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Abstract: Solar photovoltaic (PV) power forecasting has become an important issue with regard to
the power grid in terms of the effective integration of large-scale PV plants. As the main influence
factor of PV power generation, solar irradiance and its accurate forecasting are the prerequisite
for solar PV power forecasting. However, previous forecasting approaches using manual feature
extraction (MFE), traditional modeling and single deep learning (DL) models could not satisfy the
performance requirements in partial scenarios with complex fluctuations. Therefore, an improved
DL model based on wavelet decomposition (WD), the Convolutional Neural Network (CNN),
and Long Short-Term Memory (LSTM) is proposed for day-ahead solar irradiance forecasting.
Given the high dependency of solar irradiance on weather status, the proposed model is individually
established under four general weather type (i.e., sunny, cloudy, rainy and heavy rainy). For certain
weather types, the raw solar irradiance sequence is decomposed into several subsequences via
discrete wavelet transformation. Then each subsequence is fed into the CNN based local feature
extractor to automatically learn the abstract feature representation from the raw subsequence data.
Since the extracted features of each subsequence are also time series data, they are individually
transported to LSTM to construct the subsequence forecasting model. In the end, the final solar
irradiance forecasting results under certain weather types are obtained via the wavelet reconstruction
of these forecasted subsequences. This case study further verifies the enhanced forecasting accuracy
of our proposed method via a comparison with traditional and single DL models.

Keywords: solar irradiance forecasting; wavelet decomposition; convolutional neural network;
recurrent neural network; long short term memory

1. Introduction

1.1. Background and Motivation

With the global attention to environmental issues, the solar photovoltaic (PV) power has been
increasingly regarded as an important kind of renewable energy used to supply clean energy for
the power grid [1]. Nearly 60% of power generated in 2040 is projected to come from renewables,
which wind and solar PV accounts for more than 50%. Additionally, International Energy Agency
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(IEA) reported that the installed solar PV capacity has already reached more than 300 GW by the end
of 2016 [2]. The annual market of solar PV power has increased by nearly 50%. The top five countries,
led by China, accounted for 85% of additions [3]. The above phenomena verified that solar PV power
was the world’s leading source of renewables in 2016.

However, the high dependence of solar PV power on geographical locations and weather
conditions can lead to the dynamic volatility and randomness characteristics of solar PV output power.
This unavoidable phenomenon makes PV power forecasting become an important challenge for the
power grid in terms of the effective integration of large-scale PV plants, because accurate solar PV
power forecasting can provide expected future PV output power, which provides good guidance for
the system operator to design a rational dispatching scheme and maintain the balance between supply
and demand sides. At the same time, scheduling PV power and other power reasonably may be
helpful for effectively addressing the problems, such as system stability and electric power balance [4].
Therefore, accurate solar PV forecasting is essential for the sustainable and stable operation of the
whole power system.

In the actual PV stations, its final PV output is affected by a variety of meteorological factors,
such as solar irradiance [5], moisture, ambient temperature, wind velocity and barometric pressure.
There are two categories of the existing PV forecasting approaches: direct forecast and step-wise
forecast. Direct forecast creates a map between historical power data and power forecast values [6,7].
Differently, the step-wise forecast is comprised of two steps. In the first step, each meteorological factor
is predicted at the target time. In the next step, these predicted meteorological factors are then utilized
to create a map that can reflect the relationship between these meteorological factors and PV power
forecast value. In sum, the reliable information of the relevant meteorological factors is the key to PV
power forecasting. Therefore, as the main influence factor of PV power generation, the solar irradiance
and its accurate forecasting are the prerequisite for solar PV power forecasting.

1.2. Literature Review

With the fast advancement of forecasting theories [8,9], solar physics [10], stochastic learning [11],
and machine learning [12], the relevant technology of the solar irradiance forecasting research area
has also developed rapidly. In general, the existing various forecasting models are correspondingly
designed for solar PV prediction with different time horizon. For example, the forecasting horizon of
Numerical Weather Prediction (NWP) forecasting models is from several hours to several days [13].
Time series forecasting models generate forecast outputs with a time scale that ranges from 5 min to
6 h [14]. Statistical forecasting models based on cloud motion images and satellite information can
generate PV forecast value with a time sclerosis of 6 h [15]. In this paper, we focus on day-ahead solar
irradiance forecasting which the forecasting horizon is 24 h.

Among the previous studies, solar irradiance forecasting approaches can be generally divided
into several categories: statistical approaches, physical approaches and machine learning approaches
and ensemble approaches. In physical approaches, three kinds of basic methods are NWP forecasting
model [16], Total Sky Imagery (TSI) [17] and cloud moving based satellite imagery models, which can
also help to estimate the output power of distributed PV system [18]. These kinds of physical based
forecasting models require additional information about the sky image.

As for the statistical approaches, persistence forecasting, time series, and Model Output Statistics
(MOS) models [19] are involved. In this model, it is supposed that the forecasting data at time t + 1 is
equal to the historical data at time t.

Time series approaches primarily aim at the modeling of long-term solar irradiance forecast,
which includes Moving Average (MA), Autoregressive (AR) [20], Autoregressive Moving Average
(ARMA) [21], and Autoregressive Integrated Moving Average (ARIMA) [22] models. The time series
forecasting model only requires historical irradiance data, in which the relevant meteorological factors
are not involved. In addition, time series approaches can merely capture linear relationships and
require stationary input data or stationary differencing data.
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In recent years, machine learning based forecasting methods have also been successfully applied in
many fields [23–26]. Machine learning models that have been done widely applied in solar forecasting
field are non-linear regression models such as Artificial Neural Network (ANNs) [27,28], the Support
Vector Machine (SVM) [29], and the Markov chain [30]. These nonlinear regression models are also
frequently used together with the classification models [31].

Regarding the ensemble approach, this kind of integrated model consists of multiple trained
forecasting sub-models. Additionally, all the outputs of these forecasting sub-models are taken into
consideration to determine the best output of the ensemble model. This method can well leverage
the advantages of different forecasting sub-models to achieve the performance optimization of the
ensemble model to provide better forecasting results for application [32,33].

Based on the abovementioned forecasting theories, many researchers have carried out important
research work in the field of solar irradiance forecasting and PV power forecasting (both referred
to as “solar forecasting” in what follows). Considering this abundant literature on solar forecasting,
Yang et al. [34] have conducted an adequate literature review work on the history and trends in solar
irradiance and PV power forecasting through text mining. Furthermore, Wan et al. [35] have also
reviewed the state-of-the-art of PV and solar forecasting methodologies developed over the past
decade. Regarding the forecasting of grid-connected photovoltaic plant production, Ferlito et al. [36]
implemented a comparative analysis of eleven forecasting data-driven models online and offline.
The above eleven models include: (1) simple linear models, such as Multiple Linear Regression;
(2) nonlinear models, such as Extreme Learning Machines and weighted k-Nearest Neighbors; and (3)
ensemble methods, such as Random Forests and Extreme Gradient Boosting. To improve real-time
control performance and reduce possible negative impacts of PV systems, Yang et al. [37] proposed
a weather-based hybrid method for 1-day ahead hourly forecasting of PV power output with the
application of Self-organizing Map (SOM), Learning Vector Quantization (LVQ) and Support Vector
Regression (SVR). Gensler et al. [38] used auto-encoder to reduce the dimension of historical data,
and employed LSTM to forecast solar power.

