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Abstract: Image colorization assigns colors to a grayscale image, which is an important yet difficult
image-processing task encountered in various applications. In particular, grayscale aerial image
colorization is a poorly posed problem that is affected by the sun elevation angle, seasons, sensor
parameters, etc. Furthermore, since different colors may have the same intensity, it is difficult to solve
this problem using traditional methods. This study proposes a novel method for the colorization of
grayscale aerial images using random forest (RF) regression. The algorithm uses one grayscale image
for input and one-color image for reference, both of which have similar seasonal features at the same
location. The reference color image is then converted from the Red-Green-Blue (RGB) color space to
the CIE L*a*b (Lab) color space in which the luminance is used to extract training pixels; this is done
by performing change detection with the input grayscale image, and color information is used to
establish color relationships. The proposed method directly establishes color relationships between
features of the input grayscale image and color information of the reference color image based on the
corresponding training pixels. The experimental results show that the proposed method outperforms
several state-of-the-art algorithms in terms of both visual inspection and quantitative evaluation.

Keywords: colorization; random forest regression; grayscale aerial image; change detection

1. Introduction

Image colorization can be described as the process of assigning colors to the pixels of a grayscale
image in order to increase the image’s visual appeal [1]. This application is often utilized in the
image processing community to colorize old grayscale images or movies [2]. Particularly in aerial
and satellite imagery, the problem with colorization occurs in a multitude of scenarios that seek to
replace topographic maps with vivid, photorealistic renderings of terrain models [3]. There are three
main reasons for colorizing aerial and satellite images: (1) grayscale satellite images are available at
higher spatial resolutions than their color counterparts are; (2) there are many old grayscale aerial
and satellite images that should be represented by color images, typically for monitoring purposes;
and (3) grayscale aerial-satellite images can be obtained for approximately one-tenth the cost of color
images of the same resolution [3].

In the case of satellite images, modern systems acquire a panchromatic (grayscale) image, with high
spatial and low spectral resolutions, and a multispectral (color) image that has complementary properties [4].
In other words, grayscale and color images with different resolutions over the same time period are
provided. In order to perform colorization through the color information of the multispectral image while
maintaining the high resolution of the panchromatic image, the two components are fused, which is
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called pansharpening [5]. The fused images provide increased interpretation capabilities and more reliable
results [6]. However, this colorization method is confined to satellite images that provide panchromatic and
multispectral images of the same time periods, making this type of colorization of aerial images impossible.

On the other hand, grayscale aerial image colorization is a poorly posed problem with more than one
solution [7]. As mentioned above, the satellite images fuse the grayscale and color images from the same
time period to perform colorization, whereas aerial images do not usually have the two types of imagery
available. Furthermore, in contrast to the natural images, this colorization solution depends on the sun
elevation angle, season, sensor parameters, etc. It is also problematic that the same intensity may represent
different colors, so there is no exact solution [8]. In general, existing colorization methods can be divided
into three main categories, all of which have limitations: user-scribbled methods, example-based methods,
and those that employ a large number of training images [9]. User-scribbled techniques [10-13] require
a user to manually add colored marks to a grayscale image [13]. The colors from these marks are then
smoothly propagated across the entire image, based on an optimization framework. A key weakness is that
such methods require users to provide a considerable number of scribbles on the grayscale image, which is
time-consuming and requires expertise [14]. Moreover, it is almost impossible to add such markings to large
volumes (gigabytes) of aerial imagery. In the case of the example-based method [1,8,9,14-16], it typically
transfers the color information from a similar reference image to the input grayscale image rather than
obtaining chromatic values from the user, thereby reducing the burden on users. However, as feature
matching is critical to the quality of the results, satisfactory results cannot be obtained if feature matching is
not performed correctly [15]. Moreover, the procedure is very sensitive to image brightness and contrast,
whereas real aerial images always include large areas of shadow and low contrast, due to relief, vignetting,
and so on. An alternative approach is to employ a large number of training images [17-19], which is a recent
example of deep learning. These methods use multiple color images to automatically transfer the color
information to the grayscale image, and deep neural networks are used to solve the colorization problem.
A large database of color images comprising all kinds of objects is used for training the neural networks.
The trained model can then be used to efficiently colorize grayscale images. However, this approach is
computationally expensive, and the training is significantly slow [15].

