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Abstract: This paper presents a novel distributed double-consensus algorithm to solve the optimal
energy management problem for multiple energy hubs interconnected with each other. The objective
is achieved by establishing two interactive and paralleled consensus procedures modified by their
corresponding feedback terms. Meanwhile, a novel projection operation method is proposed
to map the infeasible values into the feasible operating region. The proposed algorithm can
effectively handle the coupled variables problem existing in the objective function and constraint
limits. Moreover, the optimality and convergence analysis are performed strictly under strong
connectivity conditions only. Simulations performed on standard test cases are provided to illustrate
the effectiveness of the proposed distributed algorithm.
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1. Introduction

The energy crisis and environmental pollution are regarded as a major challenge all over
the world. To address these issues, multiple energy systems, aiming at integrating conventional
independent energy service networks such as power and natural gas systems, could provide a
promising solution [1,2]. As one type of multiple energy system, the concept of the energy hub
has gained significant attention recently [3,4]. An energy hub focuses on feeding different energy loads
through multiple energy inputs and outputs, acting as an interface between various energy producers
and consumers. It could provide the desired effects of reconstructing traditional decoupled energy
supplies, adding operational flexibility of energy services, improving overall efficiency and reliability,
reducing pollutant emissions, etc.

The EMP is a fundamental and key topic in different energy and building systems. L. Tronchin et al. [5]
made an outstanding contribution in reviewing and analyzing the works related to energy management,
from models to technologies, such as the effects of different components [6], cost and performance
analysis [7,8], technology evolution [9], etc. In this paper, we focus on investigating EMP within the
context of energy hub-based multiple energy systems, which is typically formulated as an optimization
problem. Several research works have been reported on this topic, which can be classified into
two categories. The first mainly aims at achieving the internal resource management of individual
energy hubs, with the objective of maximizing the energy allocation profits or minimizing the energy
cost [10–12]. To further enhance the system robustness and energy efficiency, the other tries to
investigate the cooperative energy management problem of multiple energy hubs, where the energy
hubs interact with each other to determine the global optimal operations. For instance, a multiagent
genetic algorithm was proposed in [13] to solve the economic dispatch problem for multi-hubs with
the consideration of uncertain renewable energy resources. In [14], a probabilistic optimization
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approach was introduced for renewable-based residential energy hubs, in which the interactions
between the electricity and natural gas were taken into consideration. In [15], a self-adaptive learning
with time varying acceleration coefficient-gravitational search algorithm was proposed to address
multi-objective economic dispatch problem for energy hubs. Moreover, the underlying energy flow
optimization [16,17], and the reliability of energy demands [18] and criteria [19] have been further
taken into consideration and studied in the energy management problem. It is worth noting that the
approaches mentioned above for solving the energy management of energy hubs are implemented
centrally. However, as the scale of the system expands, centralized approaches may face several
challenges, which can be summarized as follows:

(1) The centralized approaches rely on a powerful central controller to process a huge mass of data
and require two-way and high-bandwidth communication to work on the information gathered
for the whole system [20,21]. Thus, solutions based on centralized approaches are costly to
implement and are prone to single-point failures and modeling errors.

(2) Despite the plug-and-play and peer-to-peer nature of distributed energy resources, both the
physical and associated communication topologies tend to be subject to topology variabilities,
which may undermine the efficacy of the centralized approaches [22,23].

As an alternative, the distributed approaches, which have some advantages compared to
centralized approaches, e.g., enhanced reliability and robustness [24], fast computation and reduction
in communication [25], are more suitable for accommodating a mass of units. Not surprisingly,
only a small number of results have been documented. In [26], the authors proposed the
concept of smart energy hubs and formulated the interaction among smart energy hubs as a
noncooperative game. Therein, a distributed algorithm was introduced to find the Nash equilibrium.
Furthermore, the interaction among smart energy hubs was further modeled as an ordinal potential
game in [27], where a distributed algorithm was proposed to solve this problem. Considering the
autonomy and self-interest among energy hubs, their cooperative interaction was formulated as
a bargaining cooperative game in [28], where an alternating direction method of multipliers was
applied to find the optimal solutions. It is worth noting that the existing game-theoretic-based
distributed approaches can achieve a partial shift from a centralized manner to a distributed
manner. However, they also require a cloud computing center, a central price coordinator, or a virtual
coordinator to obtain the optimal operations, which may not be regarded as fully distributed methods.
Since there are some global supply–demand balance constraints and strong coupling relationship
among variables, it is also a challenge to design an algorithm to solve the EMP of multiple energy hubs
in a fully distributed manner.

