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Abstract: Fault detection and diagnosis in the chemical industry is a challenging task due to the
large number of measured variables and complex interactions among them. To solve this problem,
a new fault diagnosis method named Fisher discriminative sparse representation (FDSR), based on
deep belief network (DBN), is proposed in this paper. We used DBN to extract the features of all
faulty and normal modes. Features extracted by the DBN were used to learn subdictionaries, then
the overcomplete dictionary was constructed by cascading all subdictionaries in order, and each
dictionary atom corresponded to class labels. The Fisher discrimination criterion (FDC) was applied
to the dictionary learning to ensure smaller within-class scatter but greater between-class scatter.
The quadratic programming method was applied to estimate the sparse coefficients simultaneously
class by class. Therefore, both the reconstruction error and sparse coefficients were discriminative, so
that the reconstruction error after sparse coding can be used for pattern classification. An experiment
performed on the Tennessee Eastman (TE) process indicated that compared with the traditional
monitoring methods, the FDSR based on DBN produced more interpretable results and achieved
superior performance for feature extraction and classification in the field of complex system fault
diagnosis. T-distributed stochastic neighbor embedding (t-SNE) appropriately visualized the
performance of the proposed method and produced reliable fault diagnosis results.

Keywords: fault diagnosis; Fisher discriminant analysis; sparse representation; deep belief network;
complex system; Tennessee Eastman process

1. Introduction

With the increase in the complexity of operation and multiloop control processes, a robust fault
detection and diagnosis (FDD) method has become increasingly necessary for industrial processes.
Fault detection and diagnosis involves developing a method that detects faults quickly, diagnosing
the fault type, and determining the root causes of the fault with the least number of false alarms [1,2].
A good fault detection and diagnosis system not only guarantees the quality of the product but also
improves the safety of the system.

Fault diagnosis methods are categorized into data-based, model-based, knowledge-based, and
hybrid methods [3]. Knowledge-based methods are mature and we do not discuss them here.
Model-based methods have been proposed by Beard (1971) to replace hardware redundancy with
analytical redundancy, and Willsky (1976) proposed the key concepts of analytical redundancy for
model-based fault detection and diagnosis. Next, parameter estimation, observer-based algorithms,
and parity space methods were introduced and later improved. They were used to solve the control
problem in heating, ventilating, air conditioning, motor, and engine systems [3,4]. Based on the model
constructed using the physical principles and system identification techniques, fault diagnosis methods
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were developed to monitor the error between the outputs of practical systems and model-predicted
outputs [5–9].

Generally, obtaining an explicit model to accurately describe the dynamic behavior of a complex
system is difficult, and model-based algorithms [3,5–7] have considerable limitations. Due to the
extensive applications of modern measurements and the quick development of data analysis methods,
data-driven process monitoring techniques have attracted the attention of experts [9–13]. Many fault
detection and diagnosis methods have been proposed based on some widely used dimensionality
reduction techniques, such as partial least squares (PLS) [14], independent component analysis
(ICA) [15], principle component analysis (PCA) [16], and locally preserving projections (LPP) [17].
These multivariate statistical process monitoring (MSPM) methods are commonly used to extract
features based on the established distribution, determine the latent variables, and then construct
a monitoring model using the extracted features for fault detection and diagnosis.

One common drawback of the above dimensionality reduction methods is that the extracted
features are the linear combination of all input variables. Furthermore, the lack of sparsity in the
features hides the physical connection of complex systems. To reveal the deeper connection between the
variables and create a proper representation of physical meaning, this paper proposes a novel feature
extraction scheme for complex system fault diagnosis using deep learning and sparse representation.
Deep learning allows computational models composed of multiple processing layers to learn the
representation of data [18–21]. The backpropagation algorithm (BP algorithm) is applied after the
weights training step in deep learning to discover intricate structures in large data sets, and the BP
algorithm makes up the disadvantage of gradient diffusion in pretraining weights of the network.

The convolutional neural network proposed by Lecun was the first deep learning algorithm
that trained multilayer networks successfully, but it was not sufficiently effective during application.
A breakthrough in deep learning occurred in 2006 when Hinton introduced the deep belief network
(DBN), a novel deep learning architecture [18]. Since then, ever-increasing research has been performed
in the fields of pattern recognition, computer vision, and data mining. Zhao et al. applied DBN
to fault feature extraction and diagnosis of bearings and introduced PCA to extract two principle
components for visualization [22]. The authors determined the DBN can both extract the features
of fault types in single work conditions and the features of blended conditions. Wang combined
a particle swarm optimization algorithm with DBNs to particle DBNs (PDBNs), and determined the
PDBN model with optimized network parameters performed better and had higher identification
precision [23]. To take advantage of DBNs and quantum inspired neural networks (QINN), Gao et al.
proposed the linear superposition of multiple DBNs with quantum intervals in the last hidden layer to
construct a deep quantum inspired neural network and applied it to the fault diagnosis of aircraft fuel
systems [24]. To decrease the DBN pretraining time, Lopes proposed two complementary approaches.
An adaptive step size technique was first introduced to enhance the convergence of contrastive
divergence algorithms, and then a highly scalable graphics process unit parallel implementation of
the CD-k algorithm was presented, which notably increased the training speed [25]. Mostafa et al.
proposed a novel supervised local multilayer perceptron classifier architecture integrated with ICA
models for fault diagnosis and detection of industrial systems. The Expectation-Maximizing clustering
technique was applied to improve single neural network (SNN) classifiers. The effectiveness of the
proposed method was illustrated with the Tennessee Eastman (TE) process [26].

Since the deep belief network extracts features layer by layer, it has unique advantages in the
feature extraction of high-dimension and nonlinear data processing. Additionally, the TE process is
a complex industrial process with many variables and a large amount of data. To reduce the dimension
of variables and determine the relationship with interpretability, we introduced deep belief networks
to extract features of raw data from industrial processes.