In the field of solar forecasting, a few researchers have also paid attention to the prediction of solar
irradiance due to its important influence on PV power output. For example, Hussain et al. [39] applied
a simple and linear statistical forecasting technique named ARIMA to day ahead hourly forecast of solar
irradiance for Abu Dhabi, UAE. In another relevant study, five novel semi-empiric models for hourly
solar radiation forecasting are developed and then compared with the Angstrom-Prescott (A-P) type
models [40]. Differently, a multi-level wavelet decomposition is applied by Zhen et al. [41] to preprocess
the solar irradiance data in order to further improve the day-ahead solar irradiance forecasting accuracy.
In Zhen’s another paper, a new day-ahead solar irradiance ensemble forecasting model was developed
based on time-section fusion pattern classification and mutual iterative optimization [42]. With the
emergence of deep learning (DL) models, Qing et al. [43] turned to Long Short Term Memory (LSTM)
to catch the dependence between consecutive hours of daily solar irradiance data.

In general, the DL algorithm is more promising compared to the abovementioned traditional
machine learning. Recently, DL approaches have been not only successfully applied in image
processing [44], but also utilized to address the classification and regression issues of one-dimensional
data [45]. In the DL system, there are various branches, including LSTM, Convolutional Neural
Networks (CNN), and Recurrent Neural Network (RNN) and so on. In spite of the superior
performance of DL algorithms, few studies have applied the DL methods in the day-ahead solar
irradiance forecasting. Researchers need to validate whether the introduction of DL can improve the
solar irradiance forecasting accuracy. Moreover, there are various versions of DL models just like those
mentioned above. Different DL models have their own advantages and disadvantages. Therefore,
in the practice of solar irradiance forecasting, three important issues should be taken into consideration,
namely how to select the rational DL models, how to well combine them, and how to further improve
the performance of the hybrid DL model.
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1.3. The Content and Contribution of the Paper

According to the literature review work, we have found that the previous forecasting approaches
using manual feature extraction (MFE), traditional modeling and single DL models could not satisfy the
performance requirements in partial solar irradiance forecasting scenarios with complex fluctuations.
In this paper, we proposed an improved DL model to achieve the performance improvement of
day-ahead solar irradiance forecasting. This proposed model is named the DWT-CNN-LSTM model.
It should be noted that the historical daily solar irradiance curve always presents high variability and
fluctuation since the solar irradiance is influenced by the non-stationary weather conditions. Therefore,
the forecasting accuracy of day-ahead solar irradiance strongly depends on the weather statuses no
matter what kinds of forecasting models we choose. Given this fact, the DWT-CNN-LSTM models
are independently constructed for four general weather types (i.e., sunny, cloudy, rainy, and heavy
rainy days). This is because a single forecasting model cannot well reflect the temporal relationships
between historical and future solar irradiance under different weather conditions. In other words,
classification modeling could reduce the complexity and difficulty of intro-class data fitting to improve
the corresponding forecasting accuracy [1,28].

The basic pipeline framework behind data-driven DWT-CNN-LSTM models consists of
three major parts: (1) Discrete Wavelet Transformation (DWT) based solar irradiance sequence
decomposition, (2) a CNN-based local feature extractor, and (3) an LSTM based sequence forecasting
model. In solar irradiance forecasting under certain weather types, the raw solar irradiance sequence is
decomposed into several subsequences via discrete wavelet transformation. Then, each subsequence is
fed into the CNN-based local feature extractor, which leverages the advantage of CNN to automatically
learn the abstract feature representation from the raw subsequence data. Since the extracted features
are also time series data, they are individually transported to LSTM to construct the subsequence
forecasting model. In the end, the final solar irradiance forecasting results under certain weather types
are obtained via the wavelet reconstruction of these forecasted subsequences. Compared to the existing
studies for solar irradiance forecasting, the contributions of this paper can be summarized as follows:

(1) Discrete wavelet transformation is applied in our proposed DWT-CNN-LSTM model to
decompose the raw solar irradiance sequence data of certain weather types into several
stable parts (i.e., low-frequency signals) and fluctuant parts (i.e., high-frequency signals).
These decomposed subsequences have better behaviors (e.g., more stable variances and
fewer outliers) in terms of regularity than the raw solar irradiance sequence data.
Such wavelet decomposition (WD) is helpful for precision improvement of the solar irradiance
forecasting model.

(2) The CNN and LSTM are perfectly combined in our proposed DWT-CNN-LSTM model, in which
the abstract feature representation from the raw subsequence data is effectively extracted by
CNN and then these features are fed into LSTM. CNN is good at automatically extracting abstract
features from its input, and LSTM is able to find the long dependencies of the time series input.

(3) The validity of the proposed DWT-CNN-LSTM model is verified based on the two measured
dataset, namely the dataset of Elizabeth City State University and Desert Rock Station.

The rest of paper is constructed as follows. Section 2 illustrates the three main parts of the
proposed DWT-CNN-LSTM model, including DWT based solar irradiance sequence decomposition,
the CNN-based local feature extractor, and the LSTM based sequence forecasting model. In Section 3,
the details of the experimental simulation are introduced and the relevant analysis results are discussed.
Finally, conclusions are drawn in Section 4.

2. Improved Deep Learning Model for Day-Ahead Solar Irradiance Forecasting

The historical daily solar irradiance curve always presents high variability and fluctuation since
solar irradiance is influenced by non-stationary weather conditions. This makes the forecasting
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accuracy of day-ahead solar irradiance strongly depend on the weather statuses no matter what kinds
of forecasting models we choose.

Therefore, as shown in Figure 1, the solar irradiance forecasting models are independently
constructed for four general weather types, because according to different weather types, classification
modeling could reduce the complexity and difficulty of intro-class data fitting so as to improve the
corresponding forecasting accuracy.

Figure 1. The flowchart of the day–ahead solar irradiance forecasting for four general weather types.
The DWT-CNN-LSTM forecasting model is based on discrete wavelet transformation (DWT),
convolutional neural network (CNN) and long short term memory (LSTM) network.

In terms of the proposed model (i.e., DWT-CNN-LSTM model) for day-ahead solar irradiance
forecasting, its integrated framework is illustrated in Figure 2. The basic pipeline framework behind
data-driven DWT-CNN-LSTM models consists of three major parts: (1) DWT based solar irradiance
sequence decomposition; (2) CNN based local feature extractor; and (3) LSTM based sequence
forecasting model. As for certain weather types, the raw historical solar irradiance sequence is
decomposed into approximate subsequence and several detailed subsequences. Then each subsequence
is fed to the CNN based local feature extractor, which leverages the advantage of CNN to automatically
learn the abstract feature representation from the raw subsequence data. Since the features extracted
by the CNN are also time series data that have rich temporal dynamics, then they are input
to LSTM to construct the subsequence forecasting model. In the end, the final solar irradiance
forecasting results under certain weather types are obtained through the wavelet reconstruction of
these forecasted subsequences. More details about three major parts above are respectively illustrated
in Sections 2.1–2.3.
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Figure 2. The detailed framework of DWT-CNN-LSTM day-ahead forecasting model for solar
irradiance under certain weather type. The DWT-CNN-LSTM forecasting model is based on discrete
wavelet transformation (DWT), convolutional neural network (CNN) and long short term memory
(LSTM) network.

2.1. Discrete Wavelet Transformation Based Solar Irradiance Sequence Decomposition

In general, solar irradiance sequence data always presents high volatility, variability and
randomness due to its correlation to non-stationary weather conditions. Therefore, the raw solar
irradiance sequence probably includes nonlinear and dynamic components in the form of spikes and
fluctuations. The existence of these components will undoubtedly deteriorate the precision of the
solar irradiance forecasting models. In practice, high-frequency signals and low-frequency signals are
contained in solar irradiance sequence data. The former primarily results from the chaotic nature of the
weather system. The latter is caused by the daily rotation of the earth. As for each signal with certain
frequency, it is easier for a specific sequence forecasting model to predict the corresponding outliners
and behaviors of that signal. Given the above considerations, DWT is employed here to decompose
the raw solar irradiance sequence data into several stable parts (i.e., low-frequency signals) and
fluctuant parts (i.e., high-frequency signals). These decomposed subsequences have better behaviors
(e.g., more stable variances and fewer outliers) in terms of regularity than the raw solar irradiance
sequence data, which is helpful for the precision improvement of the solar irradiance forecasting
model [46].

