzy sets [15] and linguistic term sets [18], it is
important to improve other sets in this context. HME expresses the opinion of the decision-maker in
Saaty’s scale. The aim of this section is first to introduce the HPMS and then define and build on its
basis a basic framework for the HPMPR.

Definition 4. For a fixed set X, the HPMS is defined as

M = {< x, h(x) >: x ∈ X}

where h(x) = {γi|pi : i = 1, 2, 3, ..., #h} denotes the hesitant probabilistic multiplicative element (HPME)

such that γi ∈ [1/9, 9] and pi ∈ [0, 1] with
#h
∑

i=1
pi = 1, namely pj is the probability of γj among all others γi.

For clarification, the following example is given.

Example 2. Let X = {a, b, c}. Consider

M = {< a, {1/2|0.3, 3|0.7} >,< b, {0.45|0.6, 0.98|0.4} >,< c, {6.5|0.4, 7|0.3, 8|0.3} >}.

Then, M is HPMS and {1/2|0.3, 3|0.7}, {0.45|0.6, 0.98|0.4}, {6.5|0.4, 7|0.3, 8|0.3} are HPMEs.

For comparison between two HPMEs, the score and deviation for the HPME is defined below,
based on the definition of the score function of the HME and the variance of he random variable,
respectively.

Definition 5. Take HPME h = {γi|pi : i = 1, 2, ..., #h}. Then,

s(h) =

(
#h

∏
i=1

γ
pi
i

) 1
#h

(2)

is defined as the score function. Additionally,

d(h) =
#h

∑
i=1

(
γ

pi
i − s(h)

)2
. (3)

Consider two HPMEs, h1 and h2. The order of the HPMEs is decided as follows:

• If s(h1) > s(h2), then h1 > h2 (h1 is superior to h2).
• For the case s(h1) = s(h2), compare the deviations. If d(h1) > d(h2), then h2 > h1; if d(h2) > d(h1),

then h1 > h2; if d(h1) = d(h2), then h1 = h2.
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The main aim of this study is to introduce the HPMPR and to make a decision-making model
with it. For this purpose, the following operations are made. Let h1 and h2 be HPMEs of the same
length, i.e., #h1 = #h2. Then,

h1 ⊗ h2 = ∪γ1
σ(s) |p

1
σ(s)∈h1,γ2

σ(s) |p
2
σ(s)∈h2

{γ1
σ(s) × γ2

σ(s)|p
1
σ(s) + p2

σ(s)} (4)

hω = ∪γσ(s) |pσ(s)∈h{γω
σ(s)|ωpσ(s)} : ω > 0 (5)

where γ1
σ(s)|p

1
σ(s) and γ2

σ(s)|p
2
σ(s) are sth elements of h1 and h2, respectively.

These operations satisfy the following properties.

Theorem 1. Take three HPMEs, h1, h2 and h3, with #h1 = #h2 = #h3 and ω1, ω2, ω3 > 0. Then,

1. h1 ⊗ h2.
2. (h1 ⊗ h2)⊗ h3 = h1 ⊗ (h2 ⊗ h3).
3. (h1 ⊗ h2)

ω = hω
1 ⊗ hω

2 .
4. h(ω1+ω2) = hω1 ⊗ hω2 .

(please see Appendix A for Proof 1).

To allow decision-makers to provide the preferences in a hesitant probabilistic environment,
we define HPMPR.

Definition 6. Let X = {x1, x2, x3, ..., xn} be the set of alternatives. The HPMPR is a matrix H = (hij)n×n,
where hij = {hs

ij|ps
ij : s = 1, 2, 3, ..., #hij} is the HPME expressing the possible preference degrees of the

alternative xi over xj with probabilities and with j > i satisfying the following conditions

hσ(s)
ij hσ(s)

ji = 1, pσ(s)
ij = pσ(s)

ji , #hij = #hji, hσ(s)
ii = 1 (6)

and
hσ(s)

ij < hσ(s+1)
ij , hσ(s+1)

ji < hσ(s)
ji

where hσ(s)
ij |p

σ(s)
ij and hσ(s)

ji |p
σ(s)
ji are the sth elements in hij and hji, respectively.

Note that all the preference degrees in diagonal are 1 and #hii can be greater than 1, whereas
the probabilities can vary. Thus, it will help to maintain useful properties such as consistency and
consensus, as will be seen. The diversity in probabilities of diagonal preference degrees does not cause
any harm, and the net impact remains the same as the sum of all probabilities is 1.

Often, the lengths of HPFEs are different, but, to apply the above definitions, the length needs to
be equal. Some elements will be added to the HPFE, which has fewer elements, but the information
provided should not be changed.

Definition 7. An HPMPR H = (hij)n×n is called the normalized hesitant probabilistic multiplicative
preference relation (NHPMPR) if the length of all hij is the same for all i, j = 1, 2, ..., n.

This problem also arises when working with hesitant fuzzy elements. Xu and Xia [50] and
Zhu et al. [37] add an element to the shorter lengthened hesitant fuzzy elements. Let h = {hi|pi : i =
1, 2, 3, ..., #h} be an HPME. For preference degrees hi, Zhang and Wu [38] find a way to add elements
to the HME. For an optimized parameter 0 ≤ ζ ≤ 1, the preference degree that will be added to hi
is (h+)ζ × (h−)(1−ζ), where h+ is the largest and h− is the smallest among hi. The decision-maker
can choose the value of ζ according to his risk preferences. The added element will be h+ and h− for
ζ = 1 and ζ = 0, respectively, which demonstrates the optimistic and pessimistic approach of the
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decision-maker proposed by Xu and Xia [50]. In a hesitant probabilistic multiplicative environment,
some method is needed whereby probability is assigned to the added preference degree such that the
information of the HPMPR is not changed. There are many ways to do it. One option is to assign 0
to the added preference degree (h+)ζ × (h−)(1−ζ); for extreme cases, that is, a pessimistic approach,

i.e., ζ = 0, and an optimistic approach, i.e., ζ = 1, the added element in the HPME is h−| p−
d−#h+1

and h+| p+
d−#h+1 , respectively, where d is the required length of the HPMEs, and p− and p+ are the

probabilities of h− and h+, respectively.
For a given HPMPR H = (hij)n×n, we normalize it as follows. Let d = max{#hij} and

i, j = 1, 2, ..., n. For optimized parameter ζ = 0,

hij =



hij, #hij = dhσ(1)
ij |

pσ(1)
ij

d− #hij + 1
, ..., hσ(1)

ij |
pσ(1)

ij

d− #hij + 1︸ ︷︷ ︸
d−#hij+1

, hσ(2)
ij |p

σ(2)
ij , hσ(3)

ij |p
σ(3)
ij , ..., h

σ(#hij)
ij |pσ(#hij)

ij︸ ︷︷ ︸
#hij−1

 #hij < d. (7)

For ζ = 1,

hij =



hij, #hij = dhσ(1)
ij |p

σ(1)
ij , hσ(2)

ij |p
σ(2)
ij , ..., h

σ(#hij−1)
ij |pσ(#hij−1)

ij︸ ︷︷ ︸,
#hij−1

h
σ(#hij)
ij |

p
σ(#hij)
ij

d− #hij + 1
, ..., h

σ(#hij)
ij |

p
σ(#hij)
ij

d− #hij + 1︸ ︷︷ ︸
d−#hij+1

 #hij < d. (8)

For 0 < ζ < 1, for i < j,

hij =


hij, #hij = dhσ(1)

ij |p
σ(1)
ij , ..., h

σ(tij)
ij |pσ(tij)

ij︸ ︷︷ ︸
tij

, ζh
σ(#hij)
ij + (1− ζ)hσ(1)

ij |0, ..., ζh
σ(#hij)
ij + (1− ζ)hσ(1)

ij |0︸ ︷︷ ︸
d−(#hij)

, h
σ(tij+1)
ij |pσ(tij+1)

ij , ..., h
σ(#hij)
ij |pσ(#hij)

ij︸ ︷︷ ︸
(#hij)−tij

 #hij < d,
(9)

and

hji =


hji, #hji = dhσ(1)

ji |p
σ(1)
ji , ..., h

σ(tji)
ji |pσ(tji)

ji︸ ︷︷ ︸
tji

, (1− ζ)hσ(1)
ji + ζh

σ(#hji)
ji |0, ..., (1− ζ)hσ(1)

ji + ζh
σ(hji)
ji |0︸ ︷︷ ︸

d−(#hji)

, h
σ(tji+1)
ji |pσ(tji+1)

ji , ..., h
σ(#hji)
ji |pσ(#hji)

ji︸ ︷︷ ︸
(#hji)−tji

 #hji < d.
(10)

where tij = tji = maxs∈{1,2,...,#hij} hσ(s)
ij ≤ ζh

σ(#hij)

ij + (1− ζ)hσ(1)
ij .

Now H = (hij)n×n is NHPMPR. Next, we deal with consistency.

Example 3. Let

H1 =


{1|1} {1.7371|0.6309, 2.2438|0.02041, 5.2375|0.3487} {.25|1} {0.6411|0.9414, 4.2986|0.0586}

{0.5757|0.6309, 0.4457|0.02041, 0.1909|0.3487} {1|1} {4.748|1} {1.4432|0.3066, 6.5328|0.2411, 7.3782|0.4523}
{4|1} {0.2106|1} {1|1} {4.1449|0.3438, 7.2252|0.6562}

{1.5599|0.9414, 0.2326|0.0586} {0.6929|0.3066, 0.1531|0.2411, 0.1355|0.4523} {0.2413|0.3438, 0.1384|0.6562} {1|1}



H2 =


{1|1} {8|1} {0.1333|0.8685, 0.1379|0.1315} {0.1379|0.1315, 0.2621|0.6826}
{0.125|1} {1|1} {0.1129|0.6115, 4.0197|0.6113} {2|0.2629, 3|0.7371}

{7.5012|0.8685, 7.2521|0.1315} {8.8583|0.6115, 0.2488|0.6113} {1|1} {0.1499|0.4927, 0.3995|0.2863, 1.7261|0.2210}
{5.9499|0.3174, 3.816|0.6826} {0.5|0.2629, 0.3333|0.7371} {6.6698|0.4927, 2.5033|0.2863, 0.5794|0.221} {1|1}

.

Then, H1 and H2 are HPMPRs. Now by taking optimized parameters 0, 1 for H1 and H2, respectively,
the following NHPMPRs are obtained.

H1 =


{1|.3333, 1|.3333, 1|.3333} {1.7371|0.6309, 2.2438|0.02041, 5.2375|0.3487} {0.25|0.3333, 0.25|0.3333, 0.25|0.3333} {0.6411|0.4707, 0.6411|0.4707, 4.2986|0.0586}

{0.5757|0.6309, 0.4457|0.0204, 0.1909|0.3487} {1|.3333, 1|.3333, 1|.3333} {4.748|0.3333, 4.748|0.3333, 4.748|0.3333} {1.4432|0.3066, 6.5328|0.2411, 7.3782|0.4523}
{4|0.3333, 4|0.3333, 4|0.3333} {0.2106|0.3333, 0.21060.3333|, 0.2106|0.3333} {1|.3333, 1|.3333, 1|.3333} {4.1449|0.1719, 4.1449|0.1719, 7.2252|0.6562}

{1.5599|0.4707, 1.5599|0.4707, 0.2326|0.0586} {0.6929|0.3066, 0.1531|0.2411, 0.1355|0.4523} {0.2413|0.1719, 0.2413|0.1719, 0.1384|0.6562} {1|.3333, 1|.3333, 1|.3333}
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H2 =


{1|.3333, 1|.3333, 1|.3333} {8|0.3333, 8|0.3333, 8|0.3333} {0.1333|0.1315, 0.1379|0.4342, 0.1379|0.4342} {0.1681|0.6826, 0.2621|0.1587, 0.2621|0.1587}

{0.125|0.3333, 0.125|0.3333, 0.125|0.3333} {1|.3333, 1|.3333, 1|.3333} {0.1129|0.6115, 4.0197|0.1943, 4.0197|0.1943} {2|0.2629, 3|0.3685, 3|0.3685}
{7.2521|0.1315, 7.5012|0.4342, 7.5012|0.4342} {8.8583|0.6115, 0.2488|0.1943, 0.2488|0.1943} {1|.3333, 1|.3333, 1|.3333} {0.1499|0.221, 0.3995|0.2863, 1.7261|0.4927}
{5.9499|0.6826, 3.8160|0.1587, 3.8160|0.1587} {0.5|0.2629, 0.3333|0.3685, 0.3333|0.3685} {6.6698|0.221, 2.5033|0.2863, 0.5794|0.4927} {1|.3333, 1|.3333, 1|.3333}

.

