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Abstract: We study the problem of coupling partially coherent radially polarized (PCRP) vortex
beams into a single-mode optical fiber. Using the well-known concept of the cross-spectral density
(CSD) matrix, we derive a general expression for the coupling efficiency of the partially coherent
beam into a single-mode fiber. We adopt PCRP vortex beams for incident beams and use our general
results to discuss the effects of the coherence, topological charge, and wavelength on the coupling
efficiency of an optical beam focused onto a single-mode fiber with a lens. Our results should be
useful for any application that requires coupling of partially coherent beams into optical fibers.
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1. Introduction

Optical fiber, as the fundamental optical components of a coupling process, have been widely
applied in various fields, such as networking [1,2], ladar [3,4], imaging [5], free-space optical
communications [6,7], and biomedical optics [8–10]. In the above applications, the input beam must be
coupled into a single-mode or multi-modes fiber for propagation and detection before being amplified.
Therefore, the coupling efficiency of the input light beam into optical fiber plays an important role.
One can improve the signal-to-noise ratio and save energy through increasing the coupled light
beam. During the past decades, many theoretical methods and experimental techniques were used to
improve the coupling efficiency, such as a fiber array [11], cylindrical glass fiber [12], wedge-shaped
fiber endface [13], combination lens [14], chemically etched self-centered diffracting element [15], and a
microlens [16].

The degree of freedom of the input light beam, such as phase, amplitude, coherence, and polarization,
is one of the key factors when analyzing the coupling efficiency. For example, the coupling
efficiency of the plane-wave to fiber was studied as the input light in detail, the influences caused
by the misalignments of the fibers and mode’s field distribution are considered [17]. Ruilier and
Cassaing discussed the coupling efficiency when the stellar is coupled into the single mode fiber [18].
Wheeler and Schmidt developed analytic equations that describe the mean and normalized variance of
the coupling efficiency of the Gaussian Schell-model (GSM) beams into single-mode optical fibers [19].
The light sources in the above studies were scalar beams and did not consider the vector beams. In 2009,
the polarization state of the beam was first taken into account by Salem and Agrawal. They studied
the problem of coupling an electromagnetic beam of any state of coherence and polarization into a
multimode optical fiber. The coherence and polarization properties of the electromagnetic Gaussian
Schell-model (EGSM) beams are discussed in detail in Refs. [20,21]. In 2012, Zhao and others

Appl. Sci. 2018, 8, 1313; doi:10.3390/app8081313 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5763-2434
https://orcid.org/0000-0003-3703-889X
http://www.mdpi.com/2076-3417/8/8/1313?type=check_update&version=1
http://dx.doi.org/10.3390/app8081313
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 1313 2 of 8

demonstrated experimentally the procedure of coupling of an EGSM beam into a single-mode optical
fiber. The results showed that the coupling efficiency depends closely on the coherence and polarization
properties of the EGSM beam, which is consistent with Salem and Agrawal’s theoretical prediction [22].
Furthermore, in the past several years, due to the partially coherent radially polarized (PCRP) beam
having an advantage over a linearly polarized partially coherent beam for reducing turbulence-induced
scintillation, which is useful in free-space optical communications, the PCRP beam was introduced in
theory and generated in experiment [23–25]. The propagation properties of a PCRP beam are quite
different from those of a radially polarized beam. On the other hand, it is well known that any beam
with a helical phase factor, called a vortex beam, possesses an optical vortex and carries orbital angular
momentum (OAM). Thus, there are growing interests in focusing partially coherent radially polarized
vortex beams [26–29]. However, to the best of our knowledge, there are no papers dealing with the
coupling efficiency of the PCRP vortex beam into a single-mode fiber.

In this paper, our aim is to study the coupling efficiency of PCRP vortex beams into a single-mode
optical fiber. Analytical expressions for the coupling efficiency are derived based on the concept of
the cross-spectral density matrix. The effects caused by the coherence, topological charge, numerical
aperture (NA), and wavelength on the coupling efficiency are studied in detail. We calculate the peak
coupling efficiency versus the NA for different coherence length and topological charge. One can
choose suitable spatial coherence and topological charge to obtain optimal results for different
applications. We believe that it has important applications in free-space optical communication.