In numerical analysis, DWT is a kind of wavelet transform for which the wavelets are
discretely sampled. The key advantage of DWT over Fourier transforms is that DWT is able to
capture both frequency and location information (location in time). In addition, DWT is good at the
processing of multi-scale information processing [47]. These superiorities make DWT an efficient
tool for complex data sequence analysis. In wavelet theory, the original sequence data are generally
decomposed into two parts called approximate subsequence and detailed subsequence via DWT.
The approximate subsequence captures the low-frequency features of the original sequence, while the
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detailed subsequence contains the high-frequency features. This process is regarded as wavelet
decomposition (WD), and the approximate subsequences obtained from the original sequence can also
be further decomposed by WD process. Then the high-frequency noise in the forms of the fluctuation
and randomness in original sequence can be extracted and filtered through WD process.

Given a certain mother wavelet function ψ(t) and its corresponding scaling function ϕ(t),
a sequence of wavelet ψj,k(t) and binary scale-functions ϕj,k(t) can be calculated as follows:

ψj,k(t) = 2
j
2 ψ
(

2jt− k
)

(1)

ϕj,k(t) = 2
j
2 ϕ
(

2jt− k
)

(2)

in which t, j and k respectively denote the time index, scaling variable and translation variable.
Then the original sequence os(t) can be expressed as follows:

os(t) =
n

∑
k=1

cj,k ϕj,k(t) +
J

∑
j=1

n

∑
k=1

dj,kψj,k(t) (3)

in which cj,k is the approximation coefficient at scale j and location k, dj,k denotes the detailed coefficient
at scale j and location k, n is the size of the original sequence, and J is the decomposition level. Based on
the fast DWT proposed by Mallat [48], the approximate sequence and detailed sequence under a certain
WD level can be obtained via multiple low-pass filters (LPF) and high-pass filters (HPF).

Figure 3 exhibits the specific WD process in our practical work. During a certain k-level
WD process, the raw solar irradiance sequence of certain weather types is first decomposed into
two parts: approximate subsequence A1 and detailed subsequence D1. Next, the approximate
subsequence A1 is further decomposed into another two parts namely A2 and D2 at WD level 2,
and continues to A3 and Ds at WD level 3, etc. Therefore, as shown in Figure 2, the approximate
subsequence Ak and detailed subsequences D1 to Dk can be individually forecasted by various time
sequence forecasting models (i.e., our proposed CNN-LSTM model, autoregressive integrated moving
average model, support vector regression, etc). Then the final forecasting results of solar irradiance
sequence can be obtained through the wavelet reconstruction on the forecasting results of Ak and D1
to Dk.

Figure 3. The detailed process of k-level wavelet decomposition. A1 to Ak are the approximate
subsequences, and D1 to Dk are the detailed subsequences. All of these subsequences can be forecasted
individually using some kind of time sequence forecasting models.

2.2. Convolutional Neural Networks Based Local Feature Extractor

Generally speaking, the historical solar irradiance sequence data is the most important input that
contains abundant information for forecasting the day-ahead solar irradiance. In our proposed
DWT-CNN-LSTM model, the original solar irradiance sequence under certain weather type is
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decomposed through DWT into several subsequences. These subsequences also include relevant and
significant information that is useful for the later forecasting of subsequences. Therefore, the effective
extraction of local features that are robust and informative from the sequential input is very important
for enhancing the forecasting precision. Traditionally, many previous works primarily focused on
multi-domain feature extractions [49], including statistical (variance, skewness, and kurtosis) features,
frequency (spectral skewness) features, time frequency (wavelet coefficients) features, etc. However,
these hand-engineered features require intensive expert knowledge of the sequence characteristics
and cannot necessarily capture the intrinsic sequential characteristic behind the input data. Moreover,
knowing how to select these manually extracted features is another big challenge. Unlike manual
feature extraction, CNN is an emerging branch of DL that is used for automatically generating
useful and discriminative features from raw data, which has already been broadly applied in image
recognition, speech recognition, and natural language processing [50].

As for application, the subsequences decomposed from solar irradiance sequence can be regarded
as 1-dimensional sequences. Thus 1-dimensional CNN is adopted here to work as a local feature
extractor. The key idea of CNN lies in the fact that abstract features can be extracted by convolutional
kernels and the pooling operation. In practice, to address the sequences, the convolutional layers
(convolutional kernels) firstly convolve multiple local filters with the sequential input. Each feature
map corresponding to each local filter can be generated by sliding the filter over the whole
sequential input. Subsequently, the pooling layer is utilized to extract the most significant and
fixed-length features from each feature map. In addition, the convolution and pooling layers can be
combined in a stacked way.

First of all, the most simply constructed CNN with only one convolutional layer and one pooling
layer is introduced to briefly show how the CNN directly process the raw sequential input. It is
assumed that K filters with a window size of m are used in the convolutional layer. The details of the
relevant mathematical operation in these two layers are presented in the following two subsections.

(1) Convolutional Layer

Convolution operation is regarded as a specific linear process that aims to extract local patterns
in the time dimension and to find local dependencies in the raw sequences. The raw sequential
input S and filter sequence FS is defined as follows. Here vectors are expressed in bold according to
the convention.

S = [s1, s2, s3, · · · , sL] (4)

FS = [w1, w2, w3, · · · , wK] (5)

in which si ∈ R is the single sequential data point that is arrayed according to time, and wj ∈ Rm×1 is
one of the filter vectors. L is the length of the raw sequential input S, and K is the number of total filters
in the convolutional layer. Then the convolution operation is defined as a multiplication operation
between a filter vector wj and a concatenation vector representation si:i+m−1.

si:i+m−1= si ⊕ si+1 ⊕ si+2 ⊕ · · · ⊕ si+m−1 (6)

in which ⊕ is the concatenation operator, and si:i+m−1 denotes a window of m continuous time steps
starting from the i-th time step. Moreover, the bias term b ∈ R should also be considered into the
convolution operation. Thus, the final calculation equation is written as follows.

ci = f
(

wj
Tsi:i+m−1 + b

)
(7)

in which wj
T represents the transpose of a filter matrix wj, and f is a nonlinear activation function.

In addition, index i denotes the i-th time step, and index j is the j-th filter.
The application of activation function aims to enhance the ability of models to learn more complex

functions, which can further improve forecasting performance. Applying suitable activation function
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can not only accelerate the convergence rate but also improve the expression ability of model. Here,
Rectified Linear Units (ReLu) are adopted in our model due to their superiority over other kinds of
activation functions [51].

(2) Pooling layer

In the above subsection, the given example only introduces the detailed convolution operation
process between one filter and the input sequence. In actual application, one filter can only generate
one feature map. Generally, multiple filters are set in the convolution layer in order to better excavate
the key features of input data. Just as assumed above, there are K filters with a window size of m in
the convolutional layer. In Equations (5) and (7), each vector wj represents a filter, and the sing value
ci denotes the activation of the window.

The convolution operation over the whole sequential input is implemented via sliding a filtering
window from the beginning time step to the ending time step. So the feature map corresponding to
that filter can be denoted in the form of a vector as follows.

Fj = [c1, c2, c3, · · · , cL−m+1] (8)

in which index j is the j-th filter, and the elements in Fj corresponds to the multi-windows as
{s1:m, s2:m, · · · , sl−m+1:L}.

The function of pooling is equal to subsampling as it subsamples the output of convolutional layer
based on the definite pooling size p. That means the pooling layer can effectively compress the length
of feature map so as to further reduce the number of model parameters. Based on the max-pooling
applied in our model, the compressed feature vector Fj−compress can be obtained as follows. In addition,
the max operation takes a max function over the p consecutive values in feature map Fj.

