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Abstract: Similarity measurement plays an important role in various information retrieval tasks.
In this paper, a music information retrieval scheme based on two-level similarity fusion and
post-processing is proposed. At the similarity fusion level, to take full advantage of the common and
complementary properties among different descriptors and different similarity functions, first, the
track-by-track similarity graphs generated from the same descriptor but different similarity functions
are fused with the similarity network fusion (SNF) technique. Then, the obtained first-level fused
similarities based on different descriptors are further fused with the mixture Markov model (MMM)
technique. At the post-processing level, diffusion is first performed on the two-level fused similarity
graph to utilize the underlying track manifold contained within it. Then, a mutual proximity (MP)
algorithm is adopted to refine the diffused similarity scores, which helps to reduce the bad influence
caused by the “hubness” phenomenon contained in the scores. The performance of the proposed
scheme is tested in the cover song identification (CSI) task on three cover song datasets (Covers80,
Covers40, and Second Hand Songs (SHS)). The experimental results demonstrate that the proposed
scheme outperforms state-of-the-art CSI schemes based on single similarity or similarity fusion.

Keywords: cover song identification; similarity network fusion; mixture Markov model;
mutual proximity

1. Introduction

A huge increase in the number of digital music tracks promotes the development of content-based
music information retrieval (MIR) technology. As a part of MIR, cover song identification (CSI, also
called cover version identification) has received increasing attention due to its potential real-world
applications in copyright protection and the management of online music products. Additionally, the
study of CSI techniques helps to understand how the human auditory system measures and models
the similarity between music.

As one of the most fundamental components of MIR applications, how to measure and model
similarity between music items is an important yet challenging research question [1]. Various similarity
functions have been proposed in recent years [2–5]. Considering that the similarity between two
tracks can be calculated based on different descriptors and similarity functions, the complementary
properties are neglected while using a single similarity function. It has been verified [6–8] that
different descriptors and similarity functions are complementary to each other in the CSI task. To
fully take advantage of the common as well as complementary information contained in different
descriptors and similarity functions in describing the similarity between tracks, some researchers
began to study similarity fusion algorithms for CSI. In [9], the main melody and accompaniment
of the music were extracted first. Then, the maximum value of the similarities obtained based on
main melody, accompaniment, and mixture signal, separately, was taken as the final similarity. In [6],
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the standard classification-based fusion strategy [10] was adopted to fuse the similarities of three
related yet different descriptors (harmony, melody, and bass line). In [11], the fusion of different
similarities was achieved by projecting different similarities in a multi-dimensional space, where the
dimensionality of the space was the number of similarities considered. However, this scheme was
easily disturbed by bad descriptors because of the diluted signal-to-noise ratio. In [12], the similarity
graphs obtained based on different descriptors and corresponding similarity functions were fused by
the similarity network fusion (SNF) technique [13]. Then, the track-by-track similarities in the fused
similarity graph were adopted for version identification. Due to the merits of the SNF technique, this
fusion scheme could reduce the noise existing in each similarity graph and take advantage of the
common as well as complementary information across each similarity graph. A similar strategy was
adopted in [8] to fuse the similarities obtained based on the same descriptor and different similarity
functions (Qmax [4] and Dmax [5]). This achieved the highest identification accuracy in the CSI task of
MIREX 2016 (http://www.music-ir.org/mirex/wiki/2016:Audio_Cover_Song_Identification_Results).
Some researchers proposed multi-stage similarity fusion schemes to take advantage of the common
and complementary information provided by different musical descriptors and different similarity
functions at the same time [7,14]. In [14], the SNF technique was applied to both the descriptor-level
fusion and the similarity-level fusion. It achieved the highest identification accuracy on the Covers80
dataset. In [7], in the early fusion, the similarities obtained by the same descriptor and different
similarity functions were integrated by SNF. In the late fusion, the learning method selected by the
sparse group LASSO algorithm was applied to the early fused similarity to obtain the probability that
the input track pair belonged to the reference/cover pair. Finally, the final similarity was obtained by
averaging the probability-based similarities obtained based on each descriptor.