2. Coupling Efficiency of Partially Coherent Radially Polarized Vortex Beams

The schematic diagram of our coupling arrangement is shown in Figure 1. Suppose that a PCRP
vortex beam is coupled into a single-mode fiber by a lens of focal length f. Let the coordinate in
the plane A be denoted by ρ. Based on the theory of coherence and polarization, the second-order

statistical properties of a PCRP beam can be characterized by the 2 × 2 CSD matrix
↔
W(ρ1, θ1, ρ2, θ2) in

the plane A, which are defined as [22,23]:

W0xx(ρ1, θ1, ρ2, θ2) =
ρ1ρ2 cos θ1 cos θ2

4w2
0

exp
(
− ρ2

1+ρ2
2

4w2
0

)
exp

[
− ρ2

1+ρ2
2−2ρ1ρ2 cos(θ1−θ2)

2δ2
0

]
W0xy(ρ1, θ1, ρ2, θ2) =

ρ1ρ2 cos θ1 sin θ2
4w2

0
exp

(
− ρ2

1+ρ2
2

4w2
0

)
exp

[
− ρ2

1+ρ2
2−2ρ1ρ2 cos(θ1−θ2)

2δ2
0

]
W0yx(ρ1, θ1, ρ2, θ2) = W∗0xy(ρ1, θ1, ρ2, θ2)

W0yy(ρ1, θ1, ρ2, θ2) =
ρ1ρ2 sin θ1 sin θ2

4w2
0

exp
(
− ρ2

1+ρ2
2

4w2
0

)
exp

[
− ρ2

1+ρ2
2−2ρ1ρ2 cos(θ1−θ2)

2δ2
0

] (1)

where ω0 is the beam width in the plane A and δ0 is the spatial coherence length. PCRP beams can be
embedded a vortex phase, and the new CSD of PCRP vortex beams can be rewritten as follows [28]

Wαβ(ρ1, θ1, ρ2, θ2) = W0αβ(ρ1, θ1, ρ2, θ2) exp(−imθ1 + imθ2) (2)

where m is the topological charge. According to the coupling theory introduced in Ref. [28], the field
distribution of the fiber mode can be approximated by a Gaussian function [30,31]:

Fj =

√
2
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ω−1
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ω2
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)
(j = x, y) (3)

where ρ′ is a transverse position vector in the fiber plane B and ωj is a measure of the mode width.
Furthermore, the field distribution of the mode at the aperture plane A is found by using the
backpropagation technique from B to A and is given by:
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where ωjA = λ f /πωj is the effective mode width at the aperture plane, λ is the wavelength of the
incident, and f is the focal length of the coupling lens. We can get the coupling efficiency as:

ηc =
〈Pc〉
〈Pa〉

(5)

where 〈Pc〉 is the power coupled into the fiber and 〈Pa〉 is the power in the aperture plane. They can be
expressed as:

Pc =
s

D
Wij(ρ1, ρ2, ω)F∗iA(ρ1)FjA(ρ2)× exp

(
− ρ2

1+ρ2
2

W2

)
d2ρ1d2ρ2

Pa =
∫
D

Wjj(ρ, ρ, ω)× exp
(
− 2ρ2

W2

)
d2ρ

(j = x, y) (6)

where D denotes a hard aperture of diameter, W2 = D2/8, and NA = D/2 f [32].
For PCRP vortex beams, we obtain the following expression for the power coupled into the single

fiber with Pc_even (m is even number) and Pc_odd (m is odd number):
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The power of the input PCRP vortex beams at the aperture plane is

Pa =
π

4ω2
0

(
1

ω2
0
+

1
W2

)−2

(9)

3. Results and Discussion

In this section, with the help of the formulas obtained in Section 2, we will study the coupling
efficiency of PCRP vortex beams for different topological charges, coherence length, and wavelength.
First, we carefully chose the values of ωj(j = x, y) in Equation (3) to match with the core radius of the
fiber because the theoretical model is only valid for the single-mode fiber. Let us recall the definition of
the normalized frequency of the fiber [33]

V =
2πa

λ

√
n2

1 − n2
2 (10)

where α is the radius of the fiber core, λ is the wavelength of the incident light. n1 and n2 are the peak
values of the refractive index of the fiber core and the refractive index of the fiber cladding, respectively.
It is known that when the value of V is smaller than 2.405, the fiber belongs to the single-mode fiber.
Assuming that the fiber is weakly guiding with the refractive index profile, the last term in Equation (9)

can be written as
√

n2
1 − n2

2 ≈ n1
√

2∆ with ∆ = (n1 − n2)/n1 as a good approximation. To ensure the
single-mode fiber, the parameter is chosen to be α = 5 µm, n1 = 1.44, ∆ = 0.0034, and λ = 1550 nm.
On substituting these parameters into Equation (9), we obtained a value of V of 2.4, smaller than 2.405.
Under this condition, we found the radius of the mode field of the fundamental propagating mode
in the fiber by using the empirical formula to be ωj = 5.15µm (j = x, y). Therefore, in the following
numerical examples, the value of ωj was kept fixed at 5.15 µm throughout the paper. If the focal length
of the lens in plane A is 10 cm, the radius ωjA (j = x, y) of the mode field was calculated to be 9.6 mm.