Fj−compress = [h1, h2, h3, · · · , h L−m
p +1] (9)

in which hj = max
(

c(j−1)p, c(j−1)p+1, · · · , cjp−1

)
.

In the application in our solar irradiance forecasting, the solar irradiance sequence input is a
vector with only one dimension. The subsequences that are decomposed from the solar irradiance
sequence are also a vector with only one dimension. Therefore, the size of the input subsequences in the
convolution layer is n× L× 1. n is the number of data samples and L is the length of the subsequences.
The size of the corresponding outputs after the pooling layer is n× ((L−m)/p + 1)× K. It can be
obviously noted that the length of the input sequence is compressed from L to ((L−m)/p + 1).

In sum, the CNN based feature extractor can provide more representative and relevant information
than the raw sequential input. Moreover, the compression of the input sequence’s length also increases
the capability of the subsequent LSTM models to capture temporal information.

To give a brief illustration, the framework for the CNN-based local feature extractor is shown
in Figure 4. Additionally, in the actual application, some important parameters need to be set
according to the specific circumstances. These parameters include the number of the convolutional
and pooling layers, the number of filters in each convolution layer, the sliding steps, the size of sliding
window, the pooling size, etc.
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Figure 4. The picture shows the framework of the CNN based local feature extractor. The convolution
layer consists of different filters marked by yellow, green and grey colors. Each filter can generate
a specific feature map to extract the key information of the raw sequence input through sliding the
corresponding windows. The activation function is used to enhance the ability of models to learn more
complex functions. The function of pooling is equal to subsampling as it subsamples the output of
convolutional layer based on the definite pooling size.

2.3. Long Short Term Memory Based Sequence Forecasting Model (from RNN to LSTM)

In the previous works, some sequence models (e.g., Markov models, Kalman filters and
conditional random fields) are commonly used tools to address the raw sequential input data.
However, the biggest drawback of these traditional sequential models is that they are unable to
adequately capture long-range dependencies. In the application of day-ahead solar irradiance,
many indiscriminative or even noisy signals that exist in the sequential input during a long time
period may bury informative and discriminative signals. This can lead to the failure of these above
sequences models. Recently, RNN has emerged as one effective model for sequence learning, which has
already been successfully applied in the various fields, including image captioning, speech recognition,
genomic analysis and natural language processing [52].

In our proposed DWT-CNN-LSTM model, LSTM that overcomes the problems of gradient
exploding or vanishing in RNN, is adopted to take the output of CNN based local feature extractor
to further predict the targeted subsequences. As mentioned in Section 2.1, these subsequences are
decomposed from solar irradiance data. In the following two subsections, the principle of RNN is
simply introduced and the construction of its improved variant (i.e., LSTM) is then illustrated in detail.

2.3.1. Recurrent Neural Network

The traditional neural network structure is characterized by the full connections between
neighboring layers, which can only map from current input to target vectors. However, RNN has the
ability to map target vectors from the whole history of the previous inputs. Thus RNN is more effective
at modeling dynamics in sequential data when compared to traditional neural networks. In general,
RNN builds connections between units from a directed cycle and memorizes the previous inputs via
its internal state. Specifically speaking, the output of RNN at time step t−1 could influence the output
of RNN at time step t. This makes RNN able to establish the temporal correlations between present
sequence and previous sequences. The structure of RNN is shown in Figure 5.
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Figure 5. The structure of Recurrent Neural Network.

In Figure 5, the sequential vectors X = [x(0), x(1), x(2)] are passed into RNN one by one according
to the set time step. This is obviously different from the traditional feed-forward network in which all
the sequential vectors are fed into the model at one time. The relevant mathematical equation can be
described as follows.

S(t) = σ(U·x(t) + W·S(t− 1) + b) (10)

y(t) = σ(V·s(t) + c) (11)

in which x(t) is the input variable at t time step, W, U and V are weight matrixes, b and c are the
biases vectors, σ is activation functions, and y(t) is the expected output at t time step.

Although RNN is very effective at modeling dynamics in sequential data, it can suffer from
the gradient vanishing and explosion problem in its backpropagation based model training when
modeling long sequences [53]. Considering the inherent disadvantages of typical RNN, its improved
variant named LSTM is adopted in our work, which is illustrated in the following subsection.

2.3.2. Long-Short-Term Memory

LSTM network proposed by Hochreiter et al. [53] in 1997 is a variant type of RNN, which combines
representation learning with model training without requiring additional domain knowledge.
The improved construction of LSTM is helpful for the achievement of avoiding gradient vanishing
and explosion problems in typical RNN. This means that LSTM is superior at capturing long-term
dependencies and modeling nonlinear dynamics when addressing the sequential data with a
longer length. The structure of LSTM cell is shown in Figure 6.

Figure 6. The structure of Long Short-Term Memory Cell.
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LSTM is explicitly designed to overcome the problem of gradient vanishing, by which the
correlation between vectors in both short and long-term can be easily remembered. In LSTM cell,
h(t) can be considered as a short-term state, and c(t) can be considered as a long-term state.
The significant characteristic of LSTM is that it can learn what needs to be stored in the long-term,
what needs to be thrown away and what needs to be read. When c(t− 1) point enters into cell, it first
goes through a forget gate to drop some memory; then, some new memories are added to it via an
input gate; finally, a new output y(t) that is filtered by the output gate is obtained. The process of
where the new memories come from and how these gates work is shown below.

(1) Forget

This part reveals how LSTM controls what kinds of information can enter into the memory cell.
After h(t− 1) and x(t) has passed through sigmoid function, a value f(t) between 0 and 1 is generated.
The value of 1 means that h(t− 1) will be completely absorbed in the cell state c(t− 1). On the
contrary, if the value is 0, h(t− 1) will be abandoned by cell state c(t− 1). The formula of this process
is shown below.

f(t) = σ(w f ·[h(t− 1), x(t)] + b f ) (12)

in which W f weight matrix, b f is biases vectors, and σ is activation function.

(2) Store

This part shows how LSTM decides what kinds of information can be stored in the cell state. First,
h(t− 1) passes through sigmoid function, and a value i(t) between 0 and 1 is then obtained. Next,
h(t− 1) passes through tanh function and then a new candidate value g(t) is obtained. In the end,
the above two steps can be integrated to update the previous state.

i(t) = σ(Wi·[h(t− 1), x(t)] + bi) (13)

g(t) = tanh(Wg·[h(t− 1), x(t)] + bg) (14)

Then the previous cell state c(t− 1) considers what information should be abandoned and stored
and then creates a new cell state c(t). This process can be formulated as follows.

c(t) = f(t)·c(t− 1) + it·gt (15)

(3) Output

The output of LSTM is based on the updated cell state c(t). First of all, we employ the sigmoid
function to generate a value o(t) to control the output. Then tanh and the output of sigmoid function
o(t) are further utilized to generate the cell state h(t). Thus we can output y(t) after the above process
as shown in the following two steps.

o(t) = σ(Wo·[h(t− 1), x(t)] + bo) (16)

y(t) = h(t) = o(t) ∗ tanh(C(t)) (17)

The training process of LSTM is called BPTT (backpropagation through time) [54].

3. Case Study

3.1. Data Source and Experimental Setup

The historical irradiance data applied in the above proposed solar irradiance forecasting models
is based on the dataset of Elizabeth City State University and Desert Rock Station. The first irradiance
dataset in our simulation is downloaded from the National Renewable Energy Laboratory (NREL),
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which is measured by the Elizabeth City State University at Elizabeth City from 2008 to 2012 [55].
There are 1817 days of solar irradiance data available with 5 min time resolution. The second irradiance
dataset in our simulation is downloaded from the National Oceanic & Atmospheric Administration
(NOAA) Earth System Research Laboratory website, which is measured by the Surface Radiation
station at Desert Rock from 2014 to 2017 [56]. There are 1196 days of solar irradiance data available
with 1min time resolution.