Consistency Measure of the Hesitant Probabilistic Multiplicative Preference Relation

In order to obtain a valuable decision from the preference relations, they should be consistent in
a sense if say x1 is preferable to x2 and x2 is preferable to x3, then x1 must be preferable to x3. Several
authors have pursued consistency issues for preference relations [22,28,35,37,38,46].

Consistency for HME is well known. Furthermore, many kinds of transitivity are proposed and
studied for probabilities in comparing the preferences in the choice theory [51].

Consider HPMPR H = (hij)n×n by Equations (7) and (8), and calculate NHPMPR H = (hij)n×n.
The weak stochastic transitivity for probability [51] means

pσ(s)
ik ≥ 1

2
∧ pσ(s)

kj ≥ 1
2
⇒ pσ(s)

ij ≥ 1
2

. (11)

This will provide a platform to define consistency for the HPMPR.

Definition 8. For a given HPMPR H = (hij)n×n and its NHFPR H = (hij)n×n with optimized parameter ζ, if

h
σ(s)
ij = h

σ(s)
ik × h

σ(s)
kj (12)

and
pσ(s)

ik ≥ 1
2
∧ pσ(s)

kj ≥ 1
2
⇒ pσ(s)

ij ≥ 1
2

(13)

for all i, j, k = 1, 2, 3, ..., n, then H is called a consistent HPMPR with optimized parameter ζ.

However, preference relations are often not consistent, and, for meaningful decision-making,
at least some level of consistency is required if it is not fully consistent. For preference degrees, take the
multiplication of Equation (12) for all k

(
h

σ(s)
ij

)n
=

n

∏
k=1

(
h

σ(s)
ik × h

σ(s)
kj

)
.

Therefore,

h
σ(s)
ij =

n

∏
k=1

(
h

σ(s)
ik × h

σ(s)
kj

) 1
n

. (14)

Thus, Equation (14) is satisfied by a consistent HPMPR. If not,

h̃σ(s)
ij =

n

∏
k=1

(
h

σ(s)
ik × h

σ(s)
kj

) 1
n

. (15)

One can see that the preference degrees h̃σ(s)
ij obtained from the above equation are consistent.

For probabilities, the matter is not that simple. Some mechanism is needed to make probabilities

consistent with all of the restrictions of the HPMPR like pσ(s)
ij = pσ(s)

ji and
#hij

∑
s=1

pσ(s)
ij = 1. Let pσ(s)

ik ≥ 1
2

and pσ(s)
kj ≥ 1

2 . Then, we define

p̃σ(s)
ij :=

pσ(s)
ik + pσ(s)

kj

2
≥ 1

2
(16)
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to account for all k = 1, 2, ..., n. Keeping in mind
#hij

∑
s=1

pσ(s)
ij = 1, we modify Equation (16) such that

p̃σ(s)
ij =

pσ(s)
i1 + pσ(s)

1j
2 +

pσ(s)
i2 + pσ(s)

2j
2 + ... +

pσ(s)
in + pσ(s)

nj
2

n
. (17)

Hence,
#hij

∑
s=1

pσ(s)
ij = 1, andp̃σ(s)

ij = p̃σ(s)
ji . If pσ(s)

ik ≥ 1
2 and pσ(s)

kj ≥ 1
2 for all k = 1, 2, ..., n, then surely

p̃σ(s)
ij ≥ 1

2 . However, it is possible that pσ(s)
ik ≥ 1

2 and pσ(s)
kj ≥ 1

2 are not true for some k, which will

lead to a situation where p̃σ(s)
ik ≥ 1

2 ∧ p̃
σ(s)
kj ≥ 1

2 and p̃σ(s)
ij < 1

2 . Now, if another convex combination is
calculated by Equation (17), then the obtained probability will increase. These observations lead to the
Algorithm 1, producing a sequence of HPMPRs convergent with a fully consistent HPMPR.

Algorithm 1 Algorithmic description to determine NHPMPR H, consistent HPMPR H̃(t), and number
of iterations t.

Input: HPMPR H and optimized parameter ζ.
Output: NHPMPR H, consistent HPMPR H̃, and number of iterations t.

Step 1: Compute NHPMPR H by Equation (7) or (8). Let t = 0, and H̃(0) =
(

h(0)ij

)
n×n

is defined as

h̃(0)ij =

{
n

∏
k=1

(
h

σ(s)
ik × h

σ(s)
kj

) 1
n |pσ(s)

ij : s = 1, 2, 3, ..., d

}
. (18)

Step 2: If the following condition is true, then go to Step 4. Otherwise, go to Step 3.(
p̃(t)ik

)σ(s)
≥ 1

2
∧
(

p̃(t)kj

)σ(s)
≥ 1

2
⇒
(

p̃(t)ij

)σ(s)
≥ 1

2
(19)

for all (i, j, k = 1, 2, ..., n).

Step 3: H̃(t+1) =
(

h̃(t+1)
ij

)
n×n

is defined as

h̃(t+1)
ij =


(

h̃(t)ij

)σ(s)
| 1
n

n

∑
k=1


(

p̃(t)ik

)σ(s)
+
(

p̃(t)kj

)σ(s)

2

 : s = 1, 2, 3, ..., d

 (20)

and t = t + 1. Go to Step 2.
Step 4: Output NHPMPR H, consistent HPMPR H̃(t), and number of iterations t.
Step 5: End.

Theorem 2. Let H = (hij)n×n be an HPMPR with its NHPMPR H = (hij)n×n with optimized parameter ζ.
Then the H̃ = (h̃ij)n×n output of Algorithm 1 is a consistent HPMPR (please see Appendix A for Proof 2).

This result also yields the following theorem.

Theorem 3. Consider an HPMPR H = (hij)n×n, its NHPMPR H = (hij)n×n with optimized parameter ζ

and H̃ = (h̃ij)n×n consistent HPMPR with optimized parameter ζ. Then, H is consistent if and only if H = H̃.

The above algorithm is quite efficient. To see this fact, we generate 1000 random HPMPRs with
different values of n and d and apply Algorithm 1 to find their consistent HPMPRs. Table 1 shows the
average value of the number of iterations in Algorithm 1.



Appl. Sci. 2018, 8, 398 9 of 31

Table 1. Average value of iterations in Algorithm 1.

n d ζ = 0 ζ = 1

4 4 1.0380 1.036
3 1.19 1.201
2 2.228 2.222

5 5 1.002 1.004
4 1.022 1.024
3 1.188 1.162

6 6 1.002 1.002
5 1.007 1.004
4 1.025 1.013

7 7 1.001 1
6 1 1.001
5 1.003 1.001

8 8 1 1
7 1 1
6 1 1

9 9 1 1
8 1 1
7 1 1

10 10 1 1
9 1 1
8 1 1

Example 4. Take H1, H2, and their optimized parameter, which is the same as that in Example 1. Then, by
Algorithm 1, the following consistent HPMPRs H̃1 and H̃2 are obtained.

H̃1 =


{1|0.4421, 1|0.2894, 1|0.2685} {0.5154|0.4216, 0.4016|0.2607, 0.9578|0.3177} {0.5314|0.3675, 0.5665|0.2912, 0.9806|0.3413} {1.0165|0.3814, 1.5806|0.2969, 5.9928|0.3218}

{1.9402|0.4216, 2.4900|0.2607, 1.0441|0.3177} {1|0.4011, 1|0.232, 1|0.3669} {1.031|0.347, 1.4106|0.2625, 1.0239|0.3905} {1.9722|0.3608, 3.9358|0.2681, 6.257|0.371}
{1.8819|0.3675, 1.7653|0.2912, 1.0198|0.3413} {0.961|0.347, 0.7089|0.2625, 0.9767|0.3905} {1|0.293, 1|0.293, 1|0.4141} {1.9129|0.3068, 2.7902|0.2986, 6.1112|0.3946}
{0.9838|0.3814, 0.6327|0.2969, 0.1669|0.3218} {0.5071|0.3608, 0.2541|0.2681, 0.1598|0.371} {0.5228|0.3068, 0.3584|0.2986, 0.1636|0.3946} {1|0.3206, 1|0.3043, 1|0.3751}



H̃2 =


{1|0.3702, 1|0.3149, 1|0.3149} {0.3165|0.3777, 0.8526|0.3111, 0.8526|0.3111} {0.3662|0.3473, 0.7958|0.3135, 0.552|0.3393} {0.3083|0.3726, 0.5489|0.3008, 0.7914|0.3266}

{0.6299|0.3777, 1.5111|0.3111, 1.5111|0.3111} {1|0.3853, 1|0.3074, 1|0.3074} {0.2307|0.3548, 1.2026|0.3097, 0.8341|0.3355} {0.1942|0.3801, 0.8295|0.297, 1.1959|0.3228}
{2.7304|0.3473, 1.2566|0.3135, 1.8117|0.3393} {4.3346|0.3548, 0.8315|0.3097, 1.1989|0.3355} {1|0.3243, 1|0.312, 1|0.3636} {0.8418|0.3496, 0.6897|0.2994, 1.4338|0.351}
{3.2437|0.3726, 1.8218|0.3008, 1.2636|0.3266} {5.1493|0.3801, 1.2056|0.297, 0.8362|0.3228} {1.188|0.3496, 1.4498|0.2994, 0.6975|0.351} {1|0.375, 1|0.2867, 1|0.3383}

.

Remark 1. To see the consistency of the HPMPR geometrically, three area graphs of multiplicative preference

degrees [hσ(s)
ij ], the probabilities of multiplicative preference degrees [pσ(s)

ij ] and the score values

[(
hσ(s)

ij

)pσ(s)
ij

]
were constructed. The procedure by which these graphs were made is explained for H1 as follows. Three matrices
M, P, and S of order 4× 12 of multiplicative preference values, probability values, and score values are made
from HPMPR H1 :

M =


1 1 1 5.2375 2.2438 1.7371 0.25 0.25 0.25 4.2986 0.6411 0.6411

0.5757 0.4457 0.1909 1 1 1 4.748 4.748 4.748 6.5328 6.5328 1.4432
4 4 4 0.2106 0.2106 0.2106 1 1 1 7.225 4.1449 4.1449

1.5599 1.5599 0.2326 0.6929 0..1531 0.1355 0.2413 0.2413 0.2413 1 1 1



P =


0.3333 0.3333 0.3333 0.6309 0.3487 0.0204 0.3333 0.3333 0.3333 0.4707 0.4707 0.0586
0.6309 0.3487 0.0204 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.4523 0.3066 0.2411
0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.6563 0.1719 0.1719
0.4707 0.4707 0.0586 0.4523 0.3066 0.2411 0.6562 0.1719 0.1719 0.3333 0.3333 0.3333



S =


1 1 1 1.3089 1.1008 0.9944 1.8242 1.5254 1.423 2.3697 1.4922 1.4132

1.0057 0.9084 0.764 1 1 1 1.429 1.3827 1.3766 1.9745 1.444 1.2777
0.7024 0.6556 0.5482 0.7264 0.7232 0.6998 1 1 1 1.3474 1.0413 0.9285
0.7076 0.6701 0.422 0.7823 0.6925 0.5065 1.077 0.9603 0.6957 1 1 1

 .
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The area graphs are made of the above matrices using the MATLAB drawing toolbar. Figures 1–6 show the
comparison of area graphs for the multiplicative preference degrees, probability values, and score values between
H1, H̃1, and H2, H̃2, respectively. The areas are smoother for consistent HPMPRSs H̃1 and H̃2.