However, some important factors that may seriously influence the identification accuracy are
not considered in the available fusion schemes: (i) The complementarity among different descriptors
and that among different similarity functions is not considered simultaneously [6,8] or not fused
efficiently [7]. (ii) The track manifold of the fused similarity graph, which will affect retrieval accuracy
greatly, is not taken into consideration [15] (refer to Section 2.4.1 for specific examples). (iii) The bad
influence caused by the “hubness” phenomenon contained in the fused similarity graph is seldom
considered, which may increase the false positive rate [16].

To solve the possible shortcomings existing in the available similarity fusion algorithms and
enhance the CSI performances further, a new CSI scheme based on two-level similarity fusion
and post-processing is put forward in this paper. At the fusion level, a nonlinear graph fusion
technique [13] is first adopted to fuse the similarity graphs constructed based on the same
descriptor and different similarity functions. Then, a mixture Markov model (MMM) [17] is
introduced to integrate the first-level fused similarity graphs generated based on two complementary
descriptors. At the post-processing level, diffusion [16] is first applied on the obtained two-level
fused similarity graph to take full advantage of the underlying structure of the tracks contained
within it to reduce the noise and enhance the identification further. Then, the mutual proximity
(MP) technique [15] is performed on the diffused similarity scores to reduce the bad influence
caused by the “hubness” phenomenon existing in the diffused track community. It should be noted
that the proposed scheme is different from our previously proposed scheme [7] in the following
respects: (i) Unlike the scheme in [7], the proposed scheme is fully unsupervised. (ii) The track
manifold contained in the two-level fused similarity graph is not considered in [7]. (iii) The negative
influence of the “hubness” phenomenon, which is not considered in [7], is eliminated by the MP
technique in the proposed scheme. Extensive experiments conducted on three cover song datasets
(Covers80 (https://labrosa.ee.columbia.edu/projects/coversongs/covers80/), Covers40, and SHS
https://labrosa.ee.columbia.edu/millionsong/secondhand) manifest the necessity and effectiveness of
each step included in the proposed model (Section 3.3.1) and the superiority of the proposed scheme, in
terms of CSI identification accuracy over state-of-the-art CSI schemes (Section 3.3.2) and computational
complexity, especially when the size of the dataset increased (Section 3.3.3). The rest of this paper is
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organized as follows. The proposed model is presented in Section 2. Section 3 reports the experimental
results. Finally, conclusions are drawn and future work is discussed in Section 4.

2. Proposed Model

A block diagram of the proposed model, which is illustrated by an example of results obtained on
Covers40 (see Section 3.1), is shown in Figure 1.

Let V = {vq|q = 1, · · · , N} denote a music collection. Two function lists are defined as follows:

• Function list f = { fi|i = 1, · · · , M}: where fi(vq) extracts the i-th kind of descriptor from the
track vq.

• Function list s = {sj|j = 1, · · · , R}: where sj( fi(vq), fi(vp)) computes the j-th similarity score
between the i-th descriptors of the input tracks vq and vp.

Final 
result

MMM
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Figure 1. Block diagram and illustrative example of the proposed model, taking part results on
Covers40 as an example. (a) Extract the harmonic pitch class profile (HPCP) descriptor and main
melody (MLD) descriptor from each track in the music collection. (b) A track-by-track similarity graph
is constructed based on each descriptor and corresponding similarity function. The similarity graphs
based on the same descriptor and different similarity functions are fused with similarity network fusion
(SNF). (c) The first-level fused similarity graphs for each descriptor are integrated with the mixture
Markov model (MMM) technique to obtain a second-level fused similarity graph. (d) Post-processing.
First, diffusion is performed on the second-level fused similarity graph to take advantage of the
structure of the underlying track manifold contained within it to reduce noise and enhance retrieval
accuracy, then mutual proximity (MP) is adopted to modify the diffused similarity to reduce the
“hubness” phenomenon.

2.1. Descriptor Extraction

For each track vq, q = 1, · · · , N in the music collection, M kinds of descriptors (denoted as
fi(vq), i = 1, · · · , M) are extracted, respectively. In the proposed scheme, the harmonic pitch class
profile (HPCP) [18] and main melody (MLD) [19] descriptors are extracted from each track, respectively.

