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Abstract: Graphene quantum dots (GQDs) play a critical role in many applications in the electrical
and optical fields. We develop a simple three-step hydrothermal etching method to prepare GQDs by
adopting graphene oxide (GO) as a precursor and nitric acid as an oxidant. We discuss the formation
mechanism of GQDs by the characterization of products and intermediates with Scanning electronic
microscopy (SEM), Transmission electron microscopic (TEM), Raman, Fourier transform infrared
(FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Two kinds of GQDs have been
obtained after the treatment of GO with different concentrations of nitric acid. The sizes of GQDs
are small, with diameters of 3.38 nm and 2.03 nm on average, respectively. When excited with
365 nm UV light, the two kinds of GQDs exhibit green and yellow luminescence; the different optical
properties can be attributed to the differences in degree of oxidation and nitrogen doping. The result
is important for GQDs in synthesizing and optical field.
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1. Introduction

Graphene, a unique type of two-dimensional semiconductor with superior electronic, thermal,
and mechanical properties and chemical stability, has been applied in diverse fields such as
electronics, magnetics, and optics [1–4]. Graphene quantum dots (GQDs), a new kind of luminescent
zero-dimensional carbon materials with finite size, have attracted tremendous interest from scientists.
Because of the quantum confinement in GQDs, it is expected that they will yield many interesting
phenomena which do not exist in other semiconductor materials [5,6]. Compared with traditional
QDs, GQDs show many advantages, e.g., low toxicity, low-cost synthesizing strategies, good solubility
in water, and organic solvents [7]. Therefore, GQDs are considered as promising candidates to replace
traditional QDs, and have been integrated into many fields such as bioimaging [8,9], sensing [10],
catalysts [11–13], and photovoltaic devices [14].

Nowadays, many methods have been developed to prepare GQDs using large graphene sheets as
raw materials through physical and chemical methods, such as hydrothermal and solventhermal
treatments, ultrasonic shearing, electrochemical oxidation, and oxygen plasma treating [15–21].
Pan et al. [15,16] synthesized strong blue and green luminescent GQDs by cutting graphene sheets
through the hydrothermal route. Concentrated H2SO4 and HNO3 were used to oxidize the graphene
sheets. Zhou et al. [17] obtained GQDs by photo-Fenton reaction of graphene oxide (GO) under
the UV irradiation, the GQDs have uniform crystallinity, and present a strong photoluminescence
property. Li et al. [19] reported an electrochemical approach with a filtration-formed graphene film
as a working electrode in PBS for direct preparation of functional GQDs, which exhibited green
luminescence. Roy et al. [22] prepared GQDs from plant leaves through a green one-pot hydrothermal
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method; GO formed after 2 h and GQDs formed after 8 h of the hydrothermal reaction. The obtained
GQDs displayed intense green photoluminescence (PL). Our previous work successfully synthesized
different colored GQDs by cutting oxidized GO through a hydrothermal method; the oxidized GO was
obtained by oxidation of GO with O3 [23]. Oxidation is an important part in synthesizing GQDs using
graphene, GO, and CNT as starting materials, because it can introduce oxygen-containing groups or
defects onto the surface or edge of the carbon materials, and increase active sites. Generally, oxidants
used in oxidation include H2SO4-KMnO4, concentrated H2SO4 and HNO3, Fenton reagent, O3, and so
on [15,17,24–26].

Some of the techniques mentioned above are complex and expensive. Dong et.al. [27] prepared
single-layered GQDs using SWCNT as a precursor through a simple and green, three-step hydrothermal
etching method. They chose different concentrations of HNO3 as oxidant; the as-prepared GQDs present
green and yellow luminescence. Concentrated HNO3 is excellent in oxidation, introducing nirtrogen
(N) and oxygen-containing groups into GQDs.

GO, with oxygen-containing groups on the surface and edge has similar sp2 carbon networks
to SWCNT, while it has a layered structure; therefore, it is predicted that GO should be an ideal raw
material for preparing GQDs, adopting concentrated HNO3 as oxidant. However, to the best of our
knowledge, no attention has been paid to cutting GO into GQDs by using HNO3 as oxidant.