The other drawback of the above dimensionality reduction methods is that they are based on
a statistical model, which assumes the probability distribution of the process variables first, and then
sets the corresponding threshold to complete fault diagnosis, whereas the accuracy of the methods
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mostly depends on the threshold and statistical model. To create more interpretable results and
promote better generalization, we introduce Fisher discrimination sparse representation (FDSR) to
diagnose faults that can be seen as a supervised classification task, the target of which is to assign new
observations to one of the existing classes. Various supervised learning models have been introduced,
such as error propagation, deep neural networks [27], support vector machine (SVM), and logistic
regression. Deep neural networks perform well when sufficient normal and fault data are available,
whereas the features extracted by DBNs are dimension reduced, meaning there is insufficient input
data for deep neural networks. SVM, another efficient classifier, performs well with limited training
data, whereas the lack of a rejection mechanism limits the application in fault diagnosis, especially for
some industries such as nuclear areas and chemical processes with high danger probability [28].

Sparse representation is widely used in pattern recognition, image processing, and fault
diagnosis [29–35], since it can include danger rejection as a restriction in the representation model
and iterate training data to learn the discriminative dictionaries. Then, the corresponding sparse
coefficients can be used to perform fault diagnosis in a complex system. Yu et al. proposed a sparse
PCA algorithm for nonlinear fault diagnosis and robust feature discovery in industrial processes,
with the robustness of this method being proved with the TE process [29]. To study the relationship
between monitoring parameters and faults, Bao et al. proposed a new sparse dimensionality reduction
method called sparse global-local preserving projections, which greatly improved the interpretability
of fault diagnosis [30]. Wu et al. proposed a novel fault diagnosis and detection method based on
sparse representation classification (SRC), with the main contribution being the model training and
multiclassification strategy [31].

To determine meaningful correlations among variables, the DBN was introduced to solve the
redundant coupling problem and eliminate interference between process variables. This paper
proposes a novel FDSR framework as the classification model to solve the classification of
dimension-reduced features. To solve the classification problem with strong coupling and danger
rejection limitation in modern industrial processes, the discriminative subdictionaries were learned
corresponding to class labels, and the overcomplete dictionary was constructed by cascading
subdictionaries orderly. Then, fault diagnosis was completed by determining the smallest
reconstruction error, since the dictionary and coefficient are both sparse. The results are then compared
to the backpropagation (BP) network, conventional sparse representation, and support vector machine.
The advantages and efficacy of the proposed methods are illustrated by a case study on the TE process.

The rest of the paper is organized as follows. Section 2 reviews the DBN techniques for feature
extraction, which includes both the theory and their application in feature extraction. Section 3
provides a detailed illustration of the FDSR and the idea behind fault diagnosis. Section 4 introduces
an overview of the proposed fault diagnosis methodology, then describes the experiment procedure
and the datasets. The performance of the proposed method is also evaluated in this section. Finally,
Section 5 summarizes the present research and potential future work.

2. Deep Belief Networks (DBNs)

DBNs are typical deep neural networks, which are stacked by a number of restricted Boltzmann
machines (RBMs). The RBM structure is shown in Figure 1. RBM intelligently transform the features in
raw space, layer by layer, into abstract representations in a new space, which reflects the distribution
of the samples with certain desirable properties and avoids human interference in feature extraction.
Compared with stacked auto-encoder, DBNs can simultaneously have lower reconstruction error
with more information. The DBN first adjusts the parameters with larger partial derivatives of time
complexity, which reduces the calculation cost of the network. Convolution neural network (CNN)
is another important deep network that includes a convolutional layer and a pooling layer. CNN is
applied to features that are spatially related, like in image processing, whereas the samples from
industrial processes are time series, which are not suitable for fault diagnosis in industrial processes.
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The DBN process first pretrains the weights of every layer with unsupervised learning, then fine
tunes the weights from top to bottom to obtain the optimal model, in which the weights between
the output layer and the layer before it can be recognized as the feature of the input data. The DBN
process is suitable for big data analysis with successful applications to pattern recognition, computer
vision, music audio classification, and recommendation systems [36–39]. DBN learns the features of
the original signal, layer by layer, using an unsupervised greedy algorithm. Then, the features from the
original space are represented in a new space. This network automatically learns to obtain a hierarchical
feature representation with more classification guidance and feature visualization. Deep learning not
only has stronger representation ability and faster calculation speeds compared with a classifier with
a superficial structure, but also can solve problems of overfitting and local optimization effectively [40].
These advantages make deep learning perform well in solving the redundant coupling and connection
problems among the variables of the complex system.
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Figure 1. The structure of restricted Boltzmann machine (RBM).

The RBM was first proposed by Smolensky, and has been prominent since Hinton stacked a bank
of RBMs to construct DBNs in 2006 [40]. RBMs are based on energy, in which the inputs are considered
as a probability distribution. An RBM is a special type of Markov random field with stochastic visible
units in the visible layer and stochastic observable units in the hidden layer. As shown in Figure 2 the
visible layers are fully connected with hidden layers, but there are no connections among the visible
layer or the hidden layer. The equations in the left part of Figure 2 show the forward pass in a DBN
with six input nodes in the visible layer and two hidden layers with two output nodes in output layer.
The first hidden layer has four nodes and the other has three. Each constitutes a module through
which the gradients can be backpropagated. We first computed the total input z of each node, which
is the weighted sum of the outputs from the last layer. Then, a nonlinear function was applied to z
to obtain the output of this node. By computing layer by layer, the output of DBN can be obtained.
The right part of Figure 2 shows the gradient calculation of the backward pass, in which ŷi is the target
value. Notably, the computation of the error derivative starts from the outputs to the inputs, which
is contrary to the forward pass. With the solution of maximum gradient, we can obtain the optimal
weights of this network.
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Figure 2. Schematic representation of a deep belief network (DBN). The number of layers and nodes of
each layer are an example; they can be defined as needed.