To address these issues, a novel distributed algorithm, referred as the DDC algorithm, is presented.
By introducing the consensus concept and designing a new projection operation method, our proposed
approach can make the global computation process divided into each energy hub. As a result,
each energy hub can locally calculate its optimal operation. Compared to the existing literature,
the major contributions of the presented distributed algorithm are summarized as follows:

(1) By making use of some change of variables, the strongly coupled form between variables in global
equality constraints are transformed to the local function and inequality constraints. With this
effort, the EMP is formulated as a kind of distributed coupled optimization problem.

(2) The proposed DDC algorithm, which does not require a price coordinator or a leader to collect
global parameters, can solve the EMP in a fully distributed fashion. In contrast to centralized
algorithms, the proposed algorithm is more flexible, reliable and robust, etc. To the best
knowledge of the authors, there still exist very few papers concerned about solving the EMP for
multiple energy hubs in a fully distributed fashion.

(3) The strong coupling problem, existing in the objective function and constraint limits, can be
effectively solved by implementing the proposed DDC algorithm. Moreover, the rigorous
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optimality and convergence analysis are presented only under strong connectivity conditions,
which is more reasonable and general, and possesses less conservatism.

The rest of this paper is organized as follows. In Section 2, the system model and optimal
conditions are briefly introduced. In Section 3, some basic knowledge is firstly introduced.
Then, the proposed DDC algorithm and the projection operation method are presented. In Section 4,
several case studies are presented to show the effectiveness of the proposed DDC algorithm.
Section 5 concludes the paper.

2. Problem Formulation

2.1. Energy Hub Model

The energy hub is a concept coupling various energy carriers, such as electricity, gas and
heat, etc., which can be converted to various forms of energy to provide diversified loads.
Here, for each hub, we consider electricity and natural gas as energy inputs, while electricity and
heat are considered as energy outputs. The converter devices consist of a transformer, boiler and CHP
unit. The conversion relationship between inputs and outputs is defined as the coupling matrix form
given in Appendix A-(a).

2.2. EMP of Multiple Energy Hubs

In this paper, we consider the EMP of interconnected energy hubs to achieve the global optimal
energy configuration. Here, the anticipated structure of the multiple energy hubs system is shown
in Figure 1. Compared to existing multiple energy hubs systems, it has one important difference,
which is the paradigm shift from a traditional centralized manner to a distributed manner. Under this
distributed structure, the work of each agent that does not rely on a centralized controller is based
only on local communication and calculation to find the optimal operating point and dispatch factor.
The considered EMP can be formulated as a distributed optimization problem with a global objective
function and a set of constraints.

(1) Objective: The total objective function is to cooperatively minimize the aggregated energy costs
(i.e., the electricity and natural gas consumption costs associated with the individual energy
hub) and the emissions penalty from electricity and heat power generation. The mathematical
expression of this objective function can be seen in Appendix A-(b).

(2) Constraints: Energy hubs collectively make decisions on their own subject to global and
local constraints. Accordingly, the set of local constraints for each energy hub is listed in
Appendix A-(c). Moreover, the global constraints imply the supply–demand balance constraints.
Specifically, the total electricity and heat power generation, i.e., ∑n

i = 1 Ee
i,out and ∑n

i = 1 Eh
i,out,

should be equal to the total respective electricity and heat load demands, i.e., ∑n
i = 1 le

i and
∑n

i = 1 lh
i , respectively. In terms of the defined coupling matrix, we can further establish the

relationship between the input variables and load demands as follows:

n

∑
i = 1

(ηee
i Ee

i,in + η
e,chp
i ρiE

g
i,in) =

n

∑
i = 1

le
i (1a)

n

∑
i = 1

(η
h,chp
i ρiE

g
i,in + ηboil

i (1− ρi)Eg
i,in) =

n

∑
i = 1

lh
i (1b)

It is worth noting that Equations (1a) and (1b) are non-affine constraints caused by the coupled
product of variables ρi and Eg

i,in, which is not beneficial to the design of the distributed optimization
algorithm. To address this issue, we employ the following change of variables.