2.2. First-Level Fusion

For each pair of tracks (vq and vp), the j-th kind of similarity function is performed on their i-th

descriptors to obtain the similarity score s(i)j (q, p):

s(i)j (q, p) = sj( fi(vq), fi(vp)), i = 1, · · · , M, j = 1, · · · , R. (1)
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Thus, the track-by-track similarity matrix obtained based on the i-th descriptor and j-th similarity
function can be represented as a graph, denoted as G(i)

j {V, E, s(i)j }, where the vertices V correspond to

the tracks in the collection, and the edges E are weighted by the corresponding similarity scores s(i)j .
To take advantage of the complementarity between the Qmax and Dmax similarity functions in

representing the similarity between cover versions, the similarity graphs based on the same descriptor
(HPCP or MLD) and two different similarity functions (Qmax [4] and Dmax [5]) are fused with the SNF
technique [13]. The specific details of the SNF technique can be found in [13] and [7]. The first-level
fused similarity graph for the i-th descriptor can be denoted as G(i)(V, E, A(i)), i = 1, 2, which is
obtained with Equation (2):

G(i)
(

V, E, A(i)
)
= SNF

(
s(i)j

)
, i = 1, · · · , M, j = 1, · · · , R. (2)

To test the validity of the first-level fusion, three cover sets shown in Table 1 are studied here.
The six tracks were used both as the queries and the targets. The corresponding 6 × 6 similarity
matrices obtained by MLD-Qmax, MLD-Dmax, and the first-level fused version of them (denoted as
SNF-MLD-QD), are shown in Figure 2a–c, respectively. The cells corresponding to the query/cover
pairs are marked with white boxes. It can be seen that MLD-Qmax and MLD-Dmax did not work on
the No. 1 and No. 3 cover sets, respectively. However, after first-level fusion, this problem was solved.

Table 1. The tracks in the selected cover sets.

Cover Sets Title of the Tracks Artists Track ID

No. 1 Wish You Were Here Wyclef Jean 1

Pink Floyd 2

No. 2 White Room Sheryl Crow 3

Cream 4

No. 3 Yesterday En Vogue 5

Beatles 6
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Figure 2. Similarity matrices obtained by (a) MLD-Qmax, (b) MLD-Dmax, and (c) SNF-MLD-QD.

2.3. Second-Level Fusion

To make full use of the common and complementary properties of different descriptors (HPCP
and MLD), the first-level fused similarity graphs for each descriptor are further fused with MMM
technique [17] as follows.

For a walker sitting at vertex vq ∈ V in graph G(i)(V, E, A(i)), she first decides which graph to
land in, jumps to that graph, then decides which neighboring vertex to go to according to the graph’s
similarity matrix. The procedure of walking from vq to vp across all graphs can be represented with
Equation (3):

ξ(vp|vq) = ∑
i

ξ(i)(vp|vq)ξ
(i)(vq), (3)
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where ξ(vp|vq) is the transition probability of walking from vq to vp in the second-level fused similarity
graph. ξ(i)(vq) is the probability of switching to (or staying in) graph G(i) when the walker is at
vertex vq.

The degree of vq in G(i), denoted as d(i)(vq), is defined as the sum of the edge strength of all
vertices connected to vq (i.e. d(i)(vq) = ∑p A(i)(q, p)). The volume of graph G(i), denoted as θ(i), is
defined as the sum of all edge strengths in it, which can be calculated as θ(i) = ∑vq ,vp∈V A(i)(q, p) =

∑vq∈V d(i)(vq). Then, ξ(i)(vp|vq) can be rewritten as

ξ(i)(vp|vq) = A(i)(q, p)/d(i)(vq). (4)

When the random walk model reaches a stationary state, the stationary probability at vertex vq is
defined as

Π(i)(vq) = d(i)(vq)/θ(i). (5)

Suppose the stationary probability of the second-level fused graph, denoted as Π(vq), can be
represented by a linear combination of the stationary probabilities of all first-level fused graphs
as follows:

Π(vq) = ∑
i

wi(vq) ·Π(i)(vq), (6)

where wi(vq) is the weight for vertex vq ∈ V in graph G(i), wi(vq) ≤ 1 and ∑i wi(vq) = 1.
Then, ξ(i)(vq) in Equation (3) can be calculated as follows:

ξ(i)(vq) = wi(vq)
Π(i)(vq)

Π(vq)
. (7)

By plugging (4), (5), (7) into (3), we obtain

ξ(vp|vq) =
1

Π(vq)
∑

i
wi(vq)

A(i)(q, p)
θ(i)

. (8)

Then A(q, p) = ∑i wi(vq)
A(i)(q,p)

θ(i)
is adopted as the second-level fused similarity score.

The corresponding similarity graph is denoted as G(V, E, A), where A = {A(q, p), q, p = 1, · · · , N}.

2.4. Post-Processing

At the post-processing level, first, the locally constrained diffusion process (LCDP) [16] is
performed on the second-level fused similarity graph to make full use of the underlying track
manifold structure contained within it to enhance the retrieval performance. Then, the MP technique is
applied on the obtained diffused similarity to eliminate the negative influence caused by the “hubness”
phenomenon contained in the diffused track community.

2.4.1. Diffusion Processing

For diffusion processing, we adopt the LCDP technique proposed in [16]. The central concept
of LCDP is to restrict a random walk to the K nearest neighbors of the data points by replacing
the original graph G in traditional diffusion process with a K nearest neighbor (K-NN) graph GK,
which can effectively reduce the influence of the noisy data points. Figure 3 shows the classification
results of double moon data before and after applying diffusion on the distance values. It can be
seen that diffusion can utilize the structure of the underlying data manifold to enhance classification
performance.
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(a) (b)

Figure 3. Illustration of the effectiveness of the diffusion process in classification. Pentagrams represent
two queries from different groups. Each element is assigned to one of the two queries according to its
distances with the query samples: (a) without diffusion (b) with diffusion.

Given the second-level fused similarity matrix A, the transition matrix, denoted as
U = {U(q, p)|q, p = 1, · · · , N}, can be calculated as follows:

U = D−1A, (9)

where D is a diagonal matrix and the q-th diagonal element D(q, q) is the degree of vq in graph G.
Assume that the K-NN graph of G is GK, which is generated by only keeping the similarity scores

of each node and its K nearest neighbors in G. The transition matrix corresponding to GK is UK. We
generate a diffused similarity matrix, denoted as F = (ft

1, ft
2, · · · , ft

N)
T , where ft

q is a column vector
indicating the probability of being at a vertex starting from vertex vq after t steps. Then, LCDP [16] is
employed to iteratively update F as follows:

Ft+1 = UKFtUT
K, (10)

where F0 = UK, and the diffusion terminates after a pre-defined number of iterations or if F does not
change. Then, the obtained diffused similarity graph can be denoted as G(d)(V, E, F).

2.4.2. Hubness Reduction

To reduce the negative influence caused by the “hubness” phenomenon existing in the track
community, we adopt MP algorithm [15] to transform the obtained arbitrary similarity scores to
probability-based similarity scores. MP is a global scaling method, and its general idea is to reinterpret
the original distance space so that two objects sharing similar nearest neighbors are more closely tied
to each other. Under the assumption that all distances in a data set follow a certain distribution, any
similarity sx,y can now be reinterpreted as the probability of vy being the nearest neighbor of vx, P(X)

is defined by the similarities of vx to all other objects in the collection, and the probability of an element
vy being a nearest neighbor of vx is:

P(X < sx,y) = Fx(sx,y). (11)

Fx denotes the cumulative distribution function (CDF), which is assumed for the distribution of
similarity scores sx,i=1..n. Then, the MP-based similarity between vx and vy, denoted as MP(x, y),
is defined as the probability that vy is the nearest neighbor of vx given P(X) and vx is the nearest
neighbor of vy given P(Y) as follows:

MP(x, y) = P(X < sx,y ∩Y < sy,x). (12)
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By visualizing the joint similarity score distribution of X and Y, computing MP for a given
similarity score sx,y in a collection of N objects can be boiled down to simply counting the number of
objects j having a smaller similarity score to vx and vy than sx,y:

MP(x, y) =
|j : sx,j < sx,y ∩ j : sy,j < sy,x|

N
. (13)

Figure 4 shows the probability distribution of the diffused similarities on Covers40 before and
after applying the MP algorithm to them. It can be seen that the MP algorithm helps to enlarge the
difference between inter tracks (unrelated tracks), which helps to reduce the false positive rate.