To meet the international standard of short-period solar irradiance forecasting, the irradiance data
should be further transformed to be the data with 15 min time resolution by taking the average of
irradiance points data in the span of every 15 min. Therefore, there are total 96 irradiance data points
in one day. Considering the earliest sunrise time and the latest sunset time in three years, we only use
daily data points that range from 18th to 78th. As for the forecast periodicity, we use the historical
irradiance data from the previous three days to predict the irradiance value for the next day. Therefore,
in the solar irradiance forecasting model, the input variable is the historical irradiance data from the
previous three days and the output variable is the predicted irradiance value for the next day.

All experimental platforms are built on high-performance Lenovo desktop computer equipped
with the Win10 operating system, Intel(R) Core(TM) i5-6300HQ CPU@2.30GHz, 8.00 GB RAM,
and NVIDIA GeForce GTX 960M GPU. We use Python 3.6.1 with Keras [57] and Scikit-learn [58]
to establish the DWT-CNN-LSTM forecasting models for day-ahead solar irradiance.

3.2. Model Training and Hyperparameters Selection

In the DL based forecasting models, the mean square error (MSE) is chosen as loss function,
and Adam Optimization is selected as an optimizer. During the deep learning training process,
weight initialization and bias initialization play a vital role. Therefore, we choose the data from
truncated normal distribution with 0 mean and 0.05 standard deviation as weight initialization method
of CNN and fully connected layer. This method is the recommended initializer for neural network
weights and filters. Orthogonal method, a popular initialization way, is selected as weight initializer
for LSTM block. The bias for all hidden layers is set as 0.1. The learning rate is 0.001, the batch size is
24 and the epoch is 200.

In addition, for two dataset, the numbers of training set and the testing set are different under
four general weather types. The training set is used for training forecasting model, the testing set for
evaluating forecasting result. All the above mentioned details of the division of training and testing
sets, as well as parameter setting of DWT-CNN-LSTM model, are listed in Tables 1 and 2.

Table 1. The division detail of samples sets under four general weather types.

Weather Types Elizabeth City Desert Rock Station

Sunny type
The number of training set: {288} The number of training set: {412}
The number of validation set: {32} The number of validation set {46}
The number of testing set: {80} The number of testing set: {115}

Cloudy type
The number of training set: {504} The number of training set: {230}
The number of validation set {56} The number of validation set{25}
The number of testing set: {140} The number of testing set:{65}

Rainy type
The number of training set: {366} The number of training set: {147}
The number of validation set {40} The number of validation set {14}
The number of testing set: {100} The number of testing set: {40}

Heavy Rainy type
The number of training set: {153} The number of training set: {72}
The number of validation set {16} The number of validation set {10}
The number of testing set: {42} The number of testing set: {20}
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Table 2. The parameter setting detail of DWT-CNN-LSTM model.

Option Parameter Setting

Training Method Adam Optimizer
Learning rate {0.001}

Batch size {24}
Epoch {200}

Training stop strategy {early stopping}
Loss Function MSE

We set the split proportion of training set, validation set and testing set as 0.7:0.1:0.2. The training
set is used to train the solar irradiance forecasting models. The validation set is used to adjust
the hyper-parameters of these DL forecasting models. The testing set is used to verify the
model performance.

For the proposed model, we first design two CNN layers with 64 filters, and the filter size and
pooling size are both set to 3. Then, two LSTM layers are connected to CNN output with 100 neurons.
The outputs of LSTM are fed into two fully connected layers with linear activation function. The Relu
activation function is applied to CNN and LSTM layers. To overcome the overfitting problems
in models, dropout method with 0.2 parameter is applied after CNN and LSTM layers. In addition,
early stopping method is also applied. In addition, the output data format of the input layer, each
intermediate layer, and the output layer are accordingly shown in Table 3. Additionally, Table 4
illustrates the structure of the other forecasting models used as benchmarks.

Table 3. The output data format of the input layer, each intermediate layer, and the output layer in
DWT-CNN-LSTM model.

Layer Output Shape

Input layer (180,1)
Conv-1D layer (180,64)

Max-Pooling layer (60,64)
Conv-1D layer (60,64)

Max-Pooling layer (20,64)
LSTM layer (20,100)
LSTM layer (100)

Fully connected Layer (100)
Output layer (60,1)

Table 4. The structure of the other forecasting models used as benchmarks.

Forecasting Models Structure

CNN
Convolutional layer (64 filters + 3 filter size) + maxpooling

(3 pooling size) + convolutional layer (64 filters + 3 filter size)
MaxPooling (3 pooling size) + Fully connected layer (100 neurons)

LSTM 2 LSTM layers (100 neurons)
ANN 2 fully connected layers (100 neurons)

ARIMA Determined by the minimum AIC of each input sample

3.3. Performance Criterion

To evaluate the performance of solar irradiance forecasting models, we employ three effective
error indexes that are Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Correlation
Coefficient (R). The smaller RMSE and MAE, together with the higher R denote the good performance
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of a forecasting model. The mathematical calculation methods of these three error indexes are shown
in the following equations in turn.

RMSE =

√√√√√ N
∑

t=1
(yt − ŷt)

2

N
(18)

MAE =

N
∑

t=1
|y t − ŷt|

N
(19)

R =
Cov(y, ŷ)√
V(y)

√
V(ŷ)

(20)

in which ŷt, yt are, respectively, the forecasting value and actual value at time t. y refers to the mean
value of the whole yt, and N is the sample size of the test set.

3.4. Model Performance Analysis for DWT-CNN-LSTM Model with Different WD Level

In the proposed DWT-CNN-LSTM model, the first step is to decompose the raw solar irradiance
sequence of certain weather type into several approximate subsequences and detailed subsequences.
The key of this step is the determination of decomposition level. As for the solar irradiance forecasting
based on certain dataset, both the higher and lower WD level are not conducive to the performance
improvement of subsequent forecasting models. Therefore, in this part, the performance comparison of
DWT-CNN-LSTM model with different WD level is conducted using two different datasets, namely the
dataset of Elizabeth City State University and Desert Rock Station. The detailed results are respectively
shown in Tables 5 and 6. As shown in Table 5, under the sunny weather type, the DWT-CNN-LSTM
model without WD performs better than that with WD level 1 to 4. This is mainly because the solar
irradiance curve of sunny days is smooth and less fluctuating. Therefore, the application of WD will
not bring very obvious improvement of the forecasting performance.

Table 5. The performance comparison of DWT-CNN-LSTM model at different WD levels using the
dataset of Elizabeth City State University.

Weather Types Error Index
Wavelet Decomposition (WD) Level

Level 1 Level 2 Level 3 Level 4 without WD

Sunny
MAE 23.174 23.474 24.213 24.848 22.560
RMSE 36.548 36.363 40.323 41.244 36.226

R 0.991 0.991 0.989 0.989 0.992

Cloudy
MAE 86.313 81.466 83.547 88.731 86.754
RMSE 121.506 118.645 124.364 126.149 121.922

R 0.926 0.928 0.925 0.919 0.925

Rainy
MAE 95.1758 89.503 93.126 93.695 93.694
RMSE 145.219 139.133 143.919 142.998 142.194

R 0.748 0.757 0.741 0.741 0.743

Heavy rainy
MAE 41.234 38.642 39.981 42.774 43.435
RMSE 68.742 67.574 68.981 70.885 70.410

R 0.628 0.641 0.634 0.611 0.615
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Table 6. The performance comparison of DWT-CNN-LSTM model at different WD levels using the
dataset of Desert Rock Station.