In order to overcome these limitations, this study presents a new, fast learning-based technique
for the colorization of grayscale aerial images that colorizes them without any user intervention.
The algorithm uses one grayscale image as the input and one-color image for reference, both of which
have similar seasonal features at the same location. Then, the reference color image is converted
from the Red-Green-Blue (RGB) color space to a CIE L*a*b (Lab) color space in which luminance and
two-dimensional (2D) color information are stored. Change detection between the input grayscale
image and the luminance of the reference color image is performed, and the unchanged region is
selected as training pixels, which allows for the extraction of meaningful training data. For colorization,
the relationships are established through learning between features of the input grayscale image and
the 2D color information of the reference color image based on training pixels. In other words,
for the corresponding unchanged region, the color relationships between the two images are directly
established, and the colors for the changed region are predicted. At this time, the study’s main
technical framework is random forest (RF) regression. Random forest is a data-mining method that has
some advantages over most statistical modeling methods [20], including: the ability to model highly
nonlinear dimensional relationships; resistance to overfitting; relative robustness with respect to the
presence of noise in the data; and the capacity to determine the relevance of the variables used.

The main contributions of this paper can be summarized as follows: (1) to the best of our knowledge,
this is the first work that exploits RF regression for aerial imagery colorization, although it has been
used for natural image colorization [21-23]; (2) this paper develops a novel algorithm that establishes
color relationships based on unchanged regions, which predict the color values of the changed regions;
(3) this paper establishes color relationships by directly mapping the features of the input grayscale image
with the color information of the reference color image; and (4) this paper performs visual and quantitative
analyses that show that our method outperforms the current state-of-the-art methods. The rest of this paper
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is organized as follows. Section 2 describes the materials used in detail, the background of RF regression,
and the proposed algorithm. Section 3 presents the colorization results and a detailed comparison with
other state-of-the-art colorization algorithms. Section 4 presents the conclusions of the study.

2. Materials and Methods

2.1. Study Site and Data

The study sites are located in Gwangjin-gu, in the central-western part of South Korea. The input
grayscale images were acquired on 10 June 2013, and the reference color images were acquired on
2 June 2016; both are aerial images at 1 m resolution. Coordinate definition and geometric correction
were performed on the images using Environment for Visualizing Images (ENVI) geospatial analytical
software (version 4.7, HARRIS Geospatial Solutions, Broomfield, CO, USA). The coordinate system
of each image was projected as World Geodetic System (WGS) 84 Universal Transverse Mercator
Coordinate System (UTM) 52N, and 30 Ground Control Points (GCPs) were selected for image
registration. The 30 GCPs returned a total root mean square error of 0.4970, satisfying values within
0.5 m. Then, based on these GCPs, image registration was performed using the “Warp from GCPs:
Image to Image” tool in ENVI. Finally, to achieve reasonable computational time, only a portion of the
image was extracted prior to conducting the experiments, which was selected to be 1200 x 1200 pixels.
A total of four sites were extracted and are shown in Figures 1-4.

(a) (b)

Figure 1. Experimental area of site 1: (a) input grayscale image acquired on 10 June 2013, (b) reference
color image acquired on 2 June 2016.

(b)

Figure 2. Experimental area of site 2: (a) input grayscale image acquired on 10 June 2013, (b) reference
color image acquired on 2 June 2016.
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(b)

Figure 3. Experimental area of site 3: (a) input grayscale image acquired on 10 June 2013, (b) reference
color image acquired on 2 June 2016.

Figure 4. Experimental area of site 4: (a) input grayscale image acquired on 10 June 2013, (b) reference
color image acquired on 2 June 2016.

2.2. Random Forest

Random forest is a highly versatile ensemble of decision trees that performs well for linear and
non-linear prediction by finding a balance between bias and variance [20]. This ensemble learning
method constructs and subsequently averages a large number of decision trees for classification or
regression purposes [24,25]. At this time, to avoid correlation among the trees, RF increases the diversity
of the trees by forcing them to grow from different training data created through a procedure called
bootstrap aggregating (bagging) [26]. Bagging refers to aggregating base learners trained through
bootstrapping, which creates training data subsets by randomly resampling a given original dataset [27].
That is, as a process of de-correlating trees to train different datasets, it increases stability and makes it
more robust when facing slight variations in the input data [28]. Furthermore, approximately one-third
of the samples are excluded for the tree training in the bagging process, which is known as the
“out-of-bags” (OOB) samples. These OOB samples can be used to evaluate performance, which allows
the RF to compute an unbiased estimation of the generalization error without using an external data
subset [29]. From the predictions of the OOB samples for every tree in the forest, the mean square error
(MSE) is calculated, and the overall MSE is obtained by aggregation, as shown in Equation (1):