Figure 1. Area graphs of multiplicative preference degrees for H1.

Figure 2. Area graphs of probabilities for H1.

Figure 3. Area graphs of score values for H1.
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Figure 4. Area graphs of multiplicative preference degrees for H2.

Figure 5. Area graphs of probabilities for H2.

Figure 6. Area graphs of score values for H2.

Once the consistent HPMPR is found, we are in a position to make HPMPR acceptably consistent
by defining a consistency measure. In order to define the consistency measure, the first deviation
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degree between two HPMPRs is defined. Let H =
(
hij,1

)
n×n and H2 =

(
hij,2

)
n×n be two HPMPRs,

and H1 =
(

hij,1

)
n×n

and H2 =
(

hij,2

)
n×n

are their NHPMPRs where d is the common length. Then,

D (H1, H2) =
1

dn2

n

∑
i=1

n

∑
j=1

d

∑
s=1

(
h

σ(s)
ij,1 × h

σ(s)
ji,2

)
+

2
nd(n + 1)

n

∑
i=1

n

∑
j≥i

d

∑
s=1

∣∣∣pσ(s)
ij,1 − pσ(s)

ij,2

∣∣∣ . (21)

D(H1, H2) measures the deviation between HPMPRs in the sense that the first

part 1
dn2 ∑n

i=1 ∑n
j=1 ∑d

s=1

(
h

σ(s)
ij,1 × h

σ(s)
ji,2

)
will be 1 if H1 = H2 and the second part

2
nd(n+1) ∑n

i=1 ∑n
j≥i ∑d

s=1

∣∣∣pσ(s)
ij,1 − pσ(s)

ij,2

∣∣∣ is 0. The properties of deviation are presented in the
following theorem.

Theorem 4. Consider two HPMPRs H =
(
hij,1

)
n×n and H2 =

(
hij,2

)
n×n and their NHPMPRs

H1 =
(

hij,1

)
n×n

and H2 =
(

hij,2

)
n×n

. The deviation degree defined in Equation (21) satisfies the following

properties:

1. D(H1, H2) ≥ 1;
2. D(H1, H2) = 1 if and only if H1 = H2;
3. D(H1, H2) = D(H2, H1).

(please see Appendix A for Proof 3).

Before proceeding, let us present and prove some lemmas that will be useful in providing the
theoretical framework.

Lemma 1. Take 0 < x < 1 and y > 0. Then

yx +

(
1
y

)x
≤ y +

1
y

,

and equality holds if and only if y = 1 (please see Appendix A for Proof 4).

Lemma 2. [52]: Consider xi > 0, ωi > 0, and i = 1, 2, ..., n with ∑n
i=1 ωi = 1. Then,

n

∏
i=1

(xi)
ωi ≤

n

∑
i=1

xiωi, (22)

where equality holds iff x1 = x2 = ... = xn.

While the decision-maker provides its preference in the form of an HPMPR, it should be noted
that it can be used for decision-making with good results only if it has sufficient consistency.

Definition 9. Suppose an HPMPR H = (hij)n×n, its NHPMPR H = (hij)n×n and consistent HPMPR
H̃ = (h̃ij)n×n with optimized parameter 0 ≤ ζ ≤ 1 obtained from Algorithm 1. The constancy index of H is
defined to be the deviation degree between H and H̃, denoted as

CI(H) = D(H, H̃). (23)

It is clear that CI(H) = 1 if and only if H is consistent. Ideally, the decision-maker should provide
a consistent HPMPR so that it can be used for meaningful decision-making. However, some margin of
error should be provided to the decision-maker, relative to the practical problems.
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Definition 10. Consider an HPMPR H = (hij)n×n. For a given tolerance value CIr, HPMPR H is said to be
an acceptably consistent HPMPR if

CI(H) ≤ CIr. (24)

If an HPMPR is not even acceptably consistent, then the decision-maker should revisit and modify
it. The Algorithm 2 is proposed to make an HPMPR acceptably consistent.

Algorithm 2 Algorithmic description to determine the acceptably consistent.

Input: The HPMPR H = (hij)n×n, consistency tolerance value CIr and the parameter α ∈ (0, 1).
Output: The acceptably consistent HPMPR H(t), consistency index CI(H(t)), and number of
iterations t.
Step 1: Compute H = (hij)n×n with optimized parameter ζ. Let t = 0, H(0) =

(
h(0)ij

)
n×n

= H =

(hij)n×n.

Step 2: Calculate the consistent HPMPR H̃(t) =
(

h̃(t)ij

)
n×n

by applying Algorithm 1 to H(t) and

consistency index CI(H(t)), where

CI(H(t)) = 1
dn2 ∑n

i=1 ∑n
j=1 ∑d

s=1

((
h
(t)
ij

)σ(s)
×
(

h̃(t)ji

)σ(s)
)
+ 2

nd(n+1) ∑n
i=1 ∑n

j≥i ∑d
s=1

∣∣∣∣(p(t)ij

)σ(s)
−
(

p̃(t)ij

)σ(s)
∣∣∣∣ . (25)

Step 3: If CI(H(t)) ≤ CIr, then go to Step 5; otherwise, go to Step 4.
Step 4: Make the adjusted HPMPR H(t+1) =

(
h(t+1)

ij

)
, where

h(t+1)
ij =

(
h(t)ij

)α
⊗
(

h̃(t)ij

)(1−α)
. (26)

Let t = t + 1. Now return to Step 2.
Step 5: Output t, H(t), and CI(H(t)).
Step 6: End.

The proposed Algorithm 2 will be convergent as the following result shows.

Theorem 5. Consider an HPMPR H, a consistency tolerance value CIr > 1, and the sequence {H(t)} of
HPMPRs generated by Algorithm 2. Then,

CI(H(t+1)) < CI(H(t)) for all t and lim
t→∞

CI(H(t)) ≤ CIr. (27)

(please see Appendix A for Proof 5).

The choice of parameters n, d, and α directly affects the performance of Algorithm 2.
For performance measurement of Algorithm 2, 1000 random HPMPRs are generated and their
acceptably consistent HPMPRs are computed by Algorithm 2, the average iteration in Algorithm 2 with
respect to different parameters shown in Table 2. It is apparent that Algorithm 2 is quite efficient and as
for the effects of parameters, the increase in value α leads to more iterations in Algorithm 2 to compute
a consistent HPMPR; therefore, it is suggested that a small α is chosen. Additionally, the number of
iterations in Algorithm 2 is inversely proportional to the consistency index CIr.
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Table 2. Average iterations values in Algorithm 2.

n d CIr
α

0.1 0.3 0.6 0.8

4 4 1.05 1 1.237 2.53 5.177
1.1 0.989 0.991 1.683 3.125

1.15 0.931 0.945 1.164 2.044
3 1.05 1.003 1.297 2.598 5.29

1.1 0.99 0.993 1.687 3.306
1.15 0.941 0.935 1.246 2.241

2 1.05 0.996 1.344 2.597 5.343
1.1 0.978 0.979 1.734 3.309

1.15 0.922 0.907 1.198 2.241

5 5 1.05 1 1.333 2.786 5.625
1.1 0.999 1 1.924 3.674

1.15 0.998 0.999 1.385 2.573
4 1.05 1 1.452 2.838 5.706

1.1 1 1 1.93 3.789
1.15 0.998 0.999 1.439 2.698

3 1.05 1 1.546 2.86 5.847
1.1 1 1.002 1.953 3.843

1.15 0.991 0.995 1.502 2.81

6 6 1.05 1 1.456 2.928 5.805
1.1 1 1 1.995 3.874

1.15 1 1 1.563 2.827
5 1.05 1 1.516 2.954 5.908

1.1 1 1 1.997 4.012
1.15 1 1 1.605 2.95

4 1.05 1 1.632 2.962 6.053
1.1 1 1 2.022 4.095

1.15 1 1 1.692 3.002

7 7 1.05 1 1.524 2.987 5.889
1.1 1 1 2.01 4.055

1.15 1 1 1.708 3.016
6 1.05 1 1.63 2.985 6.015

1.1 1 1 2.007 4.095
1.15 1 1 1.745 3.095

4 1.05 1 1.83 2.999 6.275
1.1 1 1 2.053 4.31

1.15 1 1 1.862 3.249

8 8 1.05 1 1.619 2.996 5.935
1.1 1 1 2.002 4.111

1.15 1 1 1.806 3.09
7 1.05 1 1.725 2.996 6.032

1.1 1 1 2.007 4.168
1.15 1 1 1.858 3.168

6 1.05 1 1.788 2.998 6.13
1.1 1 1 2.017 4.239

1.15 1 1 1.897 3.223

9 9 1.05 1 1.648 2.999 5.991
1.1 1 1 2.001 4.128

1.15 1 1 1.885 3.16
8 1.05 1 1.749 2.999 6.038

1.1 1 1 2.006 4.199
1.15 1 1 1.919 3.204

7 1.05 1 1.845 3 6.116
1.1 1 1 2.005 4.266

1.15 1 1 1.946 3.257
10 10 1.05 1 1.682 3 6.007

1.1 1 1 2 4.155
1.15 1 1 1.951 3.179

9 1.05 1 1.796 3 6.035
1.1 1 1 2.003 4.192

1.15 1 1 1.964 3.232
8 1.05 1 1.882 3 6.1

1.1 1 1 2.003 4.272
1.15 1 1 1.969 3.269

4. Consensus Measure in Group Decision Making

For group decision-making, let X = {x1, x2, ..., xn} be the set of alternatives, and
let E = {e1, e 2, e3, ...., em} be the set of decision-makers providing their preferences in
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HPMPRs H1 = (hij,1), H2 = (hij,2), ..., Hm = (hij,m), respectively. Additionally, let ω = (ω1, ω2, ..., ωm)

be the importance/weight vector of decision-makers in a normalized form, i.e.,
m
∑

i=1
ωi = 1. Algorithm 2

solves the problem of consistency. In order to make a group decision, the following aggregation
operator is defined, which will be used to fuse all respective NHPMPRs of decision-makers.

Definition 11. Take a collection of HPMEs hi (i = 1, 2, 3, ..., n) with equal lengths and a weight vector of

HPMEs λ = (λ1, λ2, ..., λn) in a normalized form that is
n
∑

i=1
λi = 1. The hesitant probabilistic multiplicative

weighted geometric (HPMWG) operator is defined as

HPMWG(h1, h2, ..., hn) =
n⊗

i=1

(
hλi

i

)
=

⋃
γ

σ(s)
1 |pσ(s)

1 ∈h1,γσ(s)
2 |pσ(s)

2 ∈h2,...,γσ(s)
n |pσ(s)

n ∈hn

{
n
∏
i=1

(
γ

σ(s)
i

)λi |
n
∑

i=1
λi p

σ(s)
i

}
.

(28)

Additionally, if we take weight vector λ = (1/n, 1/n, ..., 1/n), then the above operator is reduced to a
hesitant probabilistic multiplicative geometric (HPMG) as

HPMG(h1, h2, ..., hn) =
n⊗

i=1

(
h

1
n
i

)
=

⋃
γ

σ(s)
1 |pσ(s)

1 ∈h1,γσ(s)
2 |pσ(s)

2 ∈h2,...,γσ(s)
n |pσ(s)

n ∈hn

{
n
∏
i=1

(
γ

σ(s)
i

)1/n
|

n
∑

i=1

1
n pσ(s)

i

}
.

(29)

Theorem 6. Assume Hk = (hij,k)n×n (k = 1, 2, ..., m) HPMPRs given by decision-makers, and let

ω = (ω1, ω2, ..., ωm) be the weight vector of decision-makers with
m
∑

i=1
ωi = 1. The NHPMPRs Hk are

obtained with optimized parameter ζk (k = 1, 2, ..., m) through Equations (7) and (8), where #(hij,k) = d =

max1≤i<j≤n,1≤k≤m{#(hij,k)} for all i, j = 1, 2, ..., n, and k = 1, 2, ..., m. Then, the HPMPR Hg = (hij,g)n×n

is calculated:

Hg =

(
n⊗

k=1

(
hij,k

)ωk

)
n×n

(30)

is the HPMPR (please see Appendix A for Proof 6).