Eg,ρ
i = ρiE

g
i,in, Eg,1−ρ

i = (1− ρi)Eg
i,in, Ee

i,in = Ee
i (2)
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where Eg,ρ
i and Eg,1−ρ

i are the natural gas consumed by CHP unit and boiler, respectively. In this novel
coordinate system, the above optimization can be re-written in the following form by some operations.

min F =
n
∑

i = 1
(ae

i (Ee
i )

2 + be
i Ee

i )

+
n
∑

i = 1
(α

g
i (Eg,ρ

i )
2
+ β

g
i (Eg,1−ρ

i )
2
+ γ

g
i Eg,ρ

i Eg,1−ρ
i + bg

i Eg,ρ
i + bg

i Eg,1−ρ
i )

(3)

subject to
n

∑
i = 1

(ηee
i Ee

i + η
e,chp
i Eg,ρ

i ) =
n

∑
i = 1

le
i (4a)

n

∑
i = 1

(η
h,chp
i Eg,ρ

i + ηboil
i Eg,1−ρ

i ) =
n

∑
i = 1

lh
i (4b)

and
Ee,min

i,in ≤ Ee
i ≤ Ee,max

i,in (5a)

Eg,min
i,in ≤ Eg,ρ

i + Eg,1−ρ
i ≤ Eg,max

i,in (5b)

0 ≤ Eg,ρ
i , 0 ≤ Eg,1−ρ

i (5c)

where α
g
i = ag

i + ωe
i (η

e,chp
i )

2
+ ωh

i (η
h,chp
i )

2
, β

g
i = ag

i + ωh
i (η

boil
i )

2
and γ

g
i = 2ag

i + 2ωh
i η

h,chp
i ηboil

i .
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Figure 1. Structure of a multiple energy hubs system. 
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For convenience, Equations (5b) and (5c) can equally be expressed in the following form

d̃i,mEg,ρ
i + ẽi,m,tE

g,1−ρ
i + f̃i,m ≥ 0, (m = 1, 2, 3, 4) (6)

Remark 1. By means of the coordinate transformation in Equation (2), the coupled product form between
variables, i.e., ρiE

g
i,in and (1− ρi)Eg

i,in for the global equality constraints, can be transformed into one, i.e.,

γ
g
i Eg,ρ

i Eg,1−ρ
i for the local objective function. As a result, the non-affine constraints (1a and 1b) are converged to

affine ones, i.e., Equations (4a) and (4b).
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Next, the Lagrange multiplier theory can be used to analyze the problem in Equations (3)–(6).
Inspired by the Lagrange multiplier theory, a fully distributed algorithm will be introduced in Section 3.
The Lagrange function and the corresponding KKT conditions are shown in Appendix A-(d).

3. Distributed Algorithm

3.1. Basic Knowledge

(1) Graph theory: We consider a directed graph G = (V, E, A) with a set of vertices
V = (v1, v2, · · · , vn), a set of edges E = (vi, vj

}
⊆ V ×V and an adjacency matrix A =

[
aij
]
.

The in-neighbors and out-neighbors of ith node are denoted by N+
i = {j ∈ V − {i} : (j, i) ∈ E}

with cardinality d+i and N−i = {j ∈ V − {i} : (i, j) ∈ E} with cardinality d−i , respectively.
Each node can receive information from its in-neighbors and send information to its out-neighbors;
meanwhile, it can be also assumed to communicate with itself.