(a) (b)

Figure 4. Probability distribution of the diffused similarities on DB400 (a) before and (b) after applying
MP to them.

3. Experiments

In this section, we evaluate the performance of the proposed scheme. The cover song data sets used
in the experiment and the experimental settings are described in Sections 3.1 and 3.2, respectively. The
experimental results, which include the necessity and importance of each step in the proposed scheme,
the performance comparison with state-of-the-art CSI schemes, and the computational complexity
comparison with other fusion-based CSI schemes, are discussed in Section 3.3.

3.1. Datasets

To evaluate the performance of the proposed model, we used three different cover song datasets
(see Table 2) in the experiments.

Covers80, denoted as DB160 in this paper, is provided by Ellis from LabROSA. It contains 80 cover
sets with 2 tracks in each set. Most of the tracks in this database have significant differences in rhythm.

Covers40, denoted as DB400 here, is composed of 400 tracks and 40 cover sets collected by us.
There are 9 cover versions, which include both popular songs and classical music, for each original
track. A complete list of this collection can be obtained by contacting us by email.

SHS, part of Second Hand Song cover song dataset, which consists of 12,730 tracks. There are
4235 original tracks and 8495 covers in this collection. The average number of covers in each cover set
is 3.01, ranging from 2 to 42. This collection spans a variety of genres, including pop, rock, electronic,
jazz, blues, and classical music. As shown in Table 2, we split it into four subsets sequentially without
overlapping, denoted as DB3172, DB3183, DB3187, and DB3188, respectively.
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Table 2. Cover song datasets used.

Dataset Name Num. of Tracks Num. of Cover Sets Ave. Num. of Tracks in Each Cover Set

DB160 160 80 2
DB400 400 40 10

DB3172 3172 1119 2.83
DB3183 3183 985 3.23
DB3187 3187 1030 3.09
DB3188 3188 1101 2.90

3.2. Experiment Settings

To reduce the computation time and the memory requirements, the track was converted into a
mono, 22.5 kHz, and 16 bits per sample version. Then the pre-processed signal was segmented into
frames of 464 ms by Hamming window without overlapping. For each frame, the HPCP and MLD
descriptors were extracted. Qmax and Dmax were adopted to measure the similarity between HPCP or
MLD descriptors. As for the evaluation measures, the mean of average precision (MAP) [4], the mean
averaged reciprocal rank (MaRR) [20], and the total number of covers identified in TOP 10 (TOP-10)
were adopted to evaluate the performance of the CSI schemes. The larger the value of MAP, MaRR, or
TOP-10, the better the performance achieved.

3.3. Experimental Results

First, we prove the necessity and importance of each step included in the proposed model by
comparing the identification accuracy obtained in each step. Second, we compare the performance of
the proposed model with those of state-of-the-art CSI schemes, in terms of MAP, MaRR, and TOP-10,
on all three datasets. Finally, we compare the computational complexity of the proposed model with
those of other similarity-fusion based CSI schemes.

3.3.1. Necessity and Importance of Each Step Included in the Proposed Model

To verify the necessity and validity of each step in the proposed model (see Figure 1),
the identification accuracy in terms of MAP, MaRR, and TOP-10 achieved in each step are compared in
Figure 5, where baseline (BL) is the fusion object (HPCP-Qmax, HPCP-Dmax, MLD-Qmax, MLD-Dmax)
that achieved the best performance, and SNF denotes the first-level fused similarity for the HPCP
descriptor. In Figure 5, only the results on DB3172 are included. Similar results could be obtained on
the other three SHS subsets.
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Figure 5 Identification accuracy achieved in each step of the proposed model on DB160 (first

column), DB400 (second column), and DB3172 (last column).
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Figure 5. Identification accuracy achieved in each step of the proposed model on (first column) DB160,
(second column) DB400, and (last column) DB3172. BL: baseline; DIFF: diffusion processing; MAP:
mean of average precision; MaRR: mean averaged reciprocal rank; TOP-10: total number of covers
identified in TOP 10.