n

1 -
MSEoop = Y Wi — Tioog)” )
i=1
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where 7 is the number of trees, y; denotes the prediction for the ith observation, and J;,,,, denotes the
average of the OOB predictions for the ith observation.

Furthermore, the use of RF requires the specification of two standard parameters: the number
of variables to be selected and tested for the best split at each node (mtry), and the number of trees
to be grown (ntree). At each node per tree, the number of mtry variables from the total variables in
the model is selected at random, the variable that best splits the input space and the corresponding
split are computed, and the input space is split at this point [30]. In a regression problem, the standard
value for mtry is one-third of the total number of variables due to computational benefits [31,32]. In the
case of ntree, the majority of the studies set the ntree value to 500 since the errors are stabilized before
this number of regression trees is achieved [33]. However, recent studies have found that the number
of trees does not significantly affect performance improvement, which allows the selection of ntree to
consider the performance and training time together [34-36].

Random forest can also be used to assess the importance of each variable during modeling.
To determine the importance of input variables, a variable is randomly permuted, and regression
trees are grown on the modified dataset. The measure of each variable’s importance is then calculated
as the difference in the MSE between the original OOB dataset and the modified dataset [37,38].
A key advantage of RF variable importance is that it not only deals with the impact of each variable
individually but also looks at multivariate interactions with other variables [39].

2.3. Method

The proposed colorization framework can be decomposed into four steps: (1) pre-processing,
(2) feature extraction, (3) colorization, and (4) post-processing, all of which are shown in Figure 5.
The first step is to convert the color space and to select the pixels to be used in training for colorization.
The second step is to extract feature descriptors of the input grayscale image to be used in learning for
color prediction. In the third step, color relationships are established through the proposed method,
and colorization is performed on the input grayscale image. The fourth step improves the colorization
result by adjusting the histogram. Each of these steps is described below.

Conversion !
RGBtoLab ; l'

1
Learning 1 Colorization ! Histogram 1

RF regression i | specification

Reference color aerial
Image

Image

Figure 5. The flowchart of the proposed method. RGB: Red-Green-Blue color space, Lab: CIE L*a*b
color space, L component: grayscale axis, a and b components: two-color axes, RF: random forest.

2.3.1. Preprocessing

As mentioned above, the proposed preprocessing step is divided into color-space conversion
and extraction of training pixels. First, in this study, a Lab color space is selected since its underlying
metric has been designed to express color coherency. Furthermore, Lab has three coordinates: L is the
luminance, or lightness, which consequently represents the grayscale axis, whereas a and b represent
the two-color axes [16]. In other words, the L component can be known in advance through the
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input grayscale image, and only the remaining 2D color information, a and b, can be predicted [23].
Thus, the color space of the reference color image is converted from RGB to Lab, and, in the colorization
step, only the color relationships for a and b are established through regression. Then, in order to
extract a meaningful set of training data, change detection between the input grayscale image and
the L component of the reference color image is performed. The change detection method used
here comprises two steps for accurate extraction. The first step is a pixel-based method that uses
principal component analysis (PCA) [40], and the threshold for distinguishing between changed and
unchanged pixels is selected using Otsu’s method. However, this process will result in fragmentation
and incomplete expression of the change [41]. Therefore, the second step applies the object-based
method, which consists of four sub-steps: (1) the morphological closing operation, (2) gap filling,
(3) the morphological opening operation, and (4) elimination of small patches.