Weather Types Error Index
Wavelet Decomposition (WD) Level

Level 1 Level 2 Level 3 Level 4 without WD

Sunny
MAE 17.131 17.379 18.249 18.498 16.573
RMSE 34.299 34.429 35.844 36.477 33.101

R 0.992 0.991 0.989 0.987 0.993

Cloudy
MAE 62.144 66.499 67.425 68.552 66.661
RMSE 91.099 95.377 96.374 98.551 96.641

R 0.965 0.963 0.958 0.957 0.959

Rainy
MAE 131.384 130.194 136.847 138.257 132.83
RMSE 181.392 180.079 184.963 187.241 182.97

R 0.865 0.866 0.847 0.832 0.857

Heavy rainy
MAE 68.212 62.160 64.161 65.840 63.448
RMSE 96.490 94.977 97.203 103.880 96.373

R 0.657 0.663 0.651 0.619 0.647

Nevertheless, for other three weather types (i.e. cloudy, rainy and heavy rainy) shown in Table 5,
DWT based solar irradiance sequence decomposition does enhance the corresponding forecasting
performance to a different extent. This can be explained by the fact that the solar irradiance curve
of cloudy, rainy and heavy rainy days presents higher volatility, variability and randomness than
that of sunny days. Therefore, the raw solar irradiance sequence of cloudy, rainy and heavy rainy
days probably includes nonlinear and dynamic components in the form of spikes and fluctuations.
The existence of these components will undoubtedly deteriorate the precision of the solar irradiance
forecasting models. Additionally, the application of WD can mitigate the above problems.

To summarize the information provided in Table 5, WD cannot effectively improve the forecasting
performance of sunny days. Under the other three weather types, DWT-CNN-LSTM model performs
best at WD level 2 when using the dataset of Elizabeth City State University. The results of performance
comparison shown in Table 6 are different. Specifically speaking, DWT-CNN-LSTM model of cloudy
days performs best at WD level 1 rather than WD level 2 when using the dataset of Desert Rock Station.
Therefore, we can draw the conclusion that the influence of WD on forecasting performance, as well as
the best WD level, generally varies under different weather types and validation datasets.

3.5. Performance Comparison Analysis of Different Solar Irradiance Forecasting Models

The proposed DWT-CNN-LSTM forecasting model is different from the previous traditional
solar irradiance forecasting models. The key characteristics of the DWT-CNN-LSTM forecasting
model are the perfect combination of the following parts: (1) DWT based solar irradiance sequence
decomposition; (2) CNN based local feature extractor; and (3) LSTM based sequence forecasting model.
In addition, the solar irradiance forecasting models are individually established under sunny, cloudy,
rainy and heavy rainy days. Given this fact, the relevant performance comparison analysis is also
shown and discussed under the above four weather types. The involved three error indexes (i.e., RMSE,
MAE, and R) are considered as the basis of the following performance comparison analysis of different
forecasting models.

3.5.1. Comparison Analysis of Sunny Days

As previously shown in Table 5, the DWT-CNN-LSTM forecasting model of sunny days performs
best at WD level 1 among different WD levels. So in this part, the DWT-CNN-LSTM model at WD level 1
is compared with six solar irradiance forecasting models, namely CNN-LSTM (i.e., our proposed model
without WD), artificial neural network (ANN), and manually extracted features (ANN, persistence
forecasting, CNN and LSTM). As for the manually extracted features-ANN model, the relevant
statistical features and their corresponding expressions are shown in Table 7.
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Table 7. The list of manually extracted features.

Statistical Features Expression

Variance 1 Zvar = (1/n)∑n
i=1(zi − µ)2

Maximum Zmax = max(z)

Skewness Zskew = E
[
((z− µ)/σ)3

]
Kurtosis Zskew = E

[
((z− µ)/σ)4

]
Average Zaver = (1/n)∑n

i=1 zi
1 zi is the solar irradiance data point at time i during the whole day. z is the data point set of {z1, z2, . . . , zn}.

The performance comparisons of different sunny days’ forecasting models using the dataset of
Elizabeth City State University and Desert Rock Station are respectively shown in Tables 8 and 9.
In Table 8, the prediction accuracy of DWT-CNN-LSTM (WD level 1) is worse than the single
CNN-LSTM without WD. The corresponding conclusion can be drawn that the application of
DWT based solar irradiance sequence decomposition does not improve the forecasting performance.
The reason behind this phenomenon has already been explained in Section 3.5.

Table 8. The performance comparison of different sunny day’s forecasting models using the dataset of
Elizabeth City State University.

Forecasting Models MAE RMSE R

DWT-CNN-LSTM (WD level 1) 23.174 36.548 0.991
CNN-LSTM 22.560 36.226 0.992

CNN 22.773 36.763 0.992
LSTM 24.497 37.049 0.990

Manually extracted features-ANN 43.045 54.796 0.985
ANN 23.533 36.888 0.989

Persistence forecasting 30.271 41.742 0.987
ARIMA 32.148 40.174 0.988

Table 9. The performance comparison of different sunny day’s forecasting models using the dataset of
Desert Rock Station.

Forecasting Models MAE RMSE R

DWT-CNN-LSTM (WD level 1) 17.131 34.299 0.992
CNN-LSTM 16.573 32.411 0.993

CNN 16.222 33.178 0.993
LSTM 17.032 33.294 0.992

Manually extracted features-ANN 30.187 44.101 0.981
ANN 17.869 34.783 0.990

Persistence forecasting 21.034 38.341 0.984
ARIMA 20.433 37.781 0.987

As for our proposed model without WD (i.e., CNN-LSTM), it is superior to manually extracted
features-ANN. This further verifies the ability of CNN to automatically and effectively extract
representative and significant information from the raw input data. Additionally, ANN, persistence
forecasting, and ARIMA models perform worse than CNN-LSTM, which also validates the advisability
of applying the combined DL models in solar irradiance forecasting. By comparing among CNN-LSTM,
CNN and LSTM, the comparing results also verify the reasonableness of the tandem connection of CNN
and LSTM, because the performance evaluation (based on MAE, RMSE and R) results of CNN-LSTM
are all better than those of CNN and LSTM. The above similar results can also be found in Table 9.
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Figure 7 shows the actual and forecasted solar irradiance curve on sunny day pattern using dataset of
Elizabeth City State University.

Figure 7. Actual and forecasted solar irradiance on sunny day pattern using dataset of Elizabeth City
State University.

3.5.2. Comparison Analysis under Cloudy Day

Based on the dataset of Elizabeth City State University and Desert Rock Station, the performance
comparisons among different cloudy day’s forecasting models are presented in Tables 10 and 11,
respectively. As previously discussed in Table 5, the DWT-CNN-LSTM model of cloudy days has the
highest forecasting precision at WD level 2 when using the dataset of Elizabeth City State University.
Therefore, as shown in Table 10, the proposed DWT-CNN-LSTM model with WD level 2 is selected to
make comparisons with the other kinds of forecasting models.

First of all, it should be noted that all the error index values of DWT-CNN-LSTM (WD level 2)
model is better than that of single CNN-LSTM. This result indicates that the DWT based solar irradiance
sequence decomposition has the capability to further improve the forecasting performance of combined
CNN-LSTM models. As discussed in Section 3.5, the obvious performance improvement can be
attributed to the fact that the solar irradiance curve of cloudy days presents high volatility, variability
and randomness. Therefore, the cloudy day’s solar irradiance sequence includes nonlinear and
dynamic components in the form of spikes and fluctuations. The existence of these components
will undoubtedly deteriorate the precision of the solar irradiance forecasting models. Additionally,
the application of WD could well mitigate the above problems.

Table 10. The performance comparison of different cloudy days’ forecasting models using the dataset
of Elizabeth City State University.