For any given set of state (v, h) in an RBM model, the energy function is defined as

Eθ(v, h) = −
nv

∑
i=0

aivi −
nh

∑
j=0

bjhj −
nv

∑
i=0

nh

∑
j=0

hjwj,ivi (1)

where nv and nh represent the number of neuros in the visible and hidden layer, respectively; v =

(v1, v2, . . . , vn)
T and h = (h1, h2, . . . , hn)

T are the state vector of neurons in the visible and hidden layer
of the model, respectively; a = (a1, a2, . . . , an)

T and b = (b1, b2, . . . , bn)
T are the bias of neurons; and

W =
(
wi,j
)T is the weight matrix of the units between the visible and hidden layers. Then θ = (W, a, b)

is the parameters set of the RBM model, which is the goal matrix of our training. Then the joint
probability distribution function of state (v, h) is calculated according to

Pθ(v, h) =
1
zθ

e−Eθ(v,h) (2)

where P(hk = 1|v ) is a partition function. The probability distribution Pθ(v) of the observed data v
is the practical concerns, which is also the edge distribution of Pθ(v, h), recognized as the likelihood
function as follows:

Pθ(v) = ∑
h

Pθ(v, h) =
1
zθ

∑
h

e−Eθ(v,h) (3)

Similarly:

Pθ(h) = ∑
v

Pθ(v, h) =
1
zθ

∑
v

e−Eθ(v,h) (4)

According to the Bayes and sigmoid function, the neuron in the visible (hidden) layer is activated,
with a value of 1, given a full state of neuros in the hidden (visible) layer by the probability P(hk = 1|v )
(P(vk = 1|h )).

P(hk = 1|v ) = sigmoid(bk +
nv

∑
i=1

wk,ivi) (5)

P(vk = 1|h ) = sigmoid(ak +
nh

∑
j=1

wj,khj) (6)
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The training goal was to determine parameter θ to ensure the output of RBM was as similar as

possible to the maximum of the likelihood
nv
∏
i=1

P(vi). Since the log-likelihood gradient was initially

equal to the components, the target can be translated to maximize the function ςθ,s = ln
nv
∏
i=1

P(vi).

Notably, the training process is more efficient when using a gradient descent based on the contrastive
divergence (CD) algorithm to optimize this question. Then, the weighting matrix θ can be updated
according to Equation (7). The detailed proof can be seen in a previous study [40]. To enhance
the learning rate and accuracy, Mnih et al. proposed a more practical algorithm named persistent
contrastive divergence [41], which traced the states of persistent chains instead of searching the initial
value of the Gibbs Markov chain at the training data vector.

∂ ln P(v)
∂wi,j

≈ P(hi = 1
∣∣∣v(0) )v(0)j − P(hi = 1

∣∣∣v(k) )v(k)j
∂ ln P(v)

∂ai
≈ v(0)i − v(k)i

∂ ln P(v)
∂bi

≈ P(hi = 1
∣∣∣v(0) )− P(hi = 1

∣∣∣v(k) ) (7)

DBNs are a cascade connection of stacked RBMs and are composed of multiple layers of stochastic
and latent variables, which can be considered a special form of the Bayesian probabilistic generative
model. The schematic diagram of the DBN model is shown in Figure 3. The hidden and visible
layers are connected in order. Hinton proposed a greedy layer-wise learning algorithm to train the
model from bottom to top and train only one layer at a time, with the parameters of the other layers
being fixed. The outputs of layer l − 1 are the input of layer l used to train until the top level is
reached. This is called the pretraining or feature-learning process, which determines the independent
parameters in every RBM of the DBN. After the learning of the optimized weights is finished, the
parameter optimal algorithm is usually backpropagated to determine the global optimal. This is called
the fine-tuning process, which is supervised learning from top to bottom [42]. Figure 3 shows the
learning flowchart of the DBN model.
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3. Fisher Discriminative Sparse Representation (FDSR) of the Features Extracted from DBN

3.1. Sparse Dictionary Constructed Based on Fisher Discriminative Dictionary Learning

In the quest for the proper dictionary to use in fault classification, preconstructed dictionaries,
adapted dictionaries, and redundant dictionaries are recognized as three options of dictionary learning.
Preconstructed dictionaries, such as steerable contourlets, wavelets, and curvelets, are tailored
specifically to imaging, and in particular, to stylized cartoonlike image content. Alternatively, adapted
dictionaries such as wavelet packets and bandelets provide a tunable selection of a dictionary, in
which the basis or frame is generated under the control of a particular parameter. The wavelet packets
introduced by Coifman et al. assumed control over the time-frequency subdivision, tuned to optimize
performance over a specified instance of a signal. The bandelets introduced by Mallat et al. were
spatially adapted to better treat images by orienting the regular wavelet atoms along the principal
direction of the local area processed [43]. The Method of Optimal Directions (MOD) and K-singular
value decomposition (K-SVD) [44,45] are popular dictionary learning algorithms. Fisher discriminative
dictionary, using three dictionary training mechanisms, has attracted considerable attention.

To improve the performance of previous deep learning methods, we propose a novel Fisher
discrimination dictionary in this study. Instead of learning a sharing dictionary for all classes, we
learned a structured dictionary D = [D1, D2, . . . Dc], where c is the total number of classes, and Di is
the subdictionary that is class-specific and associated with class i. Apart from Di requiring powerful
reconstruction capability of Yi, D also should have powerful discriminative capability of Yi.