(2) Basic definitions: With regard to problem Equations (3)–(6), there are three variables that need to
be calculated. To this aim, we define two strongly regular graphs G1 and G2. The first consists
of n nodes, where each node represents the statement related to Eg,1−ρ

i . The second is built by
dividing each node of graph G1 into two nodes which represent the statements related to Ee

i and
Eg,ρ

i , respectively. Furthermore, we define two matrices R =
[
ri,j
]

and S =
[
si,j
]

associated

with G1; meanwhile, let ri,j = 1/d
+
i if j ∈ N+

i , ri,j = 0 if j /∈ N+
i , and si,j = 1/d

−
j if i ∈ N−j ,

si,j = 0 if i /∈ N−j . It is not difficult to verify that R is row stochastic and S is column stochastic.
Similarly, we define two matrices R =

[
ri,j
]

and S =
[
si,j
]

for G2; meanwhile, let ri,j = 1/d+i if
j ∈ N+

i , ri,j = 0 if j /∈ N+
i , and si,j = 1/d−j if i ∈ N−j , si,j = 0 if i /∈ N−j .

(3) Consensus algorithm: Based on the definitions discussed above, we consider two different
discrete-time systems—shown in Appendix B-(a)—which will be employed in the design of our
proposed algorithm.

3.2. DDC Algorithm without Inequality Constraints

In this section, none of the inequality constraints are taken into consideration; the consideration of
inequality constraints will be discussed in the next section. Based on the KKT conditions, we can obtain
the relationship between the optimal solutions and the Lagrange multipliers (see Appendix B-(b) for
details). This indicates that the optimal Ee

i , Eg,ρ
i and Eg,1−ρ

i can be obtained if the optimal λe and λg can
be calculated. Please note that λe and λg are both global decision variables. In contrast to centralized
approaches, there is no central controller to correct the global information to calculate the optimal λe

and λg and send the solution to each component. On the contrary, the challenge of this paper is to
obtain the optimal λe and λg by using only local information and messages exchanged with neighbors.
Meanwhile, λe and λg are interactive with each other. Inspired by the feature of (P1), the basic concept
is to establish two different consensus protocols, in which the one is to make all λi,e,p(k) and λi,e,c(k)
run a common value and the other is to make all λi,g,c(k) run another common value. Meanwhile a
feedback term is added into the corresponding consensus protocol to obtain the optimal λe and λg.
Therein, the feedback term uses local estimation of the electricity and heat power mismatches to ensure
power and heat supply–demand balances. Then, the designed DDC algorithm, mainly consisting of
three parts, is given by:

(1) The united updating rules for energy hubs’ coordination to estimate the electricity and heat
multipliers are designed for

λ(k + 1) = R λ(k) + η y(k) (7)

where R =

[
R 0
0 R

]
, R =

[
Rpp Rpc

Rcp Rcc

]
, λ = [λT

e,p, λT
e,c, λT

g,c]
T and y = [yT

e,p, yT
e,c, yT

g,c]
T .
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(2) Based on the relationship between the optimal solutions and Lagrange multipliers, the updating

rules for energy hubs to estimate the optimal Ee
i , Eg,ρ

i and Eg,1−ρ
i are designed for

x(k + 1) = Aλ(k + 1) + B (8)

E(k + 1) = x(k + 1) (9)

where A =

 Ap 0 0
0 Apc −Opc

0 −Ohc Ah

, B =
[

BT
p , BT

pc, BT
hc

]T
, x =

[
xeT , xg,ρT , xg,1−ρT]T and

E =
[
EeT , Eg,ρT , Eg,1−ρT]T . Therein, Ap = diag(ap

i ), Apc = diag(ap,c
i ), Ahc = diag(ah,c

i ),

Opc = diag(op,c
i ), Ohc = diag(oh,c

i ), BT
p = [b

p
i ]

T
, BT

pc = [b
p,c
i ]

T
and BT

hc = [b
h,c
i ]

T
.

(3) Please note that the electricity and heat power supply–demand balance constraints, i.e.,
Equations (4a) and (4b), are global constraints. Similar to the solving method for λe and
λg, the concept of local estimation of the mismatch between demand and total generations,
obtained by using only neighbors’ information, is used to solve the two global constraints in
a distributed manner. Inspired by the features of (P2), the updating rules for the energy hubs’
coordination to estimate the electricity and heat power mismatches are designed as follows:

y(k + 1) = Sy(k)− (E(k + 1)− E(k)) (10)

where S =

[
S 0
0 S

]
, S =

[
Spp Spc

Scp Scc

]
.