The experimental results shown in Figure 5 demonstrate that: (i) Each step in the proposed model
helped to enhance the identification accuracy. (ii) SNF-based first-level fusion could enhance the MAP
and TOP-10 performances to a large extend. (iii) MMM-based second-level fusion helped to improve
the MAP and TOP-10 further. (iv) Diffusion could enhance the performance of the proposed model
in terms of TOP-10 greatly, which may benefit from making use of the track manifold of the fused
similarity graph. (v) The MP step helped to enhance the MaRR performance of the proposed model
greatly, indicating a lower false positive rate.

3.3.2. Comparison with State-Of-The-Art CSI Schemes

To verify the efficiency of the proposed scheme in comparison with other CSI schemes
that are based on single similarity function or similarity fusion, the MAP, MaRR, and TOP-10
achieved by each scheme are listed in Table 3. The CSI schemes included in this experiment
were the proposed model (denoted as TLSFP—two-level similarity fusion and post-processing);
HPCP-Qmax [4]; HPCP-Dmax [5]; a particle swarm optimization (PSO)-based scheme [21]; a high
space (HS) mapping-based scheme [11]; the scheme proposed in [8] (denoted as SNF-2); the scheme
proposed in [12] (denoted as SNF-3); SNF-4, which fuses the similarities based on HPCP-Qmax,
HPCP-Dmax, MLD-Qmax, and MLD-Dmax with SNF; and a two-layer fusion based scheme [7].
For the HS and PSO schemes, the same similarity types as those in SNF-4 were adopted.

The experimental results shown in Table 3 demonstrate that the proposed TLSFP scheme
outperformed the other CSI schemes (based on single similarity function or similarity fusion) included
in terms of MAP, MaRR, and TOP-10, on all six datasets except for the MAP value on DB3187. The gap
was 0.0069, which is very small and can be neglected.
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Table 3. Identification accuracy comparison among different cover song identification (CSI)
schemes. HS: high space; PSO: particle swarm optimization; TLSFP: two-level similarity fusion
and post-processing.

Datasets Algorithm MAP MaRR TOP-10

DB160

HPCP-Qmax [4] 0.5435 0.2831 98
HPCP-Dmax [5] 0.5709 0.2979 104

PSO (HPCP-Qmax) [21] 0.5758 0.2993 101
HS [11] 0.5868 0.3086 107

SNF-2 [8] 0.6247 0.3269 114
SNF-3 [12] 0.6413 0.3346 113

SNF-4 0.6479 0.3369 114
Two-layer-fusion [7] 0.6680 0.6680 119

TLSFP 0.6817 0.6817 125

DB400

HPCP-Qmax [4] 0.8227 0.1907 2852
HPCP-Dmax [5] 0.7945 0.1907 2717

PSO [21] 0.7933 0.2445 2571
HS [11] 0.7564 0.1883 2651

SNF-2 [8] 0.9359 0.2040 3286
SNF-3 [12] 0.9611 0.2080 3408

SNF-4 0.9848 0.2118 3529
Two-layer-fusion [7] 0.9754 0.3094 3482

TLSFP 0.9866 0.3107 3545

DB3172

HPCP-Qmax [4] 0.4448 0.2831 3538
HPCP-Dmax [5] 0.4412 0.2059 3501

PSO [21] 0.4593 0.2101 3634
HS [11] 0.3536 0.1691 2832

SNF-2 [8] 0.5399 0.2379 4556
SNF-3 [12] 0.5004 0.2238 3962

SNF-4 0.5602 0.2468 4602
Two-layer-fusion [7] 0.5622 0.4579 4734

TLSFP 0.5673 0.4590 4787

DB3183

HPCP-Qmax [4] 0.4296 0.1877 4647
HPCP-Dmax [5] 0.4321 0.1921 4567

PSO [21] 0.4442 0.1938 4768
HS [11] 0.2947 0.1366 3103

SNF-2 [8] 0.5512 0.2285 6015
SNF-3 [12] 0.4893 0.2064 5177

SNF-4 0.5508 0.2285 6015
Two-layer-fusion [7] 0.5546 0.4147 6309

TLSFP 0.5693 0.4221 6461
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Table 3. Cont.