In this work, we present a simple, three-step hydrothermal method to synthesize fluorescent
GQDs by using GO as raw material and HNO3 as the oxidant. Two kinds of GQDs with different
degrees of oxidation and N doping have been obtained. The mechanism for the formation of GQDs
and their fluorescence properties have been discussed in detail.

2. Materials and Methods

2.1. Materials

All chemicals were analytically pure and used as received. Graphite powder (spectral pure,
>99.85%) was purchased from Huayi Company in Shanghai, China, concentrated nitric acid (AR,
65–68%) Guanghua Sci.-Tech Co., Ltd. (Guangzhou, China). Graphene oxide sheets were synthesized
with a modified Hummers’ method. The water used throughout the experiments was freshly deionized
by an ultrapure water system.

2.2. Equipments

Scanning electronic microscopy (SEM) images were obtained with a Field-emission scanning
electron microscope (S-4800, Hitachi, Tokyo, Japan). High resolution transmission electron microscopic
(HR-TEM) images were taken by a TECNAL G2 F20 (FEI Company, Hillsboro, OR, USA) electron
microscope operating at 200 kV. Fourier transform infrared (FT-IR) spectra were obtained on a FT-IR
spectrometer (NICOLET-6700, Thermo Scientific, Waltham, USA). Raman spectra were recorded on a
Lab RAM HR with a 785 nm wavelength laser beam (HORIBA Jobin Yvon S.A.S., Les Ulis, France).
X-ray photoelectron spectroscopy (XPS) data were measured by XSAM800 (Kratos, Manchester, UK)
with an Al source for determining the composition and chemical bonding configurations. Fluorescence
spectra were measured with a F-7000 spectrometer (Hitachi, Tokyo, Japan), which was operated
with photomultiplier tube (PMT) voltage at 700 V, slit widths for excitation and emission 2.5 nm and
5.0 nm, respectively.

2.3. Synthesis of graphene quantum dots (GQDs)

We prepared GO from graphite adopting a modified Hummers’ method [28,29]. The obtained
GO was used as the precursor synthesizing GQDs through a three-step, top-down method. Firstly,
the proper amount of GO was refluxed with 8 M HNO3 at 100 ◦C for 24 h. During the reaction,
the color of solvent darkened. When the reaction was complete, the suspension was centrifuged at
2770 g for 10 min after being cooled to room temperature in order to remove the supernatant. The
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deposit (labelled as oxidized graphene oxide, O-GO) was collected after being thoroughly washed
with deionized (DI) water and centrifuged. Secondly, the obtained O-GO was dispersed in 20 mL DI
water, and then heated hydrothermally in a Teflon-lined stainless steel autoclave at 200 ◦C for 8 h.
After that, the obtained suspension was centrifuged with the force of 2770 g for 10 min; a light brown
supernatant and black deposit (labelled as reduced O-GO, R-O-GO) was collected. The supernatant
showed green fluorescence under 365 nm UV light irradiation, indicating that GQDs were obtained
in this procedure [27]. The supernatant was dialyzed over DI water in a dialysis bag with a retained
molecular weight of 3500 Da for two weeks, in order to remove acid and impurity ions; the obtained
solution was labelled as GQD1. The black sediment was collected, as numerous graphene nanosheets
still existed in it. Therefore, the sediment was further refluxed with 15 M HNO3 at 100 ◦C for 12 h;
after the reaction, the color of solution changed to transparent brown. The strong yellow fluorescence
under 365 nm UV light irradiation suggested that a lot of GQDs were released into the solution. After
cooling to room temperature, the solution was dialyzed over DI water to remove acid and impurity
ions; as a result, GQD2 were collected.