To obtain the sparse representation of the signal, an overcomplete dictionary is often learned
from training samples based on the sparse model. The dictionary and sparse coefficients are key for
the sparse representation of the signal. K-SVD is not suitable for classification tasks because it only
requires that the learned dictionary to accurately represent the training data, but not necessarily have
classification characteristics. To improve the performance of the classification ability, we propose
a novel Fisher discriminate dictionary D = [D1, D2, . . . Dc]. We get the features Y = [Y1, Y2, . . . Yc] from
DBNs, in which Yi is the subset of features from class i, which is then used as the training samples
to construct 22 subdictionaries. These subdictionaries are the representation of 21 fault types and
one normal condition, and they are sequentially concatenated columnwise to form an overcomplete
dictionary to fully represent all states of TE process. Denoted by X = [X1, X2, . . . Xc], where the coding
coefficients are Y over D and Xi is the submatrix containing the coding coefficients of Yi. D should
be able to reconstruct Y effectively. Additionally, Di can represent samples of class i sparsely with
minimal error, whereas Dj(j 6= i) cannot. That is, D has powerful discriminative ability for signals in
Y. As such, we propose the discriminative dictionary learning model:

J(D,X) = argmin
(D,X)

{r(Y, D, X) + λ1‖X‖1 + λ2 f (X)} (8)

where λ1 and λ2 are scalar parameters, r(Y, D, X) is the Fisher discriminative fidelity term, which
limits the learned dictionary D, which optimally represents Y, and ‖X‖1 and f (X) are the sparse
constraint and discrimination constraint applied to coefficient matrix X, respectively.

As the optimal dictionary to represent Yi:

Yi = DXi = D1X1
i + D2X2

i + · · ·+ DcXc
i (9)

where Xi is the representation of Yi in the dictionary D, and X j
i is the representation of Yi

in the dictionary Dj. The Fisher discriminative fidelity term r(Y, D, X) includes three parts:
(1) The structured dictionary D should be able to well represent Yi, meaning ‖Yi − DXi‖2

F is small;
(2) Dictionary D in Figure 4a satisfies this claim. Then, the subdictionary Di that corresponds to Yi is
optimal in Dj, 1 ≤ j ≤ c. This limitation can be represented as a mathematic function: ‖Yi − DiXi‖2

F,

which is small enough. Figure 4b shows this constraint; (3) X j
i should have nearly zero coefficients so
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that representation ‖DiX
j
i‖

2

F, 1 ≤ j ≤ c and j 6= i are small enough, as shown in Figure 4c. Above all,
the Fisher discriminative fidelity term [46] is as follows:

r(Y, D, X) = ‖Yi − DXi‖2
F + ‖Yi − DiXi‖2

F + ∑
1 ≤ j ≤ c

j 6= i

‖DiX
j
i‖

2

F (10)
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The idea above limits the discrimination of the dictionary. We defined f (X) to constrain the
discriminative of the sparse coefficient X. Learning from the criterion, such as the Fisher discriminative
criterion, we introduced between-class scatter and within-class scatter to illustrate the discrimination
of X. Within-class scatter Tw(X) is recognized as the sum of distance between column vectors xi in the
coefficient matrix that correspond to class i and the mean vector mi of xi, xi ∈ Xi. Between-class scatter
Tb(X) is defined as the sum of the distance between the mean vector of xi, xi ∈ Xi and the mean vector
of Xi, 1 ≤ i ≤ c multiplied by the number of vectors in Xi. Tw(X) and Tb(X) are defined as:

Tw(X) =
c

∑
i=1

∑
xi∈Xi

(mi − xi)(mi − xi)
T (11)

Tb(X) =
c

∑
i=1

ni(m−mi)(m−mi)
T (12)

Denoted by Tw(X) and Tb(X), to ensure the convex and stability of f (X), we introduced an elastic
term ‖X‖2

F and a scalar parameter into f (X). Then, f (X) is defined as:

f (X) = tr(Tw(X))− tr(Tb(X)) + η‖X‖2
F (13)

The definition of the discriminative of dictionary D and sparse coefficient X ensure both dictionary
and coefficient can be applied to fault diagnosis. Then, we have the FDSR model:

J(D,X) = argmin
D,X


c
∑

i=1
r(Ai, D, Xi) + λ1‖X‖1+

λ2

(
tr(Tw(X))− tr(Tb(X)) + η‖X‖2

F

)
 (14)

3.2. Optimization of the Fisher Discriminative Sparse Representation

The FDSR target function is not jointly convex to (D, X); it is convex to each D and X, whereas
the other is fixed. This promotes the alternative optimization algorithm, a sparse coding problem that
optimizes X while D is fixed. Optimizing D while X is fixed is a quadratic programming problem.
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First, we initialized D, applying principle component analysis (PCA) to the feature extracting
results of DBN. PCA maps data into a new dimensional subspace that contains that most varied data
to ensure the least information loss. An m-dimensional data set Y = [y1, · · · , yn]

T ∈ Rn×m includes

n samples, which is given as Y =
m
∑

i=1
ti pT

i = TmPT
m, where tk (k = 1, · · · , m) are the score vectors or

principal components (PCs), pk (k = 1, · · · , m) are loading vectors, Tm is the score matrix, and Pm is
the loading matrix. Here, we used PCA only to initiate the dictionary but not to reduce the dimensions,
so we chose training data from class j (j = 1, · · · , c) to obtain PCs tj

i(i = 1, · · · , m), and the matrix

included tj
i(i = 1, · · · , m) in the corresponding subdictionary Di, in which the initialized dictionary Di

included 100% of the principal components.
Then, we assumed D was fixed. The objective function in Equation (14) was reduced as a sparse

coding problem to calculate X = [X1, X2, · · · , XN ], as shown in Equation (15), which can be solved
using a match pursuit algorithm. In this paper, we solved coefficient Xi class by class. After updating
coefficient X, we fixed X by reducing Equations (13) to (16) to update subdictionary Di class by class:

JXi = argmin
Xi

 r(Ai, D, Xi) + λ1‖Xi‖1 +

λ2

(
‖Xi −Mi‖2

F −
c
∑

j=1
‖Mj −M‖2

F + η‖Xi‖2
F

)  (15)

JDi = argmin
Di

(‖A− DiXi −
c

∑
j=1,j 6=i

DjX j‖2
F + ‖Ai − DiXi

i‖
2
F +

c

∑
j=1,j 6=i

‖DjXi
j‖

2

F
) (16)

where Xi is the coding coefficient of A over Di.
To ensure the convexity and discrimination of JXi , we set η = 1. Then, all terms except λ1‖Xi‖1 are

differentiable. Equation (15) can be solved using the iterative projection method proposed by Rosasco
et al. [46] (Appendix A). Notably, each column of dictionary Di should be a unit vector. Equation (16)
is a convex optimization problem that can be solved using the algorithm proposed in Yang et al. [47],
(Appendix B). The FDSR algorithm is shown in Table 1.

Table 1. Fisher discrimination sparse representation algorithm.

Input: signal y
Initialization: Initialize D
We initialized D using a simple principle component
analysis of A and ensuring every column of D is a unit
vector.
Step 1: Update the sparse coefficients X.
Fix D and solve Xi, i = 1, 2, · · · , c one at a time by solving
Equation (14).
Step 2: Update the dictionary D.
Fix X and solve Di, i = 1, 2, · · · , c class by class by solving
Equation (15).
Step 3: Repeat Steps 1 and 2 until the maximum number
of iterations is reached, or the values of J(D,X) adjacent
iterations are sufficiently close.
Output: Optimal dictionary D = [D1, D2, · · · , Dc] and
sparse coefficient X = [X1, X2, · · · , Xc].

3.3. Fault Diagnosis Solution

Since the dictionary and sparse coefficient are solved above, the diagnosis of the fault type is based
on minimizing the reconstruction error. We performed classification using identity(y) = argmin{ei},
where ei = ‖y− DiXi‖2 + λ‖X‖1, 1 ≤ i ≤ c, and Xi is the coefficient corresponding to subdictionary
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Di. Here, we introduced the l1 norm of X to ensure the sparsity of the coefficient, if the number of
non-zero atoms not small enough, the dictionary cannot be the optimal candidate.

3.4. Computation of Fisher Discriminative Sparse Representation

The computation of FDSR is mainly divided into three steps: DBN training, eigenvector solving,
and dictionary learning. In this paper, the DBN consists of three RBMs, set neuros in each RBM
as m1, m2 and m3, the inputs are N samples with M parameters, K1 is the number of iterations.
The computational complexity of the first, second, and third RBM can be represented as F1, F2 and F3

respectively, and the computational complexity of fine tuning is defined as R.

F1 = K1N
(
4Nm1 + 2m2

1 + M2 + M + m1
)

F2 = K1N
(
4m1m2 + 2m2

2 + m2
1 + m1 + m2

)
F3 = K1N

(
4m2m3 + 2m2

3 + m2
2 + m2 + m3

)
R = K1N(Mm1 + m1m2 + m2m3)

(17)

Then, the computational complexity of DBN CDBN is:

CDBN = F1 + F2 + F3 + R (18)

K2 is the iterations of FDSR method with sparsity L, then the computational complexity of
dictionary learning and eigenvector solving is O

[(
(K2 + L)MN2)], O

[(
(2K2 + L)MN2)], respectively.

As a result, the complexity of FDSR is O
[
(3K2 + L)MN2].

4. Case Study

The FDSR method based on a deep neural network was applied to the TE process. The flowchart
of the TE process is shown in Figure 5, with a plantwide control structure proposed by Lyman and
Georgakis. The structure describes the nonlinear relationship among devices, materials, and energy.
The system includes five major unit operations: an exothermic two-phase reactor, a vapor-liquid flash
separator, a product condenser, a recycling compressor, and a reboiled product stripper. Four gaseous
materials are involved, A, C, D, and E, with products G and H having a byproduct of F. In addition,
inert gas B is added to the reactants. First, A, D, and E are fed into the reactor, then the products are
sent into the condenser. The condensed product flows to a vapor-liquid flash separator, in which
the products that have not yet been compressed are recycled by the compressor and sent to reactor,
whereas the gases that has been compressed are sent to the stripper to remove the remaining reactants.
Then, the byproduct F and inert gas B are removed by the purge valve to obtain products G and H.

Downs and Vogel [48] developed a simulator for the TE process, allowing 21 disturbances
(faults), 12 manipulated variables (XMV1 to XMV12), and 41 measured process variables, of which
22 are continuously monitored process variables (XMEAS1 to XMEAS22) and 19 are composition
measurements (Table 2). Detailed descriptions of this process can be found in Wu et al. [44]. In this case
study, the 22 continuously monitored variables (Table 2) and 11 manipulated variables were monitored
for online fault diagnosis with the agitation speed set to 50%. Six kinds of operating modes were
possible. We completed the simulation under the first mode, which is the basic mode. The normal
datasets were sampled under normal operating conditions, and 21 fault datasets were generated
under 21 types of faulty operating conditions, as shown in Table 3. The faults in bold were chosen
to test the effectiveness of the proposed algorithm. Faults 16 to 20 were unknown types. Faults 1
to 7 were associated with step variation, faults 8 to 12 were the random causes of variations in the
process variables, whereas slow drift caused fault 13, and the sticking leads were faults 14, 15, and 21.
In this case study, we used the PI cascade control structure proposed by Downs [48], and the data were
sampled every 3 min. Each dataset contained 960 samples. The fault was introduced into the process
after the 161st sample. The task defined here was to diagnose different working conditions based on
the process data.
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Table 2. Manipulated and continuously monitored variables.