With regard to the determination of initializations, they are shown in detail in Appendix B-(c).

Remark 2. The coordinative updating rules of Equations (7) and (10) show that each component only requires
the information received from its in-neighbors to update its corresponding λ and y. In addition, the updating
of E is implemented by each energy hub’s own information. Therefore, the DDC algorithm is fully distributed,
only requiring local communication and calculation among neighbors, without a central controller.

Lemma 1. (Perron-Frobenius, [29]) Let P be a primitive nonnegative matrix with left and right eigenvectors w
and v, respectively, satisfying Pv = v, wT P = wT , and vTw = 1. Then lim

k→∞
Pk = vwT .

Theorem 1. If the problem of Equations (3) and (4) is feasible, there exists a positive value ς such that for all
values of 0 < η < ς, the fixed points of the DDC algorithm determined by Equations (7)–(10) satisfy the KKT
conditions of optimality.

The proof of Theorem 1 is provided in Appendix C.

3.3. DDC Algorithm with Inequality Constraints

For variable Ee
i , the corresponding inequality constraints in Equation (5a) can be taken into

consideration by introducing the following well-known projection operations.

Ee
i (k) =


Ee,min

i,in , if xe
i (k) < Ee,min

i,in

xe
i (k), if Ee,min

i,in ≤ xe
i (k) ≤ Ee,max

i,in

Ee,min
i,in , if xe

i (k) > Ee,max
i,in

(11)

Different from Ee
i , Eg,ρ

i and Eg,1−ρ
i are coupled by a set of linear inequality constraints,

which greatly increases the solving difficulty. To address this issue, the basic concept is to establish a
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projection operation method that can map the solution without considering inequality constraints onto
one point of the feasible operating region determined by Equation (6); meanwhile, the values of this
point must satisfy the corresponding KKT conditions. Please note that the new solution may be inside
the feasible operating region corresponding to no active constraints, on boundaries corresponding to
one active constraint, or at the corner point of boundaries corresponding to two active constraints.
Then, according to optimality conditions, we establish the identification conditions for the above three
cases, which can be seen in Appendix B-(d).

Furthermore, the projection operations for Eg,ρ
i and Eg,1−ρ

i , to take Equation (6) into account,
are given by

Eg,ρ
i (k) =


xg,ρ

i (k), if (24)satisfied

xg,ρ
i,} , if (25)satisfied

xg,ρ
i,}`, if (26)satisfied

(12)

Eg,1−ρ
i (k) =


xg,1−ρ

i (k), if (24)satisfied

xg,1−ρ
i,} , if (25)satisfied

xg,1−ρ
i,}` , if (26)satisfied

(13)

Theorem 1 can be expanded to solve the problem Equations (3)–(6) by only replacing Equation (9),
in Theorem 1, with Equations (11)–(13). For clarity, the flowchart of the proposed DDC algorithm is
summarized in Figure 2.
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Remark 3. The coupled variables problem can be effectively solved by implementing the proposed DDC
algorithm. Firstly, we express Eg,ρ

i and Eg,1−ρ
i without inequality constraints as the linear combination of λe

and λg. Then, the direct calculation of Eg,ρ
i and Eg,1−ρ

i can be transformed into the indirect calculation of λp and
λh, which can effectively handle the coupled variables existing in the objective function. Furthermore, along with
the KKT conditions and the solution without inequality constraints, the proposed projection operation method
maps infeasible values into the feasible operation region, which can further effectively handle the coupled variables
existing within the inequality constraint limits.

4. Application Examples

In this section, several simulations have been studied to verify the effectiveness of the proposed
algorithm. The first case is used to show the effectiveness of the proposed DDC algorithm via
comparison to a centralized algorithm. The second case shows the performance of the proposed
algorithm under time-varying demand. The third case demonstrates the plug and play properties of
the proposed algorithm. The configuration and communication structures of the test system with five
energy hubs are shown in Figure 3. The energy transformer efficiencies ηee, ηe,chp, ηh,chp and ηboil are
selected as 0.98, 0.35, 0.4 and 0.9, respectively. The cost parameters and constraints of each hub are
listed in Table 1.
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Table 1. Parameters of the test system.