The next result shows that the aggregated group HPMPR Hg obtained by Equation (30) is
consistent, provided all the individual HPMPRs are consistent.

Theorem 7. Consider that Hk = (hij,k)n×n (k = 1, 2, 3, ..., m) HPMPRs given by decision-makers and that
group HPMPR Hg is computed by Equation (30). Then,

CI(Hg) ≤ max
k
{CI(Hk)}. (31)

(please see Appendix A for Proof 7).

Now, the consensus is another very important aspect of group decision-making. To deal with the
consensus issue among all the individual decision-makers, the following consensus index is defined.

Definition 12. Let Hk = (hij,k)n×n (k = 1, 2, 3, ..., m) be m HPMPRs provided by decision-makers, and their
NHPMPRs Hk are obtained with optimized parameter ζk (k = 1, 2, ..., m). The group HPMPR Hg is computed
by Equation (30). Then, the group consensus index (GCI) of HPMPR Hk is defined to be the deviation measured
between Hk and Hg, i.e.,

GCI(Hk) = D(Hk, Hg). (32)
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The agreement between an individual decision-maker and a group decision is measured by the
distance between individual HPMPR Hk and group HPMPR Hg. Therefore, GCI(Hk) = 1 means
that the kth decision-maker has full agreement with group decision; otherwise, the smaller the value
of GCI(Hk) is, the better the consensus will be. In many real life scenarios, it is important to have
consensus among all decision-makers, although we have to live with a difference of opinion sometimes,
and it is often hard to reach complete consensus, so a threshold value can be decided based on the
practical nature of the problem to allow a difference of opinion to some extent.

Definition 13. Let Hk = (hij,k)n×n (k = 1, 2, 3, ..., m) be m HPMPRs provided by decision-makers, and
assume their NHPMPRs Hk are obtained with optimized ζk (k = 1, 2, ..., m). Furthermore, compute group
HPMPR Hg and GCI(Hk) (k = 1, 2, ..., m). Consider GCIr as a tolerance value of consensus measure. Thus,
HPMPR Hk can be said to be an acceptable consensus with group HPMPR Hg if

GCI(Hk) ≤ GCIr. (33)

However, it is possible that a decision-maker has an unacceptable difference of opinion with
respect to the group decision; in this regard, an algorithm is proposed to modify the dissenter’s HPMPR
to reach an acceptable consensus.

The convergence of the Algorithm 3 follows from the following result.

Algorithm 3 Algorithmic description to modify the dissenter’s HPMPR to reach an
acceptable consensus.

Input: The tolerance value GCIr of the consensus measure, HPMPRs Hk = (hij,k)n×n
(k = 1, 2, 3, ..., m), and parameter β ∈ (0, 1).
Output: The acceptable consensus HPMPRs H(t)

k , group consensus index GCI(H(t)
k ) (k = 1, 2, ..., m),

group HPMPR H(t)
g , and number of iterations value t.

Step 1: Compute Hk = (hij,k)n×n with optimized parameters ζk. Let t = 0, H(0)
k = (h(0)ij,k)n×n = Hk =

(hij,k)n×n. Step 2: Compute group HPMPR H(t)
g = (h(t)ij,g)n×n by fusing all individual HPMPRSs

H(t)
k (k = 1, 2, ..., m) according to Equation (30), where

h(t)ij,g =
m⊗

k=1

(
h(t)ij,k

)ωk
. (34)

Step 3: Calculate GCI(H(t)
k ) = D(H(t)

k , H(t)
g ) (k = 1, 2, ..., m). If GCI(H(t)

k ) ≤ GCIr for all
k = 1, 2, ..., m then go to Step 5; otherwise, go to Step 4.
Step 4: Let H(t+1)

k = (h(t+1)
ij,k )n×n, where

h(t+1)
k =

(
h(t)k

)β
⊗
(

h(t)ij,g

)1−β
. (35)

Additionally, let t = t + 1, and go to Step 2.
Step 5: Output the adjusted HPMPRs H(t)

k = (h(t)ij,k)n×n, the group consistency index GCI(H(t)
k )

(k = 1, 2, ..., m), the group HPMPR H(t)
g , and number of iterations value t.

Step 6: End.

Theorem 8. Consider Hk = (hij,k)n×n (k = 1, 2, 3, ..., m) HPMPRs given by decision-makers. Let {H(t)
k } be

the sequence obtained from Algorithm 3. Then,

GCI
(

H(t+1)
k

)
< GCI

(
H(t)

k

)
for all k = 1, 2, ..., m.
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(please see Appendix A for Proof 8).

Now, 1000 random sets of m HPMPRs are generated and Algorithm 3 is applied to the developed
consensus. The average value of iterations of Algorithm 3 is presented in Table 3 for different
values of parameters. The analysis of Table 3 suggests that the increase in the value of parameter β

has adverse effects on the number of iterations of Algorithm 3. Thus, the value of the parameter
β must be small. More iterations are needed to develop consensus when GCIr is nearer to 1.
Furthermore, Algorithm 3 does not disturb the consistency of HPMPRs, i.e., if the individual HPMPRs
Hk = (hij,k)n×n (k = 1, 2, 3, ..., m) are consistent, then the output of Algorithm 3, the adjusted HPMPRs

H(t)
k = (h(t)ij,k)n×n, are also consistent.

Theorem 9. Consider Hk = (hij,k)n×n (k = 1, 2, 3, ..., m) HPMPRs given by decision-makers. Let {H(t)
k }

and {H(t)
g } be the sequences obtained from Algorithm 3. If maxk{CI(H(t)

k )} ≤ CIr, then

max
k
{CI(H(t+1)

k )} ≤ max
k
{CI(H(t)

k )} ≤ CIr. (36)

(please see Appendix A for Proof 9).

Table 3. Average values of iterations in Algorithm 3.

n m d GCIr
β

0.2 0.4 0.7 0.9

4 4 4 1.01 1.967 2.715 5.969 18.828
1.05 1 1.271 2.747 8.101
1.1 0.97 0.998 1.692 4.61

3 3 1.01 1.878 2.574 5.75 18.261
1.05 0.999 1.296 2.773 8.116
1.1 0.938 0.967 1.589 4.311

2 2 1.01 1.759 2.525 5.756 18.47
1.05 0.884 0.927 1.552 4.394
1.1 0.793 0.771 1.248 3.292

5 4 5 1.01 1.892 2.393 5.471 17.564
1.05 1 1.165 2.616 7.644
1.1 0.99 0.998 1.714 4.569

3 4 1.01 1.896 2.512 5.652 17.993
1.05 1 1.611 3.203 9.615
1.1 0.89 0.868 1.235 2.911

3 3 1.01 1.964 2.759 6.044 19.299
1.05 0.999 1.057 2.278 6.513
1.1 0.86 0.871 1.133 2.655

6 5 6 1.01 1.946 2.342 5.529 17.46
1.05 1 1.121 2.563 7.507
1.1 0.995 0.994 1.5 3.896

5 5 1.01 1.932 2.457 5.723 17.95
1.05 1 1.213 2.642 7.891
1.1 0.999 0.999 1.523 3.994

4 4 1.01 1.959 2.548 5.897 18.231
1.05 1.01 1.254 2.742 7.982
1.1 0.891 1.212 2.745 4.121
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Table 3. Cont.

n m d GCIr
β

0.2 0.4 0.7 0.9

7 7 7 1.01 1.891 2.21 5.123 16.213
1.05 0.997 1.012 2.213 7.211
1.1 0.995 0.985 1.213 3.456

7 6 1.01 1.893 2.225 5.54 16.523
1.05 0.995 1.12 2.241 7.543
1.1 0.994 0.994 1.223 3.672

8 4 1.01 1.674 2.123 5.112 16.254
1.05 0.992 1.111 2.213 7.654
1.1 0.992 0.991 1.211 3.254

8 9 8 1.01 1.259 2.004 4.951 15.319
1.05 0.991 1.101 2.121 7.545
1.1 0.991 0.989 1.221 3.224

8 7 1.01 1.261 2.112 4.998 15.119
1.05 0.991 1.104 2.132 7.614
1.1 0.992 0.992 1.225 3.514

8 6 1.01 1.271 2.151 4.997 15.211
1.05 0.993 1.112 2.135 7.664
1.1 0.994 0.995 1.231 3.612

9 10 9 1.01 1.101 1.121 4.121 10.123
1.05 0.998 1 1.857 6.345
1.1 0.992 0.995 1.235 2.986

7 8 1.01 1.211 1.225 4.234 10.512
1.05 0.999 1 1.978 6.546
1.1 0.999 0.999 1.435 3.102

9 7 1.01 1.112 1.235 4.225 10.562
1.05 0.999 0.999 1.898 6.658
1.1 0.999 1 1.452 3.21

10 9 10 1.01 1 1 2.1 7.152
1.05 1 1 1.21 4.231
1.1 1 1 1.102 2.147

8 9 1.01 1 1 2.211 7.236
1.05 1 1 1.223 4.542
1.1 1 1 1.113 2.231

8 8 1.01 1 1 2.321 7.325
1.05 1 1 1.341 4.653
1.1 1 1 1.231 2.251

5. Decision Support Model for Group Decision Making with HPMPRs

Now, the issues of consistency and consensus are addressed. Algorithms 1–3 will provide the
consistent individual HPMPRs and the group HPMPR with agreement among decision-makers.
To comprehend the final standing of the alternatives, first for the alternative xi the ith row of group
HPMPR is aggregated by the HPMG operator (Equation (29)), and the aggregated HPFEs are ordered
according to their score and deviation. In the form of the Algorithm 4, a complete decision model
is presented.

Flowchart of the decision-making model is presented in Figure 7.
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Algorithm 4 Algorithmic description to determine a complete decision model.

Input: The HPMPRs Hk = (hij,k)n×n (k = 1, 2, 3, ..., m) made by decision-makers, the weight vector
ω = (ω1, ω2, ..., ωm) of decision-makers in a normalized form, consistency tolerance value CIr,
group consensus tolerance value GCIr, the maximum number of iterations allowed tmax, and the
parameters 0 < α, β < 1 for modification.
Output: The final standings of all the alternatives.
Step 1: Compute NHPMPRs Hk = (hij,k)n×n with optimized parameters ζk. Let t = 0 and H(0)

k =

(h(0)ij,k)n×n = Hk = (hij,k)n×n.

Step 2: Calculate the consistent HPMPRs H̃(t)
k =

(
h̃(t)ij,k

)
n×n

by Algorithm 1 and consistency indexes

CI
(

H(t)
k

)
, where

CI
(

H(t)
k

)
= 1

dn2 ∑n
i=1 ∑n

j=1 ∑d
s=1

((
h
(t)
ij,k

)σ(s)
×
(

h̃(t)ji,k

)σ(s)
)
+ 2

nd(n+1) ∑n
i=1 ∑n

j≥i ∑d
s=1

∣∣∣∣(p(t)ij,k

)σ(s)
−
(

p̃(t)ij,k

)σ(s)
∣∣∣∣ . (37)

Step 3: If CI
(

H(t)
k

)
≤ CIr for all k = 1, 2, ..., m, then go to Step 5; otherwise, go to Step 4.