Forecasting Models MAE RMSE R
DWT-CNN-LSTM (WD level 2) 81.466 118.645 0.928

CNN-LSTM 86.754 121.922 0.925

CNN 87.043 122.042 0.923
LSTM 87.997 122.479 0.921

Manually extracted features-ANN 90.310 125.871 0.905
ANN 89.743 123.532 0.917

Persistence forecasting 95.370 168.443 0.849
ARIMA 110.334 207.694 0.772
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Table 11. The performance comparison of different cloudy days’ forecasting models using the dataset
of Desert Rock Station.

Forecasting Models MAE RMSE R
DWT-CNN-LSTM (WD level 1) 62.761 91.098 0.965

CNN-LSTM 63.661 96.641 0.959
CNN 64.339 95.373 0.961
LSTM 66.752 97.523 0.954

Manually extracted features-ANN 128.06 165.98 0.817
ANN 69.522 100.811 0.950

Persistence forecasting 74.413 114.369 0.939
ARIMA 89.543 150.192 0.865

When compared to the manually extracted features-ANN, as well as the traditional forecasting
models (i.e., ANN, persistence forecasting and ARIMA), the comparison results verify our proposed
model’s advantages in the following two respects. One is the ability to automatically extract
representative and significant information from the raw input data, and the other is the ability to
capture the long dependencies among the time series input data. In addition, the performance
improvement of CNN-LSTM over CNN and LSTM also reveals the benefits of the combination of them.
A similar discussion can also be made according to Table 11. Figure 8 shows the actual and forecasted
solar irradiance curve on cloudy day pattern using dataset of Elizabeth City State University.

Figure 8. Actual and forecasted solar irradiance on cloudy day pattern using dataset of Elizabeth City
State University.

3.5.3. Comparison Analysis under Rainy Days

In terms of the rain day, it is discussed in Section 3.5 that the corresponding DWT-CNN-LSTM
model performs best at level 2 whether using the dataset of Elizabeth City State University or Desert
Rock Station. Therefore, as shown in Tables 12 and 13, the DWT-CNN-LSTM (WD level 2) is compared
with other forecasting models.
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Table 12. The performance comparison of different rainy days’ forecasting models using the dataset of
Elizabeth City State University.

Forecasting Models MAE RMSE R
DWT-CNN-LSTM (WD level 2) 89.503 139.133 0.757

CNN-LSTM 93.694 142.194 0.743
CNN 94.773 143.072 0.737
LSTM 95.089 142.877 0.741

Manually extracted features-ANN 132.321 189.842 0.639
ANN 97.894 147.818 0.736

Persistence forecasting 114.338 173.497 0.680
ARIMA 132.066 181.681 0.656

Table 13. The performance comparison of different rainy days’ forecasting models using the dataset of
Desert Rock Station.

Forecasting Models MAE RMSE R
DWT-CNN-LSTM (WD level 2) 130.194 180.079 0.866

CNN-LSTM 132.831 181.973 0.857
CNN 132.755 183.076 0.857
LSTM 133.007 184.332 0.855

Manually extracted features-ANN 184.352 225.887 0.769
ANN 138.045 186.553 0.829

Persistence forecasting 155.661 205.340 0.788
ARIMA 177.053 210.119 0.772

When CNN-LSTM and DWT-CNN-LSTM (WD level 2) are compared, the results and the reasons
for them are similar to those discussed in Section 3.5.3. Specifically, the MAE is lowered from 93.694
in CNN-LSTM to 89.503 in DWT-CNN-LSTM. The RMSE is lowered from 142.194 in CNN-LSTM
to 139.133 in DWT-CNN-LSTM. At the same time, the R has also been improved from 0.743 in
CNN-LSTM to 0.757 in DWT-CNN-LSTM. The lower MAE and RMAE denote smaller differences
between forecasted and true solar irradiance data, and the higher R also represents that the forecasted
solar irradiance curve is closer to the true one. Therefore, the application of the DWT based sequence
decomposition also helps the improvement of forecasting performance. Additionally, the combined
CNN-LSTM shows better forecasting performance than the rest models (i.e., single DL models and
traditional forecasting models). This indicates that the reasonable combination of DL models can better
take advantage of the CNN and LSTM.

In sum, the improved DL models (i.e., DWT-CNN-LSTM) not only leverages the advantages of
DWT to obtain subsequences with good behavior (e.g., more stable variances and fewer outliers) in
terms of regularity, but also absorbs the superiority of CNN-LSTM to automatically extract abstract
features and find long dependencies. Similar results can also be found in Table 13. Figure 9 shows
the actual and forecasted solar irradiance curve on rainy day pattern using dataset of Elizabeth City
State University.
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Figure 9. Actual and forecasted solar irradiance on rainy day pattern using dataset of Elizabeth City
State University.

3.5.4. Comparison Analysis under Heavy rainy Days

Regarding the weather type of rainy days, the corresponding simulation result in Section 3.5
reveals that the DWT-CNN-LSTM model can reach the best precision at WD level 2. Therefore,
the DWT-CNN-LSTM (WD level 2) is adopted once again to be compared with other forecasting
models. Similar to the cloudy and rainy days, the solar irradiance data under heavy rainy days is also
volatile and fluctuates. The introduction of DWT based sequence decomposition is able to mitigate the
adverse influence of fluctuation on forecasting models. This idea is in accordance with comparison
results shown in Tables 14 and 15.

Table 14. The performance comparison of different heavy rainy days’ forecasting models using the
dataset of Elizabeth City State University.

Forecasting Models MAE RMSE R
DWT-CNN-LSTM (WD level 2) 38.642 67.574 0.641

CNN-LSTM 43.435 70.410 0.616
CNN 45.775 73.377 0.611
LSTM 44.373 74.086 0.611

Manually extracted features-ANN 54.580 120.495 0.354
ANN 48.956 77.034 0.589

Persistence forecasting 64.416 107.290 0.401
ARIMA 63.848 110.735 0.388

Table 15. The performance comparison of different heavy rainy days’ forecasting models using the
dataset of Desert Rock Station.

Forecasting Models MAE RMSE R
DWT-CNN-LSTM (WD level 2) 62.160 94.977 0.680

CNN-LSTM 63.448 95.374 0.647
CNN 64.743 96.774 0.640
LSTM 65.014 97.096 0.641

Manually extracted features-ANN 81.249 138.689 0.454
ANN 66.312 99.863 0.615

Persistence forecasting 75.029 115.696 0.497
ARIMA 79.473 120.744 0.477
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Additionally, the great performance improvement is also achieved via automatic feature extraction
and long dependency identification, especially under unstable weather conditions. This can also be
verified by the following results shown in Table 14. For example, the MAE is reduced a lot from 64.416
in persistence forecasting to 38.642 in DWT-CNN-LSTM (WD level 2). The RMSE is reduced a lot
from 107.290 in persistence forecasting to 67.574 in DWT-CNN-LSTM (WD level 2). Additionally,
the R is enhanced from 0.401 in persistence forecasting to 0.641 in DWT-CNN-LSTM (WD level 2).
The performance improvement achieved by DWT-CNN-LSTM (WD level 2) can also be found when
compared with other forecasting models shown in Table 14.

Moreover, it should be noted the applicability degree of DWT-CNN-LSTM model in different
weather conditions is different. For instance, as mentioned in Section 3.5.1, the MAE of sunny days’
forecasting is decreased little with 30.271 in the persistence forecasting model and 23.174 in the
DWT-CNN-LSTM model. Nevertheless, in Table 12, the MAE of heavy rainy’ forecasting is reduced
a lot from 64.416 in the persistence forecasting model to 38.642 in the DWT-CNN-LSTM model.
This further indicates that our proposed model is more applicable for the solar irradiance forecasting
of extreme weather conditions. Similar results can also be found in Table 15. Figure 10 shows the
actual and forecasted solar irradiance curve for rainy day pattern using dataset of Elizabeth City
State University.

Figure 10. Actual and forecasted solar irradiance on heavy rainy day pattern using dataset of Elizabeth
City State University.