Number Hub1 Hub2 Hub3 Hub4 Hub5

ae 0.12 0.08 0.09 0.05 0.13
be 12.0 13.0 12.5 13.5 11.5
ag 0.033 0.023 0.042 0.033 0.012
bg 5.8 6.0 5.5 6.3 8.6
ωe 0.011 0.012 0.009 0.012 0.008
ωh 0.021 0.023 0.031 0.025 0.026

Ee,min 0 0 0 0 0
Ee,max 200 150 175 210 200
Eg,min 0 0 0 0 0
Ee,max 200 275 150 175 375
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4.1. Comparison with Centralized Algorithm

This case study focuses on verifying the effectiveness of the proposed DDC algorithm by
comparing it to the centralized algorithm [30]. The power and heat load demands for each power
and heat load are initialized at 150 kW and 140 kW, respectively. By running the DDC algorithm,
the estimated electricity and heat Lagrangian multipliers, mismatches and energy inputs are shown in
Figure 4. After the algorithm converges, it can be observed that the electricity multipliers converge
to a common value, λp = 27.0354 cents/kWh, and the heat multipliers converge to another
value, λh = 19.3652 cents/kWh; meanwhile, the electricity and heat mismatches converge to zero,
which means that the power and heat supply–demand equality constraints are satisfied. In addition,
the final electricity and gas inputs of each hub are within their corresponding inequality constraints, as
shown in Table 2. Therefore, the optimization goal has been fulfilled. Furthermore, the performance
of the proposed DDC algorithm is compared with a centralized algorithm. The simulation results
provided by the two approaches are shown in Table 2. It can be seen that all of the solutions are very
similar, which also verifies the effectiveness of the proposed algorithm.
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(c) the electricity multiplier; (d) the heat multiplier; (e) electricity input; (f) gas input. 
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Table 2. Comparison with centralized algorithm.

Number
DDC Algorithm Centralized Algorithm

Ee Eg Ee Eg

Hub1 62.6477 168.2670 62.7895 168.2715

Hub2 87.7216 233.4601 87.7325 233.4569

Hub3 80.7525 135.3102 80.7861 135.3133

Hub4 135.3545 159.9385 135.3687 159.9256

Hub5 59.7517 326.7947 59.7336 326.8010
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4.2. Time-Varying Demand

This case study focuses on testing the capability of the proposed DDC algorithm to handle changes
in load demand. The initial conditions are the same as those in case study 1, and the load demand
changes 2 times during the simulation. At t1 (k = 1000), the total power and heat load demands decrease
by 20%, while at t2 (k = 2000), they are increased by 20%. The simulation results are shown in Figure 5.
It can be observed from Figure 5a,b that neither the electricity nor heat mismatch can be maintained at
a zero state after t1, because of the reduced power and heat load demands. By continually running the
proposed DDC algorithm, each energy hub gradually reduces its electricity and gas inputs to meet the
new supply-demand balance, as seen in Figure 5e,f; meanwhile, the electricity and heat multipliers
decrease in response to the change seen in Figure 5c,d. After about 300 iterations, i.e., at k = 1300,
the electricity and heat mismatches converge to zero again, and not only the electricity Lagrangian
multipliers, but also the heat Lagrangian multipliers, converge to new common values. This implies
that the new supply-demand balance and the optimization goal have been fulfilled. Furthermore,
the balance is broken at t2 due to the increased load demands. From Figure 5a–f, it can be seen that
after about 300 iterations, i.e., at k = 1300, the electricity and heat mismatches go to zero, both the
electricity and heat multipliers increase and converge to new optimal values, and each hub increases
its energy input to compensate for part of the increased load, finally converging to the new solutions.
Based on the aforementioned discussion, it can be concluded that the proposed DDC algorithm can
respond automatically to converge to new optimal solutions after each load change. This also means
that the proposed DDC algorithm works properly under time-varying demand.
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Figure 5. Time-varying demand: (a) the electricity mismatch; (b) the heat mismatch; (c) the electricity 
multiplier; (d) the heat multiplier; (e) electricity input; (f) gas input. 
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multiplier; (d) the heat multiplier; (e) electricity input; (f) gas input.