Figure 2 shows the intensity distribution of PCRP vortex beams in plane B with different spatial
coherence width and topological charge. The propagation properties of PCRP vortex beams through
a paraxial ABCD optical system have been studied in Ref. [28]. Figure 2 shows that the focusing
properties of a PCRP vortex beam are closely affected by its initial spatial coherence and topological
charge. The beam spot got larger with increasing topological charge from m = 1 to 3, but not m = 0.
This is because the PCRP vortex beam became the PCRP beam for m = 0, which has a ring-shaped beam
profile. The PCRP vortex beam had a dark hollow beam spot (see Figure 2h) with large coherence.
When the spatial coherence was decreased, a flat-topped beam spot was formed (see Figure 2d).
With the further decrease of the spatial coherence, a focused Gaussian beam spot was formed.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 8 
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Figure 3 shows that the coupling efficiency varied with NA for different values of δ0 under
different topological charges. In Figure 3, one can find that the coupling efficiency increased at first and
then decreased with increasing NA, and there was a peak value of the coupling efficiency, which means
there was a best match between the incident beam and the distribution of the mode field. We also
confirm that the position of the peak (i.e., the value of NA) was different for different coherence length
and topological charge. We could adjust the spatial coherence to improve the coupling efficiency, and an
optimum value was found. Obviously, the result of Figure 3b is different to other results. We found
that when PCRP vortex beams had m = 1, the coupling efficiency increased with the increasing of the
spatial coherence width of the beam. We can explain this phenomenon using the property of PCRP
vortex beams (see Figure 2), where the PCRP vortex beams with m = 1 have a similar Gauss distribution
beam profile.
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Figure 3. The coupling efficiency of the symmetric beam with ω0 = 10 mm and λ = 1550 nm varied
with NA for different values of δ0 under different topological charges.

Based the analysis above, we know that there is a best choice (peak value of the coupling efficiency)
of the value of coherence and NA for different topological charge. Next, we simulated how the density
plot of the coupling efficiency varied with NA and initial spatial coherence under different topological
charges in Figure 4. In Figure 4, the numbers in brackets are the peak value of the coupling efficiency
and corresponding value of the NA and spatial coherence width. One can clearly see the distribution of
the coupling efficiency in the whole region under different topological charges. One can also find out
clearly the peak of the coupling efficiency under different topological charges and the corresponding
value of the coherence length and NA. Therefore, for the suitable value of δ0 and m, we could obtain
the maximum coupling efficiency.
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Figure 5 shows the coupling efficiency of the beam versus NA for different wavelengths λ under
different topological charges. From Figure 5, we can find that all the coupling efficiencies showed the
similar change rule for smaller topological charges (see Figure 5a–c); the coupling efficiency increased
at first and then decreased with increasing NA, and there was a peak value of the coupling efficiency.
However, the coupling efficiency increased with decreasing wavelength for smaller NA (for example,
NA < 0.08), and for larger NA (for example, NA > 0.16), the coupling efficiency increased with the
increasing wavelength. However, for larger topological charges (for example m > 3, we did not plot it
in here), we found that the coupling efficiency shows the same change rule as Figure 5d; it increases
with the increasing of NA and wavelength. Moreover, from Figure 5b, we could also find that the
coupling efficiency showed some different change rule due to the different properties of PCRP vortex
beams with m = 1.
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4. Conclusions

In this paper, we derived a general expression for the coupling efficiency of PCRP vortex beams
into a single-mode optical fiber in terms of its CSD matrix. We were able to derive an analytical
expression for the coupling efficiency, and the field distribution of the fundamental mode of an optical
fiber is approximated. We studied the effects of the coherence, topological charge and wavelength
of the PCRP vortex beams, and NA on the coupling efficiency through some numerical simulation.
The results showed that the coupling efficiency was significantly affected by the numerical aperture and
parameters of the incident beam, such as topological charge, initial spatial coherence, and wavelength,
and we also determined the best choice for the PCRP vortex beams with different topological charge.
Our results will help users to determine for themselves which initial beam parameters and NA provides
optimal results for their applications. It should be useful for any application requiring coupling of a
partially coherent radially polarized vortex beam into optical fibers.
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