The morphological closing operation is the combination of dilation followed by erosion, which is
used to remove holes in the image [42]. Thus, the closing operation is applied to the image to fill
the spaces. Then, gaps within the changed regions that are not filled by the closing operation are
additionally filled, which makes the changed information more complete [41]. The morphological
opening is then applied, in which erosion is conducted on the image, and it is followed by a dilation
operation. The aim of the opening is to remove unnecessary portions. For the structure elements used
in the morphological operation, the closing and the opening are set to 3 x 3 and 5 x 5, respectively,
as selected in Xiao et al. [41]. Small, insignificant patches persist following the opening processing,
which can be removed by applying an area threshold. The area threshold is set based on the
minimum object size and is acquired through a zero-parameter version of simple linear iterative
clustering (SLICO). The SLICO is a spatially localized version of the k-means [43]. To initialize it,
the k-cluster centers, which are located on a regular grid and spaced S pixels apart, are sampled [44].
Then, an iterative procedure assigns each pixel to a cluster center using the distance measure D,
as defined in Equation (2), which combines the distance of color proximity (Equation (3)) and the
distance of spatial proximity (Equation (4)) [45]:

o= (8) (&)

de= | Y (I(x1,m, s1) — I(x2,y2,5))° ®3)
s;€S
do = /(1 -2+ (1 — o) @)

where d. and d; represent the color and spatial distance between pixels I(x1,y1, s;) and I(x2,¥y2,s;)
in the spectral band S;, respectively; and m controls the compactness of the superpixels,
which is adaptively chosen for each superpixel. In this study, the number of iterations is set to
ten, which is sufficient for error convergence [46], and the initial size of the superpixels is set to 10 x 10,
which represents optimal accuracy and computational time [45]. Finally, the unchanged regions are
used for training, which consists of establishing color relationships in the unchanged regions from
which those of the changed regions can be predicted.

2.3.2. Feature Extraction

The gray level of one pixel is not informative for color prediction, so additional information
such as texture and local context is necessary [15]. In order to extract the maximum information for
color prediction, features that describe the textural information of local neighborhoods of pixels are
considered. Previous automatic colorization methods used Speed-Up Robust Features, Gabor features,
or a histogram of oriented gradients as base tools for textural analysis [14,15]. These descriptors are
known to be discriminative but also computationally and memory intensive due to their high number
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of features. Moreover, recent approaches have separated texture from structure using relative total
variation, but their descriptors are not sufficiently accurate to discriminate textures among themselves.
Consequently, statistical features are utilized here, as this approach is simple, easy to implement,
and has strong adaptability and robustness, among which the gray-level co-occurrence matrix (GLCM)
is used [47,48]. The GLCM is used extensively in texture description, and the co-occurrence matrices
provide better results than do other forms of texture discrimination [49,50]. For remote sensing images,
four types of statistics—angular second moment, contrast, correlation, and entropy—are better suited
to texture feature extraction, so they have been selected for statistics in this study [51]. Also, in order to
calculate the GLCM values, the window size should be set. The present study has ultimately selected
a5 x 5 window size, which better reflects coarse and fine textures [48]. Furthermore, the intensity
value and the mean and standard deviation of the intensity within a 5 x 5 neighborhood are included
as supplementary components.

2.3.3. Colorization

Like other learning-based approaches, this step consists of two components: (1) a training
component and (2) a prediction component, which are described below.

In the training component, image colorization is formulated as a regression problem and is solved
using RE. The training data employ seven features of the input grayscale image corresponding to the
unchanged regions extracted from the preprocessing step. At this time, these features are trained
with the a and b components of the reference color image at the same pixel location. In other words,
rather than establishing the color relationships between the L component and the a and b components
of the reference color image like other colorization methods do [15,18,19,23], this study establishes
color relationships directly between the input grayscale image and the a and b components of the
reference color image. Then, the RF regression parameters—mtry and ntree values—are defined.
The mtry value is generally set to one-third of the number of features in the regression problem due to
computational advantages, but, in this study, the total number of features is utilized, as in the original
classification and regression trees procedure, since the number of features is not large enough to affect
the computational time [32]. Furthermore, the ntree value is set to 32, which takes into account the
performance and training time of the RF regression [35].

The prediction portion of this step uses the RF regression obtained from the training component to
predict the colors for the a and b components of the input grayscale image. Then, the input grayscale image
is used as the L component, and it is combined with the predicted a and b components. Finally, the Lab
image is converted to the RGB color space.

2.3.4. Post-Processing

Finally, the colorized image acquired above is adjusted to reflect global properties
based on histogram specification. Histogram specification is a useful technique for modifying
histograms via image enhancement without losing the original histogram characteristics [52,53].
Essentially, the input histogram is transformed into a histogram of the specified image to highlight
specific ranges. The histogram specification procedure is defined below.