Step 4: Make the adjusted HPMPRs H(t+1)
k = (h(t+1)

ij,k ), where

h(t+1)
ij,k =

 h(t)ij,k, CI
(

H(t)
k

)
≤ CIr(

h(t)ij,k

)α
⊗
(

h̃(t)ij,k

)1−α
, CI

(
H(t)

k

)
> CIr

∣∣∣∣∣∣ . (38)

Let t = t + 1. Now return to Step 2.
Step 5: Apply the HPMWG operator of Equation (28) to individual HPMPRs H(t)

k =
(

h(t)ij,k

)
n×n

(k = 1, 2, ..., m) to obtain group HPMPR H(t)
g =

(
h(t)ij,g

)
n×n

, where

h(t)ij,g =
m⊗

k=1

(
h(t)ij,k

)ωk
. (39)

Step 6: Calculate GCI
(

H(t)
k

)
= D

(
H(t)

k , H(t)
g

)
(k = 1, 2, ..., m). If GCI

(
H(t)

k

)
≤ GCIr for all

k = 1, 2, ..., m or t > tmax, then go to Step 8; otherwise, go to Step 7.
Step 7: Let H(t+1)

k =
(

h(t+1)
ij,k

)
n×n

, where

h(t+1)
k =

(
h(t)k

)β
⊗
(

h(t)ij,g

)1−β
. (40)

Additionally, let t = t + 1 and go to Step 5.
Step 8: Aggregate each i-th-row of HPMPR H(t)

g by HPMG operator of Equation (29)

hi,g = HPMG
(

h(t)i1,g, h(t)i2,g, ..., h(t)in,g

)
=

n⊗
j=1

(
h(t)ij,g

) 1
n (41)

so that collective multiplicative preference degrees of alternative xi over all other alternatives
(i = 1, 2, ..., n) can be obtained.
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Step 9: Compute scores s(hi,g) and deviations d(hi,g) as follows:

s(hi,g) =

(
d

∏
i=1

(
hσ(s)

i,g

)pσ(s)
i,g

) 1
d

(42)

d(hi,g) =
d

∑
s=1

((
hσ(s)

i,g

)pσ(s)
i,g − s(hi,g)

)2

. (43)

i = (1, 2, ..., n).

Step 10: Determine the final standings of all the alternatives by comparing their scores and deviations
values. Make and output the ranking vector.
Step 11: End.

Figure 7. Flowchart of the proposed decision model.
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6. Case Study

The proposed decision-making model will be applied to a practical problem of Forex investment.

Example 5. The Flagship Investment Company (FIC) is known for investment plans in different commodities
in Forex. Investors hire FIC for profitable plans for investment. An investor is interested in investing in four
commodities—oil, gold, wheat, and coppe, denoted as x1, x2, x3 and x4, respectively. This investor approached
the FIC to indicate which commodity is most profitable to invest in. The FIC summons a committee of four
economic experts e1, e2, e3, and e4. Each expert will provide his preferences in terms of the HPMPR depending
upon many factors, such as previous market rates, market trends, possible future decisions of different regulatory
bodies, economic stability, and the global peace situation. The complex nature of the Forex requires tools
that will model the vagueness and produce realistic results. The HPMPR will allow an economic experts to
express their hesitancy and provide the probabilities of different preference degrees, which are bound to be
different because of the factors discussed above. Based on the experience, the economic knowledge weight vector
of experts is ω = (0.1, 0.4, 0.2, 0.3)T . The economic expert ek provides his HPMPR Hk (k = 1, 2, 3, 4) as follows.

H1 =


{1|1} {0.2|0.2979, 8|0.7021} {0.15|0.6622, 7.5|0.3378} {0.25|0.0636, 5|0.9364}

{5|0.2979, 0.125|0.7021} {1|1} {0.31|0.2236, 5.09|0.7764} {0.4|0.4313, 8.88|0.5687}
{6.6667|0.6622, 0.1333|0.3378} {3.2258|0.2236, 0.1965|0.7764} {1|1} {0.22|0.7145, 3.68|0.2855}
{4|0.0636, 0.2|0.9364} {2.5|0.4313, 0.1126|0.5687} {4.5455|0.7145, 0.2717|0.2855} {1|1}



H2 =


{1|1} {0.15|0.5018, 0.55|0.3181, 6.18|0.18} {0.4|0.3339, 5.9|0.6322, 7.1|0.0338} {0.231|0.2412, 7.35|0.7588}

{6.6667|0.5018, 1.8181|0.3181, 0.1618|0.18} {1|1} {0.18|0.3627, 3.65|0.1892, 5.01|0.4481} {0.3|1}
2.5|0.3339, 0.1695|0.6322, 0.1235|0.0338} {5.5556|0.3627, 0.274|0.1892, 0.1996|0.4481} {1|1} {0.35|0.7060, 8.56|0.2940}

{4.329|0.2412, 0.1361|0.7588} {0.3333|1} {2.8571|0.7060, 0.1168|0.2940} {1|1}



H3 =


{1|1} {0.33|0.1317, 0.65|0.4745, 6.18|0.3938} {0.28|0.7453, 5.9|0.2547} {0.16|0.2951, 7.35|0.7049}

{3.0303|0.1317, 1.5385|0.4745, 0.1618|0.3938} {1|1} {0.2010|0.1232, 3.65|0.8767} {0.4|0.2398, 0.711|0.5387, 6.78|0.2214}
{3.5714|0.7453, 0.1695|0.2547} {4.9751|0.1233, 0.274|0.8767} {1|1} {0.22|0.5612, 0.7|0.4388}
{6.25|0.2951, 0.1361|0.7049} {2.5|0.2398, 1.4065|0.5387, 0.1475|0.2215} {4.5455|0.5612, 1.4286|0.4388} {1|1}



H4 =


{1|1} {0.29|0.629, 0.6|0.371} {0.3498|0.8924, 0.9447|0.1076} {0.27|0.2908, 1.35|0.5157, 6.1|0.1936}

{3.4483|0.629, 1.6667|0.371} {1|1} {0.19|0.7128, 0.64|0.2855, 3.65|0.0017} {0.35|0.6610, 1.9|0.0808, 5.6|0.2582}
{3.0303|0.8924, 0.1353|0.1076} {5.2632|0.7128, 1.5625|0.2855, 0.274|0.0017} {1|1} {0.27|0.4378, 0.66|0.163, 5.55|0.3992}

{3.7037|0.2908, 0.7407|0.5157, 0.1639|0.1936} {2.8571|0.6610, 0.5263|0.0808, 0.1776|0.2582} {3.7037|0.4378, 1.5151|0.163, 0.1801|0.3992} {1|1}

.

For the illustration of our proposed decision support model (Algorithm 4), the step-by-step
explanation and computations are given below.

Step 1: (Normalization) The NHPMPRs H(0)
k = Hk (k = 1, 2, 3, 4) are calculated by Equations (7)

as follows.

H(0)
1 =


{1|0.3333, 1|0.3333, 1|0.3333} {0.2|0.149, 0.2|0.149, 8|0.7021} {0.15|0.3311, 0.15|0.3311, 7.5|0.3378} {0.25|0.0318, 0.25|0.0318, 1.5|0.9364}
{5|0.149, 5|0.149, 0.125|0.7020} {1|0.3333, 1|0.3333, 1|0.3333} {0.31|0.1118, 0.31|0.1118, 5.09|0.7764} {0.4|0.2156, 0.4|0.2156, 8.88|0.5687}

{6.6667|0.3311, 6.6667|0.3311, 0.1333|0.3378} {3.2258|0.1118, 3.2258|0.1118, 0.1965|0.7764} {1|0.3333, 1|0.3333, 1|0.3333} {0.22|0.3573, 0.22|0.3573, 3.68|0.2855}
{4|0.03180, 4|0.03180, 0.6667|0.9364} {2.5|0.2156, 2.5|0.2156, 0.1126|0.5687} {4.5455|0.3573, 4.5455|0.3573, 0.2717|0.2855} {1|0.3333, 1|0.3333, 1|0.3333}



H(0)
2 =


{1|0.3333, 1|0.3333, 1|0.3333} {0.15|0.5018, 0.55|0.3181, 6.18|0.18} {0.4|0.3339, 5.9|0.6322, 7.1|0.0338} {0.231|0.1206, 0.231|0.1206, 7.35|0.7588}

{6.6667|0.5018, 1.8182|0.3181, 0.1618|0.18} {1|0.3333, 1|0.3333, 1|0.3333} {0.18|0.3627, 3.65|0.1892, 5.01|0.4481} {0.3|0.3333, 0.3|0.3333, 0.3|0.3333}
{5.2632|0.3339, 0.1695|0.6322, 0.1408|0.03383} {5.5556|0.3626, 0.274|0.1892, 0.1996|0.4481} {1|0.3333, 1|0.3333, 1|0.3333} {0.35|0.353, 0.35|0.353, 8.56|0.294}
{4.329|0.1206, 4.329|0.1206, 0.1361|0.7588} 0.3333|0.3333, 0.3333|0.3333, 0.3333|0.3333} {2.8571|0.353, 2.8571|0.353, 0.1168|0.294} {1|0.3333, 1|0.3333, 1|0.3333}



H(0)
3 =


{1|0.3333, 1|0.3333, 1|0.3333} {0.33|0.1317, 0.65|0.4744, 3.18|0.3938} {0.28|0.3727, 0.28|0.3727, 5.9|0.2547} {0.16|0.1476, 0.16|0.1476, 7.35|0.7049}

{3.0303|0.1317, 1.5385|0.4744, 0.3145|0.3938} {1|0.3333, 1|0.3333, 1|0.3333} {0.201|0.0616, 0.201|0.0616, 3.65|0.8767} {0.14|0.2398, 0.711|0.5387, 2.78|0.2215}
{3.5714|0.3727, 3.5714|0.3727, 0.1695|0.2547} {4.9751|0.0616, 4.9751|0.0616, 0.274|0.8767} {1|0.3333, 1|0.3333, 1|0.3333} {0.22|0.2806, 0.22|0.2806, 0.7|0.4388}
{6.25|0.1476, 6.25|0.1476, 0.1361|0.7049} {2.5|0.239, 1.4065|, 0.5387, 0.3597|0.2214} {4.5455|0.2807, 4.5455|0.2807, 1.4286|0.4388} {1|0.3333, 1|0.3333, 1|0.3333}



H(0)
4 =


{1|0.3333, 1|0.3333, 1|0.3333} {0.29|0.3145, 0.29|0.3145, 0.6|0.371} {0.33|0.4462, 0.33|0.4462, 7.39|0.1076} {0.27|0.2908, 1.35|0.5157, 6.1|0.1936}

{3.4483|0.3145, 3.4483|0.3145, 1.6667|0.371} {1|0.3333, 1|0.3333, 1|0.3333} {0.19|0.7128, 0.64|0.2855, 3.65|0.0017} {0.35|0.661, 1.9|0.0808, 5.63|0.2581}
{3.0303|0.4462, 3.0303|0.4462, 0.1353|0.1076} {5.2632|0.7128, 1.5625|0.2855, 0.274|0.0017} {1|0.3333, 1|0.3333, 1|0.3333} {0.27|0.4378, 0.66|0.163, 5.55|0.3992}
{3.7037|0.2908, 0.7407|0.5157, 0.1639|0.1936} {2.8571|0.661, 0.5263|0.0808, 0.1776|0.2581} {3.7037|0.4378, 1.5152|0.163, 0.1802|0.3992} {1|0.3333, 1|0.3333, 1|0.3333}

.