Variable Name Symbol Variable Name Symbol

D feed rate XMV1 Reactor feed rate XMEAS6
E feed rate XMV2 Reactor pressure XMEAS7
A feed rate XMV3 Reactor level XMEAS8

A and C feed rate XMV4 Reactor temperature XMEAS9
Recycle compressor XMV5 Purge rate XMEAS10

Purge valve XMV6 Separator temperature XMEAS11
Separator liquid flow XMV7 Separator level XMEAS12
Stripper liquid flow XMV8 Separator pressure XMEAS13

Steam valve of stripper XMV9 Separator underflow XMEAS14
Water flow in reactor XMV10 Stripper level XMEAS15

Water low in condenser XMV11 Stripper pressure XMEAS16
Agitation speed XMV12 Stripper underflow XMEAS17

D feed ratio XMEAS1 Stripper temperature XMEAS18
E feed ratio XMEAS2 Stripper steam flow XMEAS19
A feed ratio XMEAS3 Compressor power XMEAS20

A and C feed ratio XMEAS4 Reactor cooling water outlet temperature XMEAS21
Recycle flow XMEAS5 Condenser cooling water outlet temperature XMEAS22

Table 3. Disturbances in the Tennessee Eastman process.

Number Disturb Type

1 A/D feed ratio changes, B composition constant Step
2 B feed ratio changes, A/D composition constant Step
3 D feed temperature changes Step
4 Reactor cooling water inlet temperature changes Step
5 Separator cooling water inlet temperature changes Step
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Table 3. Cont.

Number Disturb Type

6 A feed loss Step
7 C head pressure loss Step
8 A/B/C composition changes Random
9 D feed temperature changes Random

10 C feed temperature changes Random
11 Reactor cooling water inlet temperature changes Random
12 Separator cooling water inlet temperature changes Slow drift
13 Reactor dynamic constants changes Slow drift
14 Reactor valve Sticking
15 Separator valve Sticking
16 Unknown Unknown
17 Unknown Unknown
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown
21 Stable valve in stream 4 Constant

4.1. Overview of the Proposed Fault Diagnosis Algorithm

To improve the calculation speed of the sparse coefficient solution and make the sparse
representation more suitable for high-dimension industrial process data, the proposed fault
classification algorithm was developed based on DBNs and sparse representation. As shown in
the flowchart in Figure 6, the training data was first preprocessed by normalization, then the features
were extracted from various classes with the DBNs drawing on the idea of dimension-reduction.
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Then, various features were trained with FDSR limitation to obtain the redundant subdictionaries,
which were cascaded to construct the discriminative dictionary. The parameters of FDSR chosen by
cross-validation are λ1 = 0.005, λ2 = 0.05, λ = 0.001 with 1000 iterations, 125 iterations for each
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case. We also did experiments on eight cases which are the faults in bold in Table 3 (including the
normal case, fault 1, fault 6, fault 8, fault 12, fault 13, fault 14, and fault 18). The subdictionary is
initialized by PCA and acquired 22 × 960 matrix, and the sparse level is set to 21. In addition, the
Fisher discrimination criterion was applied to dictionary learning to ensure the discrimination of both
sparse coefficients and subdictionaries. First, the FDSR restricted the larger among-class scatter and
smaller within-class scatter. Then, we created each class-specific subdictionary to best represent the
training samples from the associated class, but this subdictionary poorly represented the samples from
the other classes. Both ensure the discrimination of the sparse coefficients and the reconstruction error.
Additionally, the sparse representation coefficients of the extracted features were resolved using the
iterative projection algorithm. Once the coefficients and dictionaries were acquired, the reconstruction
error between samples of class-specific and other classes could be calculated. Furthermore, the fault
type corresponded to the dictionary with the smallest error. The DBN-FDSR method was applied to
the TE process to validate its performance.

4.2. Feature Extraction Results

Since the TE process has 53 parameters, the deep neural network extracts features as a filter with
53 input perceptrons and two hidden perceptrons. The input-to-hidden layer is fully connected and
there are no connections among the layer itself. The connections can be recognized as a filter since
they eliminate useless information from inputs while maintaining information that reflects certain
fault information. Through this method, the DBN trained with two hidden layers can be considered
as a feature extractor to determine the optimal features of the classes. The DBN parameters were set
to 52 × 20 × 16 × 22, in which 52 was the input dimensions of the TE parameter, 20 and 16 are the
output dimensions of the first hidden layer and second layer, respectively, and 22 is the total number
of classes in the process with 21 fault types and the normal condition.

The DBN was trained with 10,560 samples from the normal condition and 21 fault cases, in
which every case had 480 samples. So that the weight matrix visualization would be more direct
and comparable, these connections were horizontally folded into 10,560 × 50, 10,560 × 20, and
10,560 × 16 pixels. Figure 7 shows the weight matrix acquired from training the DBN. Given space
restrictions, we chose 40 sample data points from eight cases, which included the normal case, fault
1, fault 6, fault 8, fault 12, fault 13, fault 14, and fault 18. The eight cases included all fault types
(step, random, slow drift, sticking, and unknown faults). Since the fault was introduced in the 161st
sample point, we chose from 161 to 200 as the 40 samples points (Figure 7). The first column in
Figure 7 is the raw data of the above eight cases, and the second column is the output of the first
hidden layer. Since the parameters were set as 52 × 20 × 16 × 22, the output of the first hidden layer
was 10,560 × 20. The third column is the output matrix of the second hidden layer with a dimension
of 10,560 × 16. The difference between the weight matrix is the magnitude of its value, i.e., color
depth. This demonstrates that the different running statuses contain various characteristics that can be
considered fault features, such as the vectors addressed in the red box in Figure 7. Hidden 1 of fault 1
is the same as fault 14 in the green box in the second column of Figure 7. After the transformation of
the second layer, the weight changed as shown in the green box of the third column, which can be
used to complete feature extraction in complex systems. It also provides a fault diagnosis method with
sparse representation.