First, the cumulative density functions (CDFs) of the input and specified images are acquired,
as shown in Equations (5) and (6):

k
sk=Cr(rn) = Y P(ri) = ) o )

vp = Ca(zt) = ZP(Zi) (6)
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where s; and vy are the respective histograms of the input and specified images, C,(rx) and Cx(z)
are the CDFs of the respective input and specified images, P(r;) and P(z;) are the probability density
functions of the respective input and specified images, k =0, 1, 2, ..., L—1, L is the total number
of gray levels, and #; is the total number of gray levels r; [53]. Then, the value of z;, which satisfies
Equation (7), is identified:

{ (Ca(zk) = sk) = (vk = s¢) } = 0 @)

In other words, the smallest integer between vy and s should be determined. Finally, the mapping
table of z; will be the output of Equation (8):

ze= C: M (sg) = G H(Cr(ry) ®)

In this study, the colorization image that is converted to the RGB color space is selected as the
input image, and the reference color image is selected as the specified image; histogram specification is
carried out for the red, green, and blue bands.

3. Results and Discussion

3.1. Implementation and Performance

This section presents the colorization results of the proposed algorithm and compares these with
the results of other state-of-the-art colorization algorithms. To ensure a fair comparison, colorization
algorithms that use only a single-color image as the reference (exemplar-based method) and that
are based on RF regression are compared, so that the methods of Welsh et al. [1], Bugeau et al. [14],
Gupta et al. [15], Gupta et al. [21], and Deshpande et al. [22] are selected. When performing the
colorization using these other methods, we used the same parameter settings suggested by their
respective authors. In addition, two of the latest deep learning-based methods [18,19] are included for
visual comparison, using the codes provided by the authors. The results of the various algorithms
are compared by visual inspection (see Figures 6-9) and quantitative evaluation with ground-truth
images, which are the actual color images of the input grayscale images.

Ground-truth image Our method

[21] [22] [19]

Figure 6. Comparison with existing state-of-the-art colorization methods at site 1.
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Ground-truth image Our method [1] [14] [15]

Ground-truth image Our method

[21]

[21] [22] [18] [19]

Figure 9. Comparison with existing state-of-the-art colorization methods at site 4.

From the overall visual inspection, the proposed algorithms appear to show better results than do
the five existing methods for most cases. The Welsh et al. method [1] is based on transferring color
from one initial color image considered as an example. Color prediction is performed by minimizing
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the distance in the simple statistics of a luminance image. However, as the results show, only a few
colors are dealt with, and the results include many artifacts due to the lack of any spatial coherency
criteria. In the case of the Bugeau et al. method [14], image colorization is solved by computing the
colors using different features and associated metrics. Then, the best colors are automatically selected
via a variational framework. Overall, the results fail to select the best colors and have a desaturating
effect, confirming the limitations of the variational framework. The Gupta et al. method [15] performs
image colorization by automatically exploiting multiple image features. This method transfers color
information by performing feature-matching between a reference color image and an input grayscale
image—a process that is critical to the quality of the results. This achieves better colorization than the
other exemplar-based methods but still only deals with a few colors, resulting in incorrect matches in
challenging scenarios.

The other Gupta et al. method [21] is a learning-based method in which learning is performed in
superpixel units to enforce higher color consistency. Superpixels are extracted, features are computed
for each superpixel, and learning is performed based on an RF regression. The results of this method
contain more color information than do the results of the other exemplar-based methods, but the
approach still does not retrieve certain colors such as blue or red (Figure 7), and it sometimes predicts
completely different colors (as in Figures 8 and 9). The Deshpande et al. method [22] is also based on RF
regression, which is performed within the LEArning to seaRCH (LEARCH) framework. Furthermore,
histogram correction is performed on the colorization image to improve the visual appeal of the results.
In the state-of-the-art-methods used for comparison, this method predicts sufficient color information.
However, halo effects exist in the object boundaries, especially in Figure 7. Moreover, as shown in
Figure 9, the more complex the structure, the more halo effects are added, leading to many artifacts.