Step 2: The consistent HPMPRs H̃(0)
k = (h̃0)

ij,k)n×n are computed by Algorithm 1 and consistency

indexes CI(H(t)
k ) are calculated by Equation (37) as follows:

CI
(

H(0)
1

)
= 1.3166, CI

(
H(0)

2

)
= 1.3457, CI

(
H(0)

3

)
= 1.2718 and CI

(
H(0)

4

)
= 1.2302.
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Step 3: The consistency tolerance value CIr is decided to be 1.01, so all the HPMPRs H(0)
k (k = 1, 2, 3, 4)

need to be adjusted. Therefore, we go to step 4 and then return to step 2.
Steps 2–4 are repeated to obtain the following acceptably consistent HPMPRs:

H(2)
1 =


{1|0.2293, 1|0.2293, 1|0.5414} {0.33|0.2265, 0.33|0.2265, 2.7289|0.547} {0.199|0.237, 0.199|0.237, 5.5446|0.5261} {0.1142|0.2288, 0.1142|0.2288, 8.0131|0.5425

{3.0306|0.2265, 3.0306|0.2265, 0.4937|0.547} {1|0.2274, 1|0.2274, 1|0.5452} {0.5977|0.2338, 0.5977|0.2338, 2.7838|0.5323} {0.3423|0.2296, 0.3423|0.2296, 4.1113|0.5407}
{5.0259|0.237, 5.0259|0.237, 0.1804|0.5261} {1.6731|0.2338, |0.1.67312338, 0.3592|0.5323} {1|0.2447, 1|0.2447, 1|0.5106} {0.5626|0.2397, 0.5626|0.2397, 1.4879|0.5206}
{8.7537|0.2288, 8.7537|0.2288, 0.1248|0.5425} {2.9215|0.2296, 2.9215|0.2296, 0.2432|0.5407} {1.7773|0.2397, 1.7773|0.2397, 0.6721|0.5206} {1|0.2343, 1|0.2343, 1|0.5315}



H(2)
2 =


{1|0.3272, 1|0.341, 1|0.3318} {0.438|0.3466, 0.7806|0.324, 6.0359|0.3294} {0.2323|0.3341, 2.6274|0.3516, 6.0602|0.3144} {0.1361|0.3142, 0.3655|0.3196, 8.8167|0.3663}

{2.2821|0.3466, 1.2811|0.324, 0.1657|0.3294} {1|0.3625, 1|0.3073, 1|0.3301} {0.5161|0.352, 3.3299|0.3303, 1.0189|0.3177} {0.3056|0.334, 0.4667|0.3048, 1.4407|0.3612}
{4.3039|0.3341, 0.3806|0.3516, 0.165|0.3144} {1.9374|0.352, 0.3003|0.3303, 0.9814|0.3177} {1|0.3409, 1|0.3561, 1|0.303} {0.583|0.3233, 0.1423|0.3295, 1.4859|0.3472}
{7.3458|0.3142, 2.7359|0.3196, 0.1134|0.3663} {3.2719|0.334, 2.1428|0.3049, 0.6941|0.3612} {1.7153|0.3233, 7.0326|0.3295, 0.673|0.3472} {1|0.3054, 1|0.3024, 1|0.3922}



H(2)
3 =


{1|0.2437, 1|0.3263, 1|0.4301} {0.4943|0.2256, 0.6037|0.3335, 2.5695|0.4408} {0.2483|0.2486, 0.2936|0.3062, 8.0453|0.4452} {0.1205|0.243, 0.1643|0.3224, 6.6707|0.4347}

{2.0231|0.2256, 1.6564|0.3335, 0.3892|0.4408} {1|0.2116, 1|0.338, 1|0.4504} {0.4951|0.2295, 0.4827|0.3089, 3.1523|0.4615} {0.2432|0.2279, 0.275|0.3321, 2.6009|0.44}
{4.0276|0.2486, 3.4055|0.3062, 0.1243|0.4452} {2.0197|0.2295, 2.0717|0.3089, 0.3172|0.4615} {1|0.2529, 1|0.2853, 1|0.4618} {0.3706|0.2489, 0.5541|0.3032, 0.4806|0.4479}
{8.3015|0.243, 6.0879|0.3224, 0.1499|0.4347} {4.1113|0.227, 3.6366|0.3321, 0.3845|0.44} {2.0809|0.2489, 1.8048|0.3032, 1.213|0.4479} {1|0.246, 1|0.3222, 1|0.4318}

\



H(2)
4 =


{1|0.3845, 1|0.3639, 1|0.2515} {0.5754|0.4309, 0.4174|0.3202, 0.9384|0.2489} {0.2788|0.4256, 0.4495|0.3371, 3.4126|0.2373} {0.1611|0.4088, 0.6885|0.3279, 8.4457|0.2632}

{1.738|0.4309, 2.3956|0.3202, 1.0656|0.2489} {1|0.4777, 1|0.2768, 1|0.2455} {0.4759|0.4748, 1.0707|0.292, 3.5925|0.2332} {0.2772|0.4591, 1.6347|0.28, 8.9467|0.2608}
{3.5869|0.4256, 2.2246|0.3371, 0.293|0.2373} {2.1011|0.4748, 0.934|0.292, 0.27834|0.2332} {1|0.4643, 1|0.3081, 1|0.2276} {0.5714|0.4502, 1.5040|0.2965, 2.5225|0.2533}
{6.2082|0.4088, 1.4524|0.3279, 0.1184|0.2632} {3.6072|0.4591, 0.6117|0.28, 0.1118|0.2608} {1.7501|0.4502, 0.6649|0.2965, 0.3964|0.2533} {1|0.434, 1|0.2883, 1|0.2777}



as well as the following consistent HPMPRs:

H̃(2)
1 =


{1|0.2304, 1|0.2304, 1|0.5392} {0.3316|0.2299, 0.3316|0.2299, 1.9978|0.5403} {0.1995|0.2346, 0.1995|0.2346, 5.5277|0.5308} {0.568|0.2317, 0.568|0.2317, 1.4744|0.5365}

{2.5034|0.2299, 2.5034|0.2299, 0.3705|0.5403} {1|0.2293, 1|0.2293, 1|0.5413} {0.6017|0.2341, 0.6017|0.2341, 2.7669|0.5319} {0.3417|0.2312, 0.3417|0.2312, 4.0794|0.5376}
{5.0116|0.2346, 5.0116|0.2346, 0.1339|0.5308} {1.6621|0.2341, 1.6621|0.2341, 0.3614|0.5318} {1|0.2388, 1|0.2388, 1|0.5224} {0.568|0.2359, 0.568|0.2359, 1.4744|0.5281}
{8.8233|0.2317, 8.8233|0.2317, 0.1227|0.5365} {2.9261|0.2312, 2.9261|0.2312, 0.2451|0.5376} {1.7606|0.2359, 1.7606|0.2359, 0.6783|0.5281} {1|0.2331, 1|0.2331, 1|0.5338}



H̃(2)
2 =


{1|0.3305, 1|0.3340, 1|0.3355} {0.443|0.3396, 0.7833|0.3253, 6.0345|0.335} {0.2311|0.334, 2.606|0.338, 6.0505|0.328} {0.1354|0.3249, 0.3672|0.3241, 8.8329|0.3511}

{2.2575|0.3396, 1.2766|0.3253, 0.1657|0.335} {1|0.3488, 1|0.3166, 1|0.3346} {0.5217|0.3432, 3.3268|0.3292, 1.0026|0.3276} {0.3057|0.334, 0.4688|0.3153, 1.4637|0.3507}
{4.3276|0.334, 0.3837|0.338, 0.1653|0.328} {1.9169|0.3432, 0.3006|0.3292, 0.3004|0.3276} {1|0.3376, 1|0.3417, 1|0.3206} {0.584|0.3284, 0.1409|0.328, 1.4598|0.3436}
{7.3851|0.3249, 2.7233|0.3241, 0.1132|0.3511} {3.2713|0.33, 2.1332|0.3153, 0.6832|0.3507} {1.7065|0.328, 7.0969|0.328, 0.685|0.3436} {1|0.3192, 1|0.3141, 1|0.3667}



H̃(2)
3 =


{1|0.2402, 1|0.3221, 1|0.4377} {0.4963|0.2319, 0.6033|0.3251, 2.564|0.4429} {0.248|0.2426, 0.2938|0.3115, 8.0706|0.4459} {0.1201|0.2408, 0.1643|0.321, 6.6642|0.4381}

{2.0148|0.2319, 1.6576|0.3251, 0.39|0.4429} {1|0.2237, 1|0.3281, 1|0.4481} {0.4997|0.2343, 0.487|0.3145, 3.1477|0.4511} {0.2420|0.2326, 0.2724|0.3241, 2.5992|0.4434}
{4.0325|0.2426, 3.4038|0.3115, 0.1239|0.4459} {2.0014|0.2343, 2.0534|0.3145, 0.3177|0.4511} {1|0.245, 1|0.3009, 1|0.4541} {0.4844|0.2432, 0.5593|0.3105, 0.8257|0.4463}
{8.3253|0.2408, 6.0862|0.321, 0.1501|0.4381} {4.132|0.2326, 3.6716|0.3241, 0.3847|0.4434} {2.0646|0.2432, 1.788|0.3105, 1.211|0.4463} {1|0.2414, 1|0.32, 1|0.4386}



H̃(2)
4 =


{1|0.4125, 1|0.3373, 1|0.2502} {0.5794|0.4365, 0.419|0.3148, 0.9427|0.2487} {0.2783|0.4331, 0.4509|0.3229, 3.386|0.2441} {0.1602|0.4253, 0.6839|0.3178, 8.4735|0.257}

{1.726|0.4365, 2.3868|0.3148, 1.0608|0.2487} {1|0.4606, 1|0.2922, 1|0.2471} {0.4804|0.4572, 1.0763|0.3003, 3.5919|0.2425} {0.2766|0.4493, 1.6323|0.2952, 8.9887|0.2554}
{3.593|0.4331, 2.2177|0.3229, 0.2953|0.2441} {2.0817|0.4572, 0.9291|0.3003, 0.2784|0.2425} {1|0.4537, 1|0.3084, 1|0.237} {0.5757|0.4459, 1.5166|0.3033, 2.5025|0.2508}
{6.2407|0.4253, 1.4623|0.3177, 0.118|0.257} {3.6157|0.4493, 0.6126|0.2952, 0.1113|0.2554} {1.7369|0.4459, 0.6594|0.3033, 0.3996|0.2508} {1|0.438, 1|0.2982, 1|0.2638}

.

Step 5: By applying the HPMWG operator of Equation (28) to individual HPMPRs H(t)
k =

(
h(t)ij,k

)
n×n

(k = 1, 2, ..., m), we obtain group HPMPR H(t)
g =

(
h(t)ij,g

)
n×n

as follows:

H(2)
g =


{1|0.3179, 1|0.3338, 1|0.3483} {0.4735|0.3357, 0.5638|0.315, 2.61|0.3493} {0.2449|0.3347, 0.771|0.3267, 5.3507|0.3386} {0.1373|0.3198, 0.3353|0.3136, 8.1532|0.3666}

{2.112|0.3357, 1.7736|0.315, 0.3831|0.3493} {1|0.3534, 1|0.2963, 1|0.3503} {0.5069|0.3525, 1.356|0.3049, 2.0609|0.3426} {0.2868|0.3399, 0.5929|0.2953, 3.1143|0.3648}
{4.084|0.3347, 1.297|0.3267, 0.1869|0.3386} {1.9725|0.3525, 0.7375|0.3049, 0.4852|0.3426} {1|0.3507, 1|0.3164, 1|0.3329} {0.5555|0.3381, 0.4346|0.3054, 1.5482|0.3565}
{7.2838|0.3198, 2.437|0.3136, 0.1227|0.3666} {3.4868|0.3399, 1.6867|0.2953, 0.3211|0.3648} {1.8001|0.3381, 2.3011|0.3054, 0.646|0.3565} {1|0.325, 1|0.2953, 1|0.3797}

.

Step 6: The group consensus indexes are

GCI
(

H(t)
1

)
= 1.0451, GCI

(
H(t)

2

)
= 1.0813, GCI

(
H(t)

3

)
= 1.071 and GCI

(
H(t)

4

)
= 1.0098.

Now, GCIr is decided to be 1.1, so all of he HPMPRs are an acceptable consensus with group
HPMPR. Therefore, Step 7 will be skipped and we can move on to Step 8.

Step 8: Now, all the rows of HPMPR Hg are aggregated by HPMG operator of Equation (29) as
follows:

h1,g = {0.3552|0.327, 0.61789|0.3223, 3.2666|0.3507}
h2,g = {0.7444|0.3454, 1.0927|0.3029, 1.2523|0.3517}
h3,g = {1.4545|0.344, 0.8029|0.3133, 0.6121|0.3426}
h4,g = {2.6003|0.3307, 1.8446|0.3024, 0.3994|0.3669}.
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Step 9: By Equations (42) and (43), scores and deviations of hi,g (i = 1, 2, 3, 4) are calculated as follows:

s
(
h1,g
)

= 0.9742, s
(
h2,g
)
= 1.0013, s

(
h3,g
)
= 0.9646 and s

(
h4,g
)
= 1.0563

d
(
h1,g
)

= 0.6118, d
(
h2,g
)
= 0.1299, d

(
h3,g
)
= 0.2142 and d

(
h4,g
)
= 0.4881.