Datasets Algorithm MAP MaRR TOP-10

DB3187

HPCP-Qmax [4] 0.4270 0.1909 4025
HPCP-Dmax [5] 0.4189 0.1918 3862

PSO [21] 0.4398 0.1967 4128
HS [11] 0.3127 0.1472 2981

SNF-2 [8] 0.5325 0.2270 5198
SNF-3 [12] 0.4865 0.2119 4487

SNF-4 0.5513 0.2339 5410
Two-layer-fusion [7] 0.5358 0.4168 5421

TLSFP 0.5444 0.4207 5502

DB3188

HPCP-Qmax [4] 0.4485 0.2031 3835
HPCP-Dmax [5] 0.4502 0.2084 3815

PSO [21] 0.4609 0.2098 3938
HS [11] 0.3630 0.1711 3173

SNF-2 [8] 0.5391 0.2361 4792
SNF-3 [12] 0.4951 0.2199 4193

SNF-4 0.5429 0.2383 4755
Two-layer-fusion [7] 0.5484 0.4456 4946

TLSFP 0.5571 0.4504 5029

3.3.3. Computational Complexity Comparison

In this experiment, the computational complexity of the proposed model in terms of average
computing time is compared with those obtained by PSO-, HS-, and SNF-4-based fusion schemes.

All the experiments were carried out on a desktop machine with an Intel(R) Core(TM) i7 CPU
(4.0 GHz) and 32 GB memory. Given the total fusion computing time T, we obtained the average
computing time with AvgT = T/(N

2 )
2, where N is the total number of tracks in the dataset.

The experimental results shown in Figure 6 demonstrate that: (i) The PSO scheme cost much
more time than the other three. (ii) HS achieved the lowest computational complexity in four schemes.
However, its performance may be unsatisfactory (see Table 3). (iii) The proposed TLSFP scheme
needed a slightly longer time than SNF-4 when the dataset was small. However, with the increase
of the dataset size, the difference became smaller and smaller. When the SHS was considered, the
computational complexity of TLSFP was lower than that of SNF-4. So, the proposed model is very fit
for large music collections.

 HS  PSO  SNF    MMSF
0

1

2

x 10
−4

A
vg

T

DB160

DB400

DB3172

SHS

Figure 6. The comparison of average computing time achieved by different similarity fusion schemes
on four datasets.

4. Conclusions and Future Work

In this paper, we propose a music information retrieval scheme based on two-level similarity
fusion and post-processing. It adopts different strategies (SNF and MMM) to combine the merits
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of different similarity functions and those of different descriptors in two fusion levels. In addition,
it introduces diffusion and MP techniques to refine the fused similarity scores to enhance cover version
identification accuracy. Extensive experiments on three cover song datasets (including Covers80
and SHS) manifested the effectiveness and efficiency of the proposed model in comparison with
state-of-the-art CSI schemes.

TLSFP can be modified and applied to other important tasks in different fields, such as image
classification, visual object tracking, cancer subtypes identification, and drug taxonomy, etc. We leave
all these problems for future work.
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Abbreviations

The following abbreviations are used in this manuscript:

BL BaseLine
CSI Cover Song Identification
HPCP Harmonic Pitch Class Profile
HS High Space
K-NN K Nearest Neighbor
LCDP Locally Constrained Diffusion Process
MAP Mean of Average Precision
MaRR Mean Averaged Reciprocal Rank
MMM Mixture Markov Model
MLD Melody
MIR Music Information Retrieval
MIREX Music Information Retrieval Evaluation eXchange
MP Mutual Proximity
PSO Particle Swarm Optimization
SHS Second Hand Songs
SNF Similarity Network Fusion
TLSFP Two-Level Similarity Fusion and Post-Processing
TOP-10 Total Number of Covers Identified in TOP 10
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