In addition to exemplar-based and RF regression-based methods, deep learning-based
methods [18,19] are used for comparison. These colorization algorithms use millions of images
for training neural networks, which are based on ImageNet and convolutional neutral networks
(CNN). Both results contain color information that is completely different from the ground-truth or
reference color images, as shown in Figures 6-9. For example, although the colors of the tree are
somewhat predicted, the colors of the buildings or the roads are not predicted at all, which suggests
that artifacts are more obvious when the structure is complex. In other words, it is impossible to
colorize aerial images through a model that is trained with natural images.

As can be seen in Figures 6-9, our approach more accurately predicts colors than do the other
methods, producing results with fewer artifacts. In Figure 6, the color determined by our method is
much clearer, especially in the red portion of the ground that is correctly recovered without artifacts.
Figure 7 is a site with many human-made objects, and our method demonstrates remarkably high
performance in color prediction, while other methods completely fail to correctly predict colors or
contain halo effects. Figure 8 also has many human-made objects that contain multiple colors in the
area of vegetation, which makes it more difficult to predict the color values at this site. Except for our
method and that of Deshpande et al. [22], the colors of human-made objects are not correctly predicted,
which indicates that our method is robust for color prediction. Figure 9, the urban area, contains the
most complex structure and the greatest variety of colors for prediction. Although the results of the
proposed method also contain slightly turbid colors, our method produces significantly better results
than do the other methods. In other words, our method retrieves more color values with fewer artifacts
from the reference image; these details can be confirmed in Figures 10-13.
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4

Our method [1] [14] [15] [21] [22]

Figure 10. Enlargement of site 1: our method retrieves color values well in this region, compared with
other methods.

Our method 11 [141 [15] [211 [22]

Figure 11. Enlargement of site 2: our method retrieves color values well in this region, compared with
other methods.

Our method [1] [14] [15] [21] [22]

Figure 12. Enlargement of site 3: our method retrieves color values well in this region, compared with
other methods.
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Our method [1] [14] [15] [21] [22]

Figure 13. Enlargement of site 4: our method retrieves color values well in this region, compared with
other methods.

Although visual inspection is a simple and direct way of appreciating the quality of the
colorization results, it is highly subjective and cannot accurately evaluate the results of the various
colorization methods. Therefore, for quantitative evaluation of the results, we employ the standard
peak signal-to-noise ratio (PSNR) and normalized color difference (NCD). The PSNR, which is
expressed in terms of the decibel (dB), is an estimate of the quality of the reconstructed (colorization)
image compared with the ground-truth color image [54]. Given an m x n ground-truth color image 1
and a colorization result 1, PSNR is defined as:

3mn (MAX)?

PSNR = 10 - log( ——— — —
Yre Tite' Lo [ui,f) — wo(i, )]

©)

where MAXj is the maximum possible pixel value of the image (i.e., 255 with standard 8-bit samples),
and ) rgp() denotes summation over the red, green, and blue bands. The higher the PSNR value,
the better the reconstruction process. Normalized color difference is used to measure the color quality
degradation in color images [55]. For the NCD calculation, Lab space is used and is defined as:

I R (AL + (Ae)? + (ab)]”

NCD _
D S| (Luo)* + (au0)* + (buo)?])”

(10)

where AL, Aa and Ab are the differences between the components of the ground-truth color image
and the colorization result, and Ly, 4,9, and b, are each component values of the ground-truth color
image [56]. The lower the NCD value, the better the color quality.

The PSNRs and NCDs of the various algorithms are shown in Tables 1 and 2. In the case of
PSNR, the proposed method (Max: 35.0906, Min: 29.6542, Average (Avg): 32.8773) significantly
outperforms those of Welsh et al. [1] (Max: 27.1564, Min: 23.5535, Avg: 25.9514), Bugeau et al. [14]
(Max: 29.1172, Min: 26.2594, Avg: 27.5596), Gupta et al. [15] (Max: 30.6962, Min: 27.1006, Avg: 29.3068),
Gupta et al. [21] (Max: 32.6280, Min: 28.0476, Avg: 30.6694), and Deshpande et al. [22] (Max: 31.5879,
Min: 24.2211, Avg: 29.6766). The performance difference from the state-of-the-art methods ranges from
2.4626 to 7.9342 for the maximum PSNR, 1.6066—6.1007 for the minimum PSNR, and 2.1779-6.9259 for
the average PSNR, which indicates high performance for all results, regardless of site. That is, it is
possible to colorize images stably regardless of the object included in the image or the complexity of
the included structure.
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Table 1. Quantitative evaluation of algorithm performance using standard peak signal-to-noise ratio
(PSNR). dB: decibel.