3. Results and Discussion

3.1. Characterization and Formation Mechanism of GQDs

Oxidation and hydrothermal treatment modified the structure of GO. Different characterizations
were performed to explain the formation mechanism of GQDs. Figure 1 shows the surface
morphologies of GO, O-GO, and R-O-GO. Dried GO, O-GO, and R-O-GO exist in sheets, and O-GO
and R-O-GO both present metallic appearance. The SEM images show that there are wrinkles at the
surface of GO, O-GO and R-O-GO (Figure 2). HR-TEM images (Figure 3) show that GQD1 and GQD2
are nanosheets with small size and circular shape. GQD1 are distributed with diameters ranging from
2.25 to 5.03 nm (3.38 nm in average) and GQD2 1.20 nm to 2.98 nm (2.03 nm on average).
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FT-IR analysis of GO, O-GO, and R-O-GO (Figure 4) shows that there are four characteristic
peaks at ∼3430, ∼2360, ∼1630, and ∼1070 cm−1, corresponding to -OH, C=O, C=C, and C-O-C
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groups, respectively [30]. The absorption intensity of -OH (3437 cm−1) and C-O-C (1070 cm−1)
groups weakens in R-O-GO, suggesting that -OH and C-O-C groups disappear gradually during the
hydrothermal treatment.Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 10 
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GQD2. The right column shows the diameter distribution of GQD1 and GQD2.
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Furthermore, chemical oxidation can create a lot of disordered structures in GO, which is revealed
by the Raman spectra (Figure 5). The G band is associated with E2g vibrational modes of the sp2

carbon atom, and the D band represents the edge defect and amorphous graphitic system [31,32].
The intensity ratio ID/IG, “disorder structure” to the “crystalline structure” is adopted to evaluate
the structure of different oxidized GO. An increase in the ID/IG means an increase in the amount of
topological disorder in the graphite layer and a decrease in the size of nanocrystalline graphite [30].
The Raman Spectra of GO, O-GO and R-O-GO given in Figure 5 show that the D and G bands are
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1345 and 1588 cm−1, respectively. The intensity ratio ID/IG decreases from 1.02 (GO) to 0.96 (O-GO),
which is contrary to the general rule. We deduce that after the treatment of GO by HNO3, the obtained
O-GO is of relatively high quality. However, the O-GO exhibits a broader D band, which indicates that
the intercalation of N atoms and oxygen-containing groups leads to somewhat disordered structures.
This result is similar to a previously-reported conclusion [20]. It was predicted that the intensity ratio
ID/IG of GO would significantly decrease after reduction as the sp2 structure restored. However, the
ID/IG was found to be 1.15 in R-O-GO after hydrothermal treatment, which is larger than that in O-GO.
Similar results have also been reported elsewhere in the literature [33,34]. We deduce that the increase
of the ID/IG ratio after chemical reduction can be attributed to the decrease in the average size of the
sp2 domains upon reduction of O-GO, in which newly-created graphitic domains are more numerous
in number, but smaller in size, than those present in O-GO. Besides that, the increased fraction of
graphene edges could also contribute to the increase in the ID/IG ratio, which is in accordance with
the reported results [33,35].
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The chemical structure and the type of oxygen-containing groups of GO changed after oxidation
and hydrothermal treatment. XPS analysis indicates that N atoms are introduced into GO after
oxidation by HNO3, as shown in Figure 6. The high-resolution XPS spectra of C 1s further confirm the
chemical structure change during the oxidation and hydrothermal treatment. As shown in Figure 7,
different types of C atoms exist, including C-C/C=C (∼284.5 eV), C-N (∼285.6 eV), C-O-C/C-OH
(∼286.5 eV) and C=O/COOH (∼287.8 eV) [30,36]. There are mainly carboxyl and epoxy groups in
GO prepared by Hummers’ method, the amount of C-O increases while C-C and C=C decreases after
oxidation by HNO3, which indicates that oxidation makes the C-C and C=C bonds break and attach
to oxygen-containing groups. The amount of C increases and O decreases in R-O-GO, which can be
explained from the fact that a lot of oxygen-containing groups are released in the form of CO2, CO, and
H2O during the hydrothermal treatment [23]. The decreased amount of C-O-C and C-O in R-O-GO
is in good agreement with the results of FT-IR. Moreover, the high-resolution XPS spectra of N 1s
(Figure 8a,b) also show that C-N exists in O-GO and R-O-GO, suggesting that N atoms are introduced
into GO in different forms including C-N-C (∼399.5 eV) and N-(C)3 (∼401.5eV) [37–39]. The XPS
results indicate that both GQD1 and GQD2 are composed of carbon, oxygen, hydrogen, and nitrogen
(Figures 7 and 8). N 1s analysis shows that N exists in GQD1 in the forms of C-N-C and N-(C)3,
while in GQD2, besides the two forms of N, -NO2 (406.4 eV) also exists [37,39–42]; see in Figure 8c,d.
XPS analysis gives more information about the chemical structure of the studied systems. Element
analysis of GO, O-GO and R-O-GO by FT-IR and XPS presents similar results; these techniques are
complementary and exhibit more accurate conclusions when used together.
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Based on the results mentioned above, a possible mechanism for the formation of the GQDs can
be proposed. GO was initially oxidized to O-GO during the chemical oxidation with 8 M HNO3,
producing a lot of oxygen-containing groups and introducing N atoms. After that, the structure
of O-GO was decomposed, because the oxygen-containing groups were partially removed, forming
a lot of nanosheets (R-O-GO) by the hydrothermal method under the continuous high-temperature and
high-pressure conditions. Meanwhile, plenty of graphene quantum dots (GQD1) were formed and released
into the solution. Finally, the collected R-O-GO was further oxidized with concentrated HNO3. Chemical
oxidation is an effective method to release GQDs from their aggregates into solution [43]. As a result, a lot
of GQD2 were released into the solution after R-O-GO was refluxed with 15 M HNO3 for 12 h.