3.6. Simulation Discussion

In this paper, an improved DL model (i.e., DWT-CNN-LSTM) based on WD, CNN, and LSTM
is proposed for day-ahead solar irradiance forecasting. In the actual simulation based on two
datasets, the model performance of DWT-CNN-LSTM model with Different WD Level is assessed
for four general weather types (i.e., sunny, cloudy, rainy, and heavy rainy). At the same time,
the DWT-CNN-LSTM model with certain WD Level is also compared with other DL models (e.g., CNN
and LSTM) and traditional forecasting models (e.g., ANN, persistence forecast and ARIMA) for each
weather type. The information previously shown in Tables 5–15 is vividly described in the following
Figures 11–14, which is conducive to further summary. The changing trends of bars in these four
figures are similar, which can be summarized as follows.
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Figure 11. The MAE of different forecasting models for sunny, cloudy, rainy and heavy rainy days
using the dataset of Elizabeth City State University.

Figure 12. The RMSE of different forecasting models for sunny, cloudy, rainy and heavy rainy days
using the dataset of Elizabeth City State University.

Figure 13. The MAE of different forecasting models for sunny, cloudy, rainy and heavy rainy days
using the dataset of Desert Rock Station.
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Figure 14. The RMSE of different forecasting models for sunny, cloudy, rainy and heavy rainy days
using the dataset of Desert Rock Station.

First of all, it can be concluded that the influence of WD on forecasting performance, as well as the
best WD level, generally varies under different weather types and validation datasets. Additionally,
the introduction of certain WD level can improving the forecasting performance of DWT-CNN-LSTM
model for cloudy, rainy and heavy rainy days, excluding sunny day. The conclusions are revealed by
the fact in Figures 11–14 that the heights of all the blue bars (represent DWT-CNN-LSTM models with
different WD Level) of sunny day are higher than the dark green bars (represents CNN-LSTM model).
This can be explained by the fact that the solar irradiance curve of cloudy, rainy and heavy rainy days
presents higher volatility, variability and randomness than that of sunny days. Therefore, the raw
solar irradiance sequence of cloudy, rainy and heavy rainy days probably includes nonlinear and
dynamic components in the form of spikes and fluctuations. The existence of these components
will undoubtedly deteriorate the precision of the solar irradiance forecasting models. Additionally,
the application of WD could mitigate the above problems.

Secondly, the proposed DWT-CNN-LSTM models with suitable WD Level are always superior to
other DL models (e.g., CNN and LSTM) and traditional forecasting models (e.g., ANN, persistence
forecast and ARIMA) for cloudy, rainy and heavy rainy days. For sunny days, the CNN-LSTM
model without WD also performs better than other DL models and traditional forecasting models.
The performance enhancement can be attributed to the application of WD and the reasonable tandem
connection of CNN and LSTM. WD is used to decompose the raw solar irradiance sequence data of
certain weather types into several subsequences with better behaviors (e.g., more stable variances and
fewer outliers). CNN is good at automatically and effectively extracting representative and significant
information from the raw subsequence data. As shown in Figure 15, the sequential characteristics with
low and high frequency are well captured by CNN. LSTM is able to find the long dependencies of the
time series input.

In the end, it should be noted that the applicability degree of DWT-CNN-LSTM model under the
different weather is not the same. Specifically speaking, the height differences of bars under different
weather types reveal that our proposed DWT-CNN-LSTM model obviously performs better than
traditional forecasting models (e.g., ARMIA) under cloudy, rainy and heavy rainy days. In other
words, our proposed model is more applicable for the solar irradiance forecasting of extreme weather
conditions. However, as shown in Figures 7–10, there still exists a certain deviation between the actual
solar irradiance value and the predicted value. This may be explained by the fact that the DWT-based
decomposition of raw solar irradiance data may miss part of the information. It is an important
problem needed be overcome in the next research stage.
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Figure 15. The visualization of feature maps extracted by CNN from the raw subsequence data. (a) the
original data before convolution operation; (b) The first feature map yielded by convolution operation;
(c) the second feature map yielded by convolution operation; and (d) the third feature map yielded by
convolution operation.

4. Conclusions

The nature of the volatility and randomness characteristics of the output power of solar PV
generation causes serious difficulty for the real-time power balance of the interconnected grid.
This makes PV power forecasting become an important issue to the power grid in terms of the effective
integration of large-scale PV plants. As the main influence factor of PV power generation, the solar
irradiance and its accurate forecasting are prerequisites for solar PV power forecasting. Therefore,
this paper proposes an improved DL model to enhance the accuracy of day-ahead solar irradiance
forecasting. It should be noted that the DWT-CNN-LSTM model is individually established under
four general weather types (i.e., sunny, cloudy, rainy and heavy rainy) due to the high dependency of
solar irradiance on weather status.

The basic pipeline framework behind the data-driven DWT-CNN-LSTM model consists of three
major parts: (1) DWT based solar irradiance sequence decomposition; (2) the CNN-based local feature
extractor; and (3) the LSTM-based sequence forecasting model. In the solar irradiance forecasting under
certain weather types, the raw solar irradiance sequence is decomposed into several subsequences via
discrete wavelet transformation. Then each subsequence is fed to the CNN-based local feature extractor,
which leverages the advantage of CNN to automatically learn the abstract feature representation from
the raw subsequence data. Since the extracted features are also time series data, they are individually
transported to LSTM to construct the subsequence forecasting model. In the end, the final solar
irradiance forecasting results under certain weather types are obtained via the wavelet reconstruction
of these forecasted subsequences.

In the case study using two datasets of Elizabeth City State University and Desert Rock Station,
the performance of the proposed DWT-CNN-LSTM model is compared with another six solar
irradiance forecasting models, namely, CNN-LSTM (i.e., our proposed model without WD), ANN,
manually extracted features-ANN, persistence forecasting, CNN, and LSTM. Based on three error
indexes (i.e., RMSE, MAE, and R), the simulation results indicate that DWT-CNN-LSTM model has
high superiority in the solar irradiance forecasting, especially under extreme weather conditions.
This mans the proposed DL technique-based day-ahead solar irradiance forecasting model has high
potential for future practical applications.
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Nomenclature

PV photovoltaic
DL deep learning
WD wavelet decomposition
CNN convolutional neural network
LSTM long short-term memory
IEA international energy agency
NWP numerical weather prediction
TSI total sky imagery
MOS model output statistics
MA moving average
AR autoregressive
ARMA autoregressive moving average
ARIMA autoregressive integrated moving average
ANN artificial neural network
SVM support vector machine
SOM self-organizing map
LVQ learning vector quantization
SVR support vector regression
A-P Angstrom-Prescott
RNN recurrent neural network
MFE manual feature extraction
DWT discrete wavelet transformation
LPF low-pass filters
HPF high-pass filters
ReLu rectified linear units
RMSE root mean squared error
MAE mean absolute error
R correlation coefficient
ψ(t) mother wavelet function
ϕ(t) scaling function
ψj,k(t) a sequence of wavelet at time index t
ϕj,k(t) binary scale-functions at time index t
os(t) the original sequence at time index t
cj,k the approximation coefficient at scale j and location k
dj,k the detailed coefficient at scale j and location k
S the raw sequential input
FS the filter sequence
L the length of raw sequential input
K the number of total filters in the convolutional Layer
m window size
⊕ the concatenation operator
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si:i+m−1 a concatenation vector representation of si ⊕ si+1 ⊕ si+2 ⊕ · · · ⊕ si+m−1

f ,σ a nonlinear activation function
wj the j-th filter matrix
Fj the feature map of j-th filter
p pooling size
Fj−compress the compressed feature vector from the pooling layer
X the sequential vectors
x(t) the input variable at time step t
y(t) the expected output at time step t
W,U,V weight matrixes
b,c biases vectors
h(t) a short-term state
c(t) long-term state
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