4.3. Plug and Play Capability

This case study focuses on testing the plug and play performance of the proposed algorithm.
The initial conditions are the same as those in case study 1. At t1 (k = 1000), hub3 is removed from the
test system and the variables related to them are set to zero. As a result of this change, the original
balance is broken, and the electricity and heat mismatches go to a non-zero state, as seen in Figure 6a,b.
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By continually running the proposed DDC algorithm, it can be observed from Figure 6c–f that the
remaining energy hubs have to increase their electricity and gas inputs to generate more electricity
and heat to further compensate for the amount of electricity and heat previously generated by hub3;
the corresponding electricity and heat Lagrangian multipliers increase, as well, to meet this change.
After about 300 iterations, i.e., at k = 1300, the electricity and heat mismatches converge to zero again;
meanwhile, the electricity and heat Lagrangian multipliers, as well as the electricity and heat inputs,
converge to their corresponding optimal values. As a result, the new supply–demand balance can
be satisfied after removing hub3. Then, at t2 (k = 2000), hub3 is plugged back into the system again.
Of course, hub3 gradually increases its electricity and heat generation, while the others decrease their
generations to accommodate for hub3. After about 300 iterations, i.e., at k = 2300, it can be seen from
Figure 5a–f that the algorithm converges to the new optimal solution in response to the new topological
change. Additionally, the final convergence values for all variables are the same as those prior to
disconnection. Therefore, the results clearly show that our proposed algorithm can provide good plug
and play capability.
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Figure 6. Plug and play capability: (a) the electricity mismatch; (b) the heat mismatch; (c) the electricity 
multiplier; (d) the heat multiplier; (e) electricity input; (f) gas input. 
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5. Conclusions

In this paper, we have presented a novel DDC algorithm to solve the EMP for multiple energy hubs,
which is formulated as a class of distributed coupled optimization problem by properly converting
some system coordinates. The consensus concept in multiagent systems has been explored and
embedded in the design of our distributed algorithm. With this effort, the total computation process
can be completely assigned to each individual energy hub without the requirements of a cloud
computing center, a central price coordinator or a virtual coordinator. Thus, our proposed algorithm
can improve the existing game-theoretic-based distributed approaches, which further solves the EMP
for multiple energy hubs in a fully distributed fashion. In addition, a novel projection operation method
has also been proposed to address the issue of coupled variables existing in the objective function
and constraint limits. Furthermore, we have proved that the proposed algorithm can converge to the
optimal solution under strong connectivity conditions only. In the simulation part, several examples
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were presented to illustrate the effectiveness of the DDC algorithm and to demonstrate the correctness
of the theoretical result. In future work, the rate of convergence and underlying energy flow control
will be studied.
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Nomenclature

EMP Energy management problem
DDC Distributed double-consensus
CHP Combined heat and power
KKT Karush-Kuhn-Tucker
i, j energy hub indices
n Number of energy hubs
m Linear inequality constraint indices
Ee

in, Eg
in Inputs of electricity and natural gas powers

Ee,min
i,in , Ee,max

i,in Lower and upper bounds of Ee
i,in

Eg,min
i,in , Eg,max

i,in Lower and upper bounds of Eg
i,in

Ee
out, Eg

out Outputs of electricity and heat powers

ηee, ηe,chp, ηh,chp, ηboil The transformer efficiencies of transformer, CHP unit from gas to
electricity, CHP unit from gas to heat and boiler