PSNR (dB)

Method  Our Method [1] [14] [15] [21] [22]
Site 1 35.0906 26.9364 29.1172  30.6962 32.628 31.5879
Site 2 34.8936 27.1564 26.2594 29.9741 31.6331 31.8681
Site 3 31.8709 26.1595 28.0316  29.4565 30.369 31.0295
Site 4 29.6542 23.5535 26.8302 27.1006 28.0476 242211

Table 2. Quantitative evaluation of algorithm performance using normalized color difference (NCD).

NCD
Method  Our Method [1] [14] [15] [21] [22]
Site 1 0.0707 0.1472 0.127 0.0963 0.0858 0.1042
Site 2 0.0716 0.1408 0.1573 0.1334 0.0929 0.1069
Site 3 0.1098 0.2094 0.1722 0.1472 0.1386 0.1373
Site 4 0.1244 0.2304 0.1677 0.1679 0.1422 0.1801

The NCD of the proposed method (Max: 0.0707, Min: 0.1244, Avg: 0.0941) also show better
performance than do Welsh et al. [1] (Max: 0.1408, Min: 0.2304, Avg: 0.1819), Bugeau et al. [14]
(Max: 0.1270, Min: 0.1722, Avg: 0.1561), Gupta et al. [15] (Max: 0.0963, Min: 0.1679, Avg: 0.1362),
Gupta et al. [21] (Max: 0.0858, Min: 0.1422, Avg: 0.1148), and Deshpande et al. [22] (Max: 0.1042,
Min: 0.1801, Avg: 0.1231), in which the range of the improved performance difference is 0.0151-0.0701
for the maximum NCD, 0.0178-0.1244 for the minimum NCD, and 0.0207-0.0878 in the average NCD.
This means that the degradation in color quality is lowest when performing colorization through the
proposed method. In other words, both visual and quantitative evaluations confirm the superiority of
the method proposed herein.

3.2. Limitations

The results show that the proposed algorithm can realize better results than can the existing
methods; however, there remain several limitations. Firstly, if there are errors in orthorectification or
image registration, incorrect extraction can be performed during selection of the training pixels in the
preprocessing step. Although RF regression is robust to training data, some color relationships can be
established incorrectly. Secondly, our method retrieves more color values than do the other methods,
but, if the structure is complex, it contains somewhat turbid colors. The histogram specification for the
reference color image is performed by post-processing, but there are still limitations. Thirdly, in this
study, aerial images three years apart are used. However, further verification is needed to determine
the extent of the period in which the colorization can properly be performed. Finally, our method
is established by directly correlating color relationships between the input grayscale image and the
reference color image, making it dependent on the availability of reference color aerial imagery of
the same input area with matching seasonal characteristics. Consequently, when suitable color aerial
images are unavailable, colorization may fail.

4. Conclusions

This paper presents a colorization algorithm for aerial imagery. The proposed method uses
a reference color image with similar seasonal features at the same location as an input grayscale image.
The color space of the reference color image is converted to Lab, and unchanged regions are selected
by applying change detection to the input grayscale image and the L component of the reference color
image, which serves as meaningful training data. Moreover, color relationships are established in
direct correspondence between the feature descriptors of the input grayscale image and the a and b
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components of the reference color image based on the RF regression. Finally, histogram specification
is applied to the colorization image to improve the results and is compared with state-of-the-art
methods. Experimental results for multiple sites show that our method achieves visually appealing
colorizations with significantly improved quantitative performance. In other words, the proposed
algorithm performs well and outperforms existing colorization approaches for aerial images.

Future work will include other complex descriptors or features in order to retrieve more color
values for complex structures. In particular, we intend to find the combination of features that best
describes the characteristics of the aerial images for colorization. We will also extend our application
of the technique by applying satellite images obtained from various sensors other than aerial images.
Furthermore, to overcome the limitations that may prevent colorization from being performed when
reference color images are unavailable, a method of using reference color images that are obtained
with different sensors or contain different seasons or resolutions will be sought out. Finally, we plan
to colorize past grayscale aerial images using a time-series approach, possibly by incorporating
monitoring frameworks.
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