Step 10: The comparison of scores and deviations computed in Step 9 provides us with the following
final preference ranking:

x4 > x2 > x1 > x3.

Step 11: End.

Remark 2. The proposed decision support model is divided into three main parts, Steps 1–4 deals with the
consistency issue of data provided by the economic experts, Steps 5–7 generate a reasonable consensus among
them, and Steps 8–10 provide the final standings of all the commodities. Figures 8–11 present the comparison of
area graphs of score values for normalized, acceptably consistent and consistent HPMPRs made from H1, H2,
H3, and H4, respectively, by the end of Step 4.

The results of the case study point out copper as the best commodity for investment, whereas wheat is the
least favorable. The Forex market is not fully predictable because of its complexities, and there are numerous
factors that can alter the profit margin of any commodity. The HPMPR has a better chance of modeling and
handling its vagueness with the help of probability theory.

Figure 8. Area graphs of score values of H1.

Figure 9. Area graphs of score values of H2.
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Figure 10. Area graphs of score values of H3.

Figure 11. Area graphs of score values of H4.

Effects of Probability on Decision Making

In order to show how important the role played by the probabilities of preference degrees is,
two new versions are generated from the HPMPRs Hk =

(
hij,k

)
n×n

(k = 1, 2, 3, 4) by changing the

probabilities only and preserving the preference degrees:

H∗1 =


{1|1} {0.2|0.2, 8|0.8} {0.15|0.1, 7.5|0.9} {0.25|0.231, 1.5|0.769}

{5|0.2979, 0.125|0.7021} {1|1} {0.31|0.15, 5.09|0.85} {0.4|0.925, 8.88|0.075}
{6.6667|0.6622, 0.1333|0.3378} {3.2258|0.2236, 0.1965|0.7764} {1|1} {0.22|0.1, 3.68|0.9}
{4|0.0636, 0.6667|0.9364} {2.5|0.4313, 0.1126|0.5687} {4.5455|0.7145, 0.2717|0.2855} {1|1}



H∗2 =


{1|1} {0.15|0.1, 0.55|0.1, 6.18|0.8} {0.4|0.2, 5.9|0.1, 7.1|0.7} {0.231|0.35, 7.35|0.65}

{6.6667|0.5018, 1.8182|0.3181, 0.1618|0.18} {1|1} {0.18|0.8, 3.65|0.1, 5.01|0.1} {0.3|1}
{2.5|0.3339, 0.1695|0.6322, 0.1235|0.0338} {5.5556|0.3628, 0.274|0.1892, 0.1996|0.4481} {1|1} {0.35|0.11, 8.56|0.89}

{4.329|0.2412, 0.1361|0.7588} {0.3333|1} {2.8571|0.706, 0.1168|0.294} {1|1}



H∗3 =


{1|1} {[0.33|0.01, 0.65|0.23, 3.18|0.76} {0.28|0.289, 5.9|0.711} {0.16|0.0586, 7.35|0.9414}

{3.0303|0.1317, 1.5385|0.4745, 0.1618|0.3938} {1|1} {0.201|0.7, 3.65|0.3} {0.4|0.8, 0.711|0.1, 6.78|0.1}
{3.5714|0.7453, 0.2547|0.11} {4.9751|0.1233, 0.274|0.8767} {1|1} {0.22|0.15, 0.7|0.85}
{6.25|0.2951, 0.7049|0.0586} {2.5|0.8, 1.4065|0.1, 0.1475|0.1} {4.5455|0.5612, 1.4286|0.4388} {1|1}



H∗4 =


{1|1} {0.29|0.05, 0.6|0.95} {0.33|0.15, 7.39|0.85} {0.27|0.1, 1.35|0.05, 6.1|0.85}

{3.4483|0.629, 1.6667|0.371} {1|1} {[0.19|0.75, 0.64|0.1, 3.65|0.15} {0.35|0.75, 1.9|0.1, 5.63|0.15}
{3.0303|0.8924, 0.1353|0.1076} {5.2632|0.7128, 1.5625|0.2855, 0.274|0.0017} {1|1} {0.27|0.15, 0.66|0.1, 5.55|0.75}

{3.7037|0.2908, 0.7407|0.5157, 0.1639|0.1936} {2.8571|0.661, 0.5263|0.0808, 0.1776|0.2582} {3.7037|0.4378, 1.5152|0.163, 0.1802|0.3992} {1|1}



H∗∗1 =


{1|1} {0.2|0.9, 8|0.1} {0.15|0.6622, 7.5|0.3378} {0.25|0.9, 1.5|0.1}

{5|0.2979, 0.125|0.7021} {1|1} {0.31|0.05, 5.09|0.95} {0.4|1, 8.88|0.9}
{6.6667|0.6622, 0.1333|0.3378} {3.2258|0.2236, 0.1965|0.7764} {1|1} {0.22|0.1, 3.68|0.9}
{4|0.0636, 0.6667|0.9364} {2.5|0.4313, 0.1126|0.5687} {4.5455|0.7145, 0.2717|0.2855} {1|1}



H∗∗2 =


{1|1} {0.15|0.8, 0.55|0.1, 6.18|0.1} {0.4|0.3339, 5.9|0.6322, 7.1|0.0338} {0.231|0.8, 7.35|0.2}

{6.6667|0.5018, 1.8182|0.3181, 0.1618|0.18} {1|1} {0.18|0.05, 3.65|0.05, 5.01|0.9} {0.3|1}
{2.5|0.3339, 0.1695|0.6322, 0.1408|0.0338} {5.5556|0.3628, 0.274|0.1892, 0.1996|0.4481} {1|1} {0.35|0.1, 8.56|0.9}

{4.329|0.2412, 0.1361|0.7588} {0.3333|1} {2.8571|0.706, 0.1168|0.294} {1|1}
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H∗∗3 =


{1|1} {[0.33|0.01, 0.65|0.23, 3.18|0.76} {0.28|0.289, 5.9|0.711} {0.16|0.0586, 7.35|0.9414}

{3.0303|0.1317, 1.5385|0.4745, 0.1618|0.3938} {1|1} {0.201|0.7, 3.65|0.3} {0.4|0.8, 0.711|0.1, 6.78|0.1}
{3.5714|0.7453, 0.1695|0.2547} {4.9751|0.1233, 0.274|0.8767} {1|1} {0.22|0.15, 0.7|0.85}
{6.25|0.2951, 0.1361|0.7049} {2.5|0.2398, 1.4065|0.5387, 0.1475|0.2215} {4.5455|0.5612, 1.4286|0.4388} {1|1}



H∗∗4 =


{1|1} {0.29|0.9, 0.6|0.1} {0.33|0.9, 7.39|0.1} {0.27|0.290, 1.35|0.5157, 6.1|0.1936}

{3.4483|0.629, 1.6667|0.371} {1|1} {[0.19|0, 0.64|0.1, 3.65|0.9} {0.35|0.1, 1.9|0.1, 5.63|0.8}
{3.0303|0.8924, 0.1353|0.1076} {5.2632|0.7128, 1.5625|0.2855, 0.274|0.0017} {1|1} {0.27|0.05, 0.66|0.05, 5.55|0.9}

{3.7037|0.2908, 0.7407|0.5157, 0.1639|0.1936} {2.8571|0.661, 0.5263|0.0808, 0.1776|0.2582} {3.7037|0.4378, 1.5152|0.163, 0.1802|0.3992} {1|1}

.

Remark 3. The inspection of Table 4 reveals why it is important to consider the probabilities of different
preference degrees. Often, decision-makers are taking decisions related to future scenarios like our case study.
The future is a mystery that cannot be predicted completely, and probability is a useful tool to deal with
uncertainties. In real-life scenarios, the probability of different events can alter the decisions we make today.

Table 4. Effects of probability on decision-making.

HPMPRs Ranking of Alternatives Best Commodity

H1, H2, H3, H4 x4 > x2 > x1 > x3 Copper
H∗1 , H∗2 , H∗3 , H∗4 x1 > x2 > x4 > x3 Oil

H∗∗1 , H∗∗2 , H∗∗3 , H∗∗4 x2 > x1 > x4 > x3 Gold

7. Conclusions

A group decision support model based on HPMPRs consists of three parts: a consistency
improving process, a consensus reaching process, and the selection process. The consistency measure
of an HPMPR has been defined in the consistency improving process. For HPMPRs that have
unacceptable consistency, an optimization method is proposed to improve the consistency until the
HPMPRs have an acceptable consistency value. A consensus index is defined to measure the consensus
level in the group decision model. For HPMPRs that have an unacceptable consensus, an optimization
method is designed to assist DMs in achieving a predefined consensus level. The proposed model can
be used to address GDM (group decision making) problems with HPMPRs. Optimization methods are
also developed to help individual HPMPRs to achieve a predefined consistency level and consensus
level with fewer interactions of the DMs. As a consequence, our model is time-saving, efficient, and
convenient for practical applications. The consistency improving process is performed to ensure
that the DMs are neither random nor illogical in their pairwise comparisons. The procedure to reach
a consensus level ensures that the adjusted HPMPRs not only achieve the predefined level of consensus,
but also maintain acceptable consistency. The proposed model also ensures that the consistent HPMPRs
do not change at each iteration. This property can retain the DMs’ original decision-making information
to the greatest extent possible. Here, we did not discuss the effects of the application of different
controlling parameters and distance functions in the developed model. This model is not useful for
incomplete preference relations. In the future, we will address these problems.
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Appendix A

Proof of Theorem 1. Immediate consequences of Equations (4) and (5).

Proof of Theorem 2. Definition 8 and Equations (18) and (19) directly imply this theorem.

Proof of Theorem 3. (1): Now, the deviation degree D(H1, H2) in Equation (21) is simplified as

D (H1, H2) =
1

dn2 ∑n−1
i=1 ∑n

j=1+1 ∑d
s=1

(
h

σ(s)
ij,1 × h

σ(s)
ji,2 + h

σ(s)
ji,1 × h

σ(s)
ij,2

)
+ 1

n + 2
nd(n+1) ∑n

i=1 ∑n
j≥i ∑d

s=1

∣∣∣pσ(s)
ij,1 − pσ(s)

ij,2

∣∣∣ , (A1)
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but

h
σ(s)
ij,1 × h

σ(s)
ji,2 + h

σ(s)
ji,1 × h

σ(s)
ij,2 ≥ 2

√
h

σ(s)
ij,1 × h

σ(s)
ji,2 × h

σ(s)
ji,1 × h

σ(s)
ij,2 = 2,

therefore,

1
dn2

n−1

∑
i=1

n

∑
j=1+1

d

∑
s=1

(
h

σ(s)
ij,1 × h

σ(s)
ji,2 + h

σ(s)
ji,1 × h

σ(s)
ij,2

)
+

1
n
≥ 1

dn2 ×
n(n− 1)

2
× 2d +

1
n
= 1,

and
2

nd(n + 1)

n

∑
i=1

n

∑
j≥i

d

∑
s=1

∣∣∣pσ(s)
ij,1 − pσ(s)

ij,2

∣∣∣ ≥ 0.

Hence,
D (H1, H2) ≥ 1.

(2): Follows from (1) and Equation (21).

(3): Evident from Equation (21).

Proof of Theorem 4. Consider the function f (x) = yx +
(

1
y

)x
, differentiating with respect to x gives

f ′(x) =
(

yx −
(

1
y

)x)
ln(y).

It will be positive when 0 < y < 1 and y > 1, therefore, for these y-values f is an increasing
function. Thus,

f (x) < f (1) = y +
1
y

,

furthermore, we have equality if and only if y = 1.