All of these techniques were implemented on the MATLAB 2016a platform on a personal computer
with an i5-6500 core CPU at 3.20 Ghz, and 8 GB of RAM. Feature extraction from the training data
required 8 min and 5 min to extract the features of the testing data. The subdictionary learning was
time consuming, requiring about 27 h to learn the 22 subdictionaries and sparse coefficients.

4.3. Comprehensive Comparison of Classifier Performance

To illustrate the discrimination ability of our algorithm, DBN [22], backpropagation (BP) [39],
SVM with RBF kernel [28], and sparse representation (SR) classifiers [49] were compared with the
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FDSR proposed in this study. The neural numbers of DBN were set to 52 × 20 × 16 × 22 and kept
the same in all tests. The parameters of SVM were optimized and the optimal C = 0.10 and γ = 10.53
were acquired. The parameters of backpropagation were set to 52 × 30 × 22. More detail about these
methods can been seen in the corresponding references. The classification test was repeated 30 times,
and the average classification accuracy is summarized in Table 4. Fault 14 and fault 18 had the lowest
accuracy in every classifier, proving the challenge posed in diagnosing unknown faults and sticking
faults. The FDSR results were considerably better compared with other methods, verifying the superior
clustering and separating ability of this methodology.
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Performance of these various classification methods were evaluated based on Accuracy (Acc),
Sensitivity (Sen), and Specificity (Spe). TP is the number of healthy data correctly recognized, TN is
the number of faulty data correctly recognized, FN is the number of faulty data detected as healthy,
and FP is the number of healthy data detected as faulty. Acc is the proportion of true decisions in
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all tests, and Sen and Spe represent the proportion of positive and negative cases that were detected
correctly, respectively. The formulation is shown in Equations (19)–(21). We used Sen to evaluate the
classification accuracy of these methods.

Acc =
TP + TN

TP + FP + TN + FN
(19)

Sen =
TP

TP + FN
(20)

Spe =
TN

TN + FP
(21)

The comparison of the various classifiers and their accuracies are illustrated in Table 4.
The proposed FDSR was superior, having the highest accuracy in all scenarios. The FDSR performs
quite better than the traditional sparse representation classifier (SRC) [49], which could be attributed
to the added constraints that limit the scattering of the samples within a class and maximize the
scatter of samples between classes. Meanwhile, FDSR had higher reconstruction accuracy than SRC,
due to the introduction of minimizing the reconstruction error restriction via L2 norm. The results
demonstrate that FDSR is the optimal method for diagnosing faults compared with the other
available methodologies.

Table 4. Comprehensive comparison of classifier performance.

Classifier Normal
(%)

Fault 1
(%)

Fault 2
(%)

Fault 6
(%)

Fault 8
(%)

Fault 12
(%)

Fault 13
(%)

Fault 14
(%)

Fault 18
(%)

DBN 63.2 71.0 82.7 83.0 76.5 71.4 62.0 63.4 62.0
BP 81.2 83.2 76.5 75.2 77.2 64.5 65.8 66.6 63.2

DBN+SVM 88.1 80.1 86.5 84.2 88.2 83.1 78.2 69.2 72.0
DBN+SRC 79.2 82.1 75.8 83.2 72.5 76.5 71.2 73.9 65.3

DBN+FDSR 99.2 98.2 96.5 97.8 96.8 98.9 99.3 92.3 94.5

4.4. Visualization of Learned Representation

To demonstrate the efficacy of the proposed FDSR based on DBN for feature extraction and
diagnosis in industrial systems, we introduced the visualization technique called t-distributed
stochastic neighbor embedding (t-SNE) [50,51]. T-SNE is a tool for dimensionality reduction that is
well-suited for the visualization of high-dimension datasets. We chose faults 1, 2, 6, 8, 12, 13, 14, and 18
(Bold fault types in Table 3) and the normal data to complete the experiment. Step, random, slow drift,
sticking, and unknown fault types were included to fully reflect the efficacy of the FDSR algorithm.

Here, the DBN was used to extract the features with 16 dimensions from raw process data, hasten
the dictionary learning, and eliminate redundant information for diagnosis. Then, t-SNE, the dimension
reduction technique, was used to convert the 16-demensional features to a three-dimensional (3D)
map. The resulting scatterplot maps are shown in Figure 8. To better demonstrate the visualization
of the clustering performance, Figure 8b is the 3D view at an azimuth of 90 degrees and a top
view of 90 degrees, and Figure 8a is the view at an azimuth of −37.5 degrees and a top view of
30 degrees. Furthermore, the features were used to learn the dictionary with 176 dimensions using the
iterative projection method. The discriminative sparse coefficients were updated using the quadratic
programming algorithm. Then, we applied t-SNE to convert the discriminative coefficients to a 3D
map and the resulting scatterplot maps are shown in Figure 8. We used the same technique to visualize
the raw process data shown in Figure 9. Only three conditions were completely separated, and the
remainder are indistinguishable in Figure 9. The features extracted by DBN were also poor, with four
conditions separated completely, as shown in Figure 8. The coefficients acquired from FDSR clustered
best where the data points of nine conditions were well-separated in Figure 10. This verifies the good
classification ability of the FDSR algorithm investigated in this study. The result also indicates that
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faults 12, 13, 14, an 18 are hard to classify without an effective method, whereas the FDSR algorithm
investigated here solved this problem well. This also verifies in the classification accuracy of the
different conditions displayed in Table 3.
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From the trends shown by the three maps (Figures 8–10), the DBN itself is an effective
feature-extraction method for industry process fault diagnosis. The FDSR based on the DBN approach,
where the features are learned by DBN, appreciably improved the representation performance.
The results also validate the superior classification performance of the FDSR algorithm based on
DBN compared with other methods. Therefore, an FDSR-based deep neural network is an effective
approach for industrial process fault diagnosis.