3.2. Fluorescence Properties of GQDs

The aqueous solutions of GQD1 and GQD2 are light brown under visible light, but they have
different fluorescence under an excitation of a beam of 365 nm. GQD1 and GQD2 exhibit green and
yellow fluorescence, respectively. Figure 9 demonstrates the PL spectra of the two GQDs. The emission
spectra of GQD1 show obvious excitation-dependence. With the gradual increase of the excitation
wavelength from 280 nm to 480 nm, the maximum emission wavelength of GQD1 is red-shifted from
408 nm to 500 nm. However, the emission wavelength of GQD2 keeps stable at about 535 nm during
the excitation wavelengths we employed. The different PL properties of GQD1 and GQD2 may be
attributed to their size and surface state, which are affected by functional groups [7,36,44,45]. Surface
decoration degree and size can change the energy gap of GQD, thus affecting the PL properties. Our
analysis of HR-TEM shows that GQD1 are larger than GQD2 in size; this can lead to a red shift of
GQD1 compared to GQD2, which is contrary to our result. Therefore, surface decoration is the major
reason for the different PL properties. XPS analysis shows that N and O atoms exist in both GQD1 and
GQD2; C 1s XPS indicates that the amounts of N and O are greater in GQD2 than GQD1 (Figure 7d,e).
In addition, N atoms doped in GQDs with different forms: besides C-N-C and N-(C)3, -NO2 can be
found in GQD2 (Figure 8c,d). From the above analysis, it is reasonable to conclude that the difference
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in optical properties between GQD1 and GQD2 should be attributed to their differences in degree of
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4. Conclusions

A simple three-step method to prepare small-sized GQDs, adopting GO as precursor, has been
developed. In the first step, GO was oxidized into O-GO by 8 M HNO3. Secondly, the obtained O-GO
was dispersed in DI water and heated hydrothermally to 200 ◦C, resulting in the formation of GQD1
and R-O-GO. Finally, R-O-GO was refluxed with 15 M HNO3 under 100 ◦C, forming GQD2. The
diameters of GQD1 and GQD2 are 3.38 nm and 2.03 nm on average, respectively. Oxidation by HNO3

results in the introduction of N atoms and oxygen-containing groups. N atoms doped in GQDs in the
form of C-N-C and N-(C)3 and -NO2. The GQDs show different optical properties, which is caused by
the different degree of oxidation and N doping.
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