Proof of Theorem 5. From Equations (18) and (26), it follows

(
h̃(t+1)

ij

)σ(s)
=

n

∏
k=1

((
h(t+1)

ik

)σ(s)
×
(

h(t+1)
jk

)σ(s)
) 1

n

=
n

∏
k=1

(((
h(t)ik

)σ(s)
)α

×
((

h̃(t)ik

)σ(s)
)(1−α)

×
((

h(t)jk

)σ(s)
)α

×
((

h̃(t)jk

)σ(s)
)(1−α)

) 1
n

=

(
n

∏
k=1

((
h(t)ik

)σ(s)
×
(

h(t)jk

)σ(s)
) 1

n
)α

×
(

n

∏
k=1

((
h̃(t)ik

)σ(s)
×
(

h̃(t)jk

)σ(s)
) 1

n
)(1−α)

=
(

h̃(t)ij

)σ(s)

Thus,

(
h(t+1)

ij

)σ(s)
×
(

h̃(t+1)
ji

)σ(s)
=

((
h(t)ij

)σ(s)
)α

×
((

h̃(t)ij

)σ(s)
)1−α

×
(

h̃(t)ji

)σ(s)

=

((
h(t)ij

)σ(s)
×
(

h̃(t)ji

)σ(s)
)α

.
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So,

l
(

h(t+1)
ij

)σ(s)
×
(

h̃(t+1)
ji

)σ(s)
+
(

h(t+1)
ji

)σ(s)
×
(

h̃(t+1)
ij

)σ(s)
= ((

h(t)ij

)σ(s)
×
(

h̃(t)ji

)σ(s)
)α

+

((
h(t)ji

)σ(s)
×
(

h̃(t)ij

))α

≤
(

h(t)ij

)σ(s)
×
(

h̃(t)ji

)σ(s)
+
(

h(t)ji

)σ(s)
×
(

h̃(t)ij

)σ(s)
,

here by Lemma 1 equality holds only when
(

h(t)ij

)σ(s)
×
(

h̃(t)ji

)σ(s)
= 1, but that lead to H(t) = H̃(t),

which is not true, hence

(
h(t+1)

ij

)σ(s)
×
(

h̃(t+1)
ji

)σ(s)
+
(

h(t+1)
ji

)σ(s)
×
(

h̃(t+1)
ij

)σ(s)
<
(

h(t)ij

)σ(s)
×
(

h̃(t)ji

)σ(s)
+
(

h(t)ji

)σ(s)
×
(

h̃(t)ij

)σ(s)
,

and

∑n−1
i=1 ∑n

j=1+1 ∑d
s=1


(

h(t+1)
ij

)σ(s)
×
(

h̃(t+1)
ji

)σ(s)
+(

h(t+1)
ij

)σ(s)
×
(

h̃(t+1)
ji

)σ(s)

 < ∑n−1
i=1 ∑n

j=1+1 ∑d
s=1


(

h(t)ij

)σ(s)
×
(

h̃(t)ji

)σ(s)
+(

h(t)ij

)σ(s)
×
(

h̃(t)ji

)σ(s)

 . (A2)

By Equation (26) (
p(t)ij

)σ(s)
<
(

p(t+1)
ij

)σ(s)
<
(

p̃(t)ij

)σ(s)
,

with each iteration
(

p(t)ij

)σ(s)
will come closer to

(
p̃(t)ij

)σ(s)
depending on the value of α. Table 2 shows

the smaller the α is faster the value of
(

p(t)ij

)σ(s)
coming closer to

(
p̃(t)ij

)σ(s)
. As H̃(t) is consistent,

therefore each iteration will make H(t) more consistent i.e., if
(

p(t)ik

)σ(s)
≥ 1

2 ∧
(

p(t)kj

)σ(s)
≥ 1

2 ∧(
p(t)ij

)σ(s)
< 1

2 then by Equations (26) and (20)

∣∣∣∣(p(t+1)
ij

)σ(s)
−
(

p̃(t+1)
ij

)σ(s)
∣∣∣∣ < ∣∣∣∣(p(t)ij

)σ(s)
−
(

p̃(t)ij

)σ(s)
∣∣∣∣ . (A3)

Now, it is deduced from Equations (A2) and (A3) that

CI
(

H(t+1)
)
< CI

(
H(t)

)
,

thus, {CI(H(t))} is monotonically decreasing sequence, but CI(H(t)) ≥ 1, therefore it is a convergent
sequence, denote limt→∞ H(t) = H∞; then

CI (H∞) = lim
t→∞

CI(H(t)) = inf{CI(H(t)) : t = 1, 2, 3, ...}.

If CI (H∞) > CIr then implementation of Algorithm 2 results into improved HPMPR with lesser
consistency index, but that is contradictory to the fact that CI (H∞) is the greatest lower bound.

Proof of Theorem 6. It follows from Equations (4), (5) and (28).

Proof of Theorem 7. Let H̃(t)
g =

(
h̃(t)ij,g

)
and H̃(t)

k =
(

h̃(t)ij,k

)
(k = 1, 2, ..., m) be the sequences

of HPMPRs generated by Algorithm 1 applied to Hg and Hk (k = 1, 2, ..., m), respectively.
By Equations (21) and (23)

CI
(

Hg
)
=

1
dn2

n

∑
i=1

n

∑
j=1

d

∑
s=1

(
hσ(s)

ij,g × h̃σ(s)
ji,g

)
+

2
nd(n + 1)

n

∑
i=1

n

∑
j≥i

d

∑
s=1

∣∣∣pσ(s)
ij,g − p̃σ(s)

ij,g

∣∣∣ . (A4)
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Now, first we deal with multiplicative preference degrees

(
hσ(s)

ij,g × h̃σ(s)
ji,g

)
=

(
m

∏
k=1

(
h

σ(s)
ij,k

)ωk
×

n

∏
l=1

(
hσ(s)

jl,g × hσ(s)
li,g

) 1
n

)

=

 m

∏
k=1

(
h

σ(s)
ij,k

)ωk
×

n

∏
l=1

(
m

∏
k=1

(
h

σ(s)
jl,k

)ωk
×

m

∏
k=1

(
h

σ(s)
li,k

)ωk

) 1
n


=

(
m

∏
k=1

(
h

σ(s)
ij,k ×

n

∏
l=1

(
h

σ(s)
jl,k × h

σ(s)
li,k

) 1
n

)ωk
)

thus, by Lemma 2 (
hσ(s)

ij,g × h̃σ(s)
ji,g

)
≤

m

∑
k=1

ωk

(
h

σ(s)
ij,k × h̃σ(s)

ji,k

)
,

therefore Equation (A4) implies

1
dn2

n

∑
i=1

n

∑
j=1

d

∑
s=1

(
hσ(s)

ij,g × h̃σ(s)
ji,g

)
≤ max

k

(
1

dn2

n

∑
i=1

n

∑
j=1

d

∑
s=1

(
h

σ(s)
ij,k × h̃σ(s)

ji,k

))
. (A5)

Consider,

(
p̃(1)ij,g

)σ(s)
=

1
2n

n

∑
l=1

(
pσ(s)

il,g + pσ(s)
l j,g

)
=

1
2n

n

∑
l=1

(
m

∑
k=1

ωk pσ(s)
il,k +

m

∑
k=1

ωk pσ(s)
l j,k

)

=
m

∑
k=1

ωk

(
1

2n

n

∑
l=1

(
pσ(s)

il,k + pσ(s)
l j,k

))
=

m

∑
k=1

ωk

(
p̃(1)ij,k

)σ(s)
.

For the inductive step, suppose the following

(
p̃(r)ij,g

)σ(s)
=

m

∑
k=1

ωk

(
p̃(r)ij,k

)σ(s)
,

(i, j = 1, 2, ..., n).

then (
p̃(r+1)

ij,g

)σ(s)
=

1
2n

n

∑
l=1

((
p̃(r)il,g

)σ(s)
+
(

p̃(r)l j,g

)σ(s)
)

,

by supposition,

(
p̃(r+1)

ij,g

)σ(s)
=

1
2n

n

∑
l=1

(
m

∑
k=1

ωk

(
p̃(r)il,k

)σ(s)
+

m

∑
k=1

ωk

(
p̃(r)l j,k

)σ(s)
)

=
m

∑
k=1

ωk

(
1

2n

n

∑
l=1

((
p̃(r)il,k

)σ(s)
+
(

p̃(r)l j,k

)σ(s)
))

=
m

∑
k=1

ωk

(
p̃(r+1)

ij,k

)σ(s)
.

Hence, by principle of mathematical induction for all t ∈ N

(
p̃(t)ij,g

)σ(s)
=

m

∑
k=1

ωk

(
p̃(t)ij,k

)σ(s)
, (A6)

(i, j = 1, 2, ..., n).
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Therefore, ∣∣∣∣pσ(s)
ij,g −

(
p̃(t)ij,g

)σ(s)
∣∣∣∣ ≤ max

k

∣∣∣∣pσ(s)
ij,k −

(
p̃(t)ij,k

)σ(s)
∣∣∣∣ (A7)

Equations (A5) and (A7) imply

CI(Hg) ≤ max
k
{CI(Hk)}.

Proof of Theorem 8. By Equations (4), (5) and (34),

(
h(t+1)

ij,g

)σ(s)
|
(

p(t+1)
ij,g

)σ(s)
=

m

∏
l=1

((
h(t+1)

ij,l

)σ(s)
)ωl

|
m

∑
l=1

ωl

(
p(t+1)

ij,l

)
.

Consider,

(
h(t+1)

ij,k

)σ(s)
×
(

h(t+1)
ji,g

)σ(s)
=

((
h(t)ij,k

)σ(s)
)β

×
((

h(t)ij,g

)σ(s)
)1−β

×
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∏
l=1

((
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ji,l

)σ(s)
)ωl

=

((
h(t)ij,k

)σ(s)
)β

×
((
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)σ(s)
)1−β

×
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×
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h(t)ji,g
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)1−β

)ωl

=

((
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)σ(s)
)β

×
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h(t)ij,g

)σ(s)
)1−β

×
(

m

∏
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((
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)σ(s)
)ωl

)β ((
h(t)ji,g

)σ(s)
)1−β

=

((
h(t)ij,k

)σ(s)
×

m

∏
l=1

((
h(t)ji,l

)σ(s)
)ωl

)β

×
((

h(t)ij,g

)σ(s)
×
(
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=

((
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×
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)β

<
(

h(t)ij,k
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×
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(A8)

Additionally,

∣∣∣∣(p(t+1)
ij,k

)σ(s)
−
(

p(t+1)
ij,g

)σ(s)
∣∣∣∣ =

∣∣∣∣∣β (p(t)ij,k

)σ(s)
+ (1− β)

(
p(t)ij,g

)σ(s)
−

m

∑
l=1

ωl

(
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ij,l

)σ(s)
∣∣∣∣∣

=

∣∣∣∣∣β (p(t)ij,k

)σ(s)
+ (1− β)

(
p(t)ij,g

)σ(s)
−

m

∑
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ωl

(
β
(

p(t)ij,l

)σ(s)
+ (1− β)

(
p(t)ij,g

)σ(s)
)∣∣∣∣∣

=

∣∣∣∣∣β (p(t)ij,k

)σ(s)
−

m

∑
l=1

ωl β
(

p(t)ij,l

)σ(s)
∣∣∣∣∣

= β

∣∣∣∣(p(t)ij,k

)σ(s)
−
(

p(t)ij,g

)σ(s)
∣∣∣∣ < ∣∣∣∣(p(t)ij,k

)σ(s)
−
(

p(t)ij,g
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(A9)

Now, by Equations (21) and (32)

GCI
(

H(t+1)
k

)
= 1

dn2 ∑n
i=1 ∑n

j=1 ∑d
s=1

((
h(t+1)

ij,k

)σ(s)
×
(

h(t+1)
ji,g

)σ(s)
)
+ 2

nd(n+1) ∑n
i=1 ∑n

j≥i ∑d
s=1

∣∣∣∣(p(t+1)
ij,k

)σ(s)
−
(

p(t+1)
ij,g

)σ(s)
∣∣∣∣ ,

virtue of Equations (A8) and (A9) provide us the conclusion that

GCI
(

H(t+1)
k

)
< GCI

(
H(t)

k

)
: (k = 1, 2, ..., m),

with this, proof is complete.

Proof of Theorem 9. It follows from Theorems 5, 7 and Equation (35).
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