5. Conclusions

This paper proposed a novel FDSR algorithm based on the feature extraction of DBN for fault
diagnosis. Deep learning was introduced to solve the multiparameters problem of complex systems,
extracting features layer by layer with dimension reduction. FDSR is an improved sparse representation
method that takes advantage of sparse representation and Fisher discriminant analysis. Then, the
FDSR algorithm was proposed to learn a discriminative structured dictionary that is cascaded by
subdictionaries of specified classes. The discrimination ability of the FDSR algorithm is demonstrated
both in the dictionary and coefficients. First, each subdictionary of a specified class has great
discrimination ability for extracting features from the corresponding class but has poor representation
power for the features from other classes. In addition, by minimizing the between-class scatter and
maximizing the within-class scatter, the sparse coefficients solved were sufficiently discriminative.
The computational complexity is shown in this paper. Consequently, the inputs were reconstructed
with the coefficients and the dictionary acquired, and the classification results were acquired from
the reconstructive error. In the end, we introduced t-SNE to visualize the performance of the
proposed algorithm.

The learning performance was compared with DBN, SRC, SVM, and BP neural networks. The fault
diagnosis experiment on the TE process verified the effects of the proposed algorithm. In terms of
the algorithm, studying the iteration rule to achieve faster convergence rate in the future would be
beneficial. In terms of application, further research should focus on applying this algorithm to other
complex systems for fault diagnosis.
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Appendix A. Iterative Projective Method

Since Q(Xi) = r(Ai, D, Xi) + λ2

(
‖Xi −Mi‖2

F −
c
∑

j=1
‖Mj −M‖2

F + η‖Xi‖2
F

)
is strictly convex to

Xi, 2τ‖Xi‖1 = λ1‖Xi‖1 is the function convex to Xi and satisfying one-homogeneous constraints, we
rewrote Equation (15) as:

J(Xi)
= argmin

Xi

{Q(Xi) + 2τ‖Xi‖1}

This can be represented as J( f ) = argmin
f
{F( f ) + 2τ J( f )}, in which J( f ) = ‖ f ‖1, τ = λ1/2

and F( f ) = r(Ai, D, f ) + λ2

(
‖ f −Mi‖2

F −
c
∑

j=1
‖Mj −M‖2

F + η‖ f ‖2
F

)
. This could be solved by the

Iterative Projective Method [46]. Table A1 describes the Iterative Projection algorithm used to solve the
minimization of Equation (20).
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Table A1. Iterative Projection Method.

Input σ, τ > 0.

Initialization: X̃(1)
i = 0, p = 1

If convergence not reached, perform:
p := p + 1

f p =
(

I − π τ
σ

K
)(

f p−1 − 1
2σ∇F

(
f p−1))

End while
Return f p

Note. K = ∂J(0) is the set of the sub-differential of J in 0, π τ
σ

K is the projection on the set τ
σ K.

To proof this calculation, we used two Lemmas: the Young-Fenchel duality, and
sub-differential calculus.

Lemma 1. Young-Fenchel duality
If
J∗(g) is the conjugate function of J( f ),
Then
g ∈ ∂J( f )⇔ f ∈ ∂J ∗ (g) .

Lemma 2. Sub-differential calculus
If
J( f ) is one-homogeneous, which ensures J(λ f ) = λJ( f ), K = ∂J(0) is the set of sub-differential in 0.
Then J ∗ ( f ) is the representative function of K.

Proof. If f is the minimizer of objective function, then it satisfies
0 ∈ 2τ∂J( f ) +∇F( f ),
And according to Lemma 1, f ∈ ∂J∗

(
− 1

2τ∇F( f )
)

,

Let g = f − 1
2∇F( f ),

Then 0 ∈ 1
τ (g− f )− g

τ + 1
τ ∂J∗

(
1
τ (g− f )

)
.

The optimum solution of min
{

1
2‖w′ −

g
τ ‖

2
+ 1

τ J∗(w′)
}

is w = 1
τ (g− f ), since this optimization

problem is to find out the closest point to g
τ in K, then w = πK

( g
τ

)
= 1

τ (g− f ), then we can get

f p =
(

I − π τ
σ

K
)(

f p−1 − 1
2σ∇F

(
f p−1)).

Appendix B. Convex Optimization Techniques to Solve the Dictionary

Fix X and update D, then the objective function can be rewritten as:

JD = argmin
D

{
‖A− DX‖2

F

}
s.t. dT

j dj = 1, ∀j

In which X = [x1, x2, · · · , xn], where xj is the column vector of X. We updated the vectors dj in D
one by one. When updating xj, all the other columns of D were fixed. Then the objective function was
rewritten as:

Jdj
= argmin

dj

‖A−∑
l 6=j

dl xl − djxj‖
2

F

 s.t. dT
j dj = 1

Let Y = X− ∑
l 6=j

dl βl . The objective function is:
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Jdj
= argmin

dj

{
‖Y− djxj‖2

F

}
s.t. dT

j dj = 1

Using the Langrage multiplier, we introduced scalar variable γ. Jdj
is equivalent to

Jdj ,γ = argmin
dj

tr
(
−YxT

j dT
j − dj · xjYT + dj ·

(
xjxT

j − γ
)

dT
j + γ

)

Let
∂Jdj ,γ

∂dj
= 0,

Then dj = Y− xT
j

(
xjxT

j − γ
)−1

,

Since dT
j dj = 1,

We obtaine dj =
YxT

j

‖YxT
j ‖2

.

The above procedures update all the vectors dj in dictionary D, and hence the entire dictionary
is updated.
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