ρ Dispatch factor
Ci(Ee

i,in), Ci(Eg
i,in) Electricity and natural gas cost functions

Wi(η, Eg
i,in) Penalty function

ae
i , ag

i , be
i , bg

i Cost coefficients
ωe

i , ωh
i penalty coefficients

le
i , lh

i Local electricity and natural gas loads connected to ith energy hub

d̃i,m, ẽi,m, f̃i,m
Coefficients of mth linear inequality constraint for variables Eg,ρ

i and

Eg,1−ρ
i

λe and λg Electricity and heat multipliers for the equality constraints
ue,min

i , ue,max
i , ug

i,m Lagrangian multiplier for inequality constraints
χi, χ̃i State variables of agent i
wT Normalized left eigenvector of R associated with the eigenvalue 1
χ Column stack vector of χi
λi,e,p(k), λi,e,c(k) Estimated electricity multipliers
λi,g,c(k) Estimated heat multiplier
yi,e,p(k), yi,e,c(k) Estimated electricity power mismatches
yi,g,c(k) Estimated heat power mismatch
Ee

i (k), Eg,ρ
i (k), Eg,1−ρ

i (k) Estimated of optimal Ee
i , Eg,ρ

i and Eg,1−ρ
i

λe,p, λe,c, λg,c, ye,p, ye,c, yg,c Column stack vectors form of λi,e,p, λi,e,c, λi,g,c, yi,e,p, yi,e,c and yi,g,c

xe, xg,ρ, xg,1−ρ, Ee, Eg,ρ, Eg,1−ρ Column stack vectors of xe
i , xg,ρ

i , xg,1−ρ
i , Ee

i , Eg,ρ
i and Eg,1−ρ

i
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Appendix A. Constraints and Optimality Conditions

(a) The conversion relationship between inputs and outputs can be expressed as the following coupling
matrix form, [

Ee
out

Eh
out

]
=

[
ηee ηe,chpρ

0 ηh,chpρ + ηboil(1− ρ)

][
Ee

in

Eg
in

]
(A1)

where the dispatch factor ρ ∈ [0, 1] is introduced to specify the share of natural gas by the CHP unit
and boiler.

(b) The total objective function of the EMP for multiple energy hubs is modeled as the following form,

min F =
n

∑
i = 1

(Ci(Ee
i,in) + Ci(Eg

i,in) + Wi(η, Eg
i,in)) (A2)

where 
Ci(Ee

i,in) = ae
i (Ee

i,in)
2 + be

i Ee
i,in

Ci(Eg
i,in) = ag

i (Eg
i,in)

2
+ bg

i Eg
i,in

Wi(η, Eg
i,in) = ωe

i (η
e,chp
i ρiE

g
i,in)

2
+ ωh

i (η
h,chp
i ρiE

g
i,in + ηboil

i (1− ρi)Eg
i,in)

2

(A3)

(c) The local constraints arise from the limitations of the energy hubs’ capability and the dispatch factors, which
are expressed as

Ee,min
i,in ≤ Ee

i,in ≤ Ee,max
i,in (A4a)

Eg,min
i,in ≤ Eg

i,in ≤ Eg,max
i,in (A4b)

0 ≤ ρi ≤ 1 (A5)

(d) The Lagrange function for problem (3)–(6) is expressed as the following equation:

L = F− λe

[
n
∑

i = 1
(ηee

i Ee
i + η

e,chp
i Eg,ρ

i )−
n
∑

i = 1
le
i

]
− λg

[
n
∑

i = 1
(η

h,chp
i Eg,ρ

i + ηboil
i Eg,1−ρ

i )−
n
∑

i = 1
lh
i

]
−

n
∑

i = 1
ue,min

i (Ee
i − Ee,min

i,in )−
n
∑

i = 1
ue,max

i (Ee,max
i,in − Ee

i )

−
n
∑

i = 1

4
∑

m = 1
ug

i,m(d̃i,mEg,ρ
i + ẽi,m,tE

g,1−ρ
i + f̃i,m),

(A6)

The optimal operating point is determined by the following KKT conditions:

∂F/∂Ee
i = λeηee

i + ue,min
i − ue,max

i

∂F/∂Eg,ρ
i = λeη

e,chp
i + λgη

h,chp
i +

4
∑

m = 1
ug

i,m d̃i,m

∂F/∂Eg,1−ρ
i = λgηboil

i +
4
∑

m = 1
ug

i,m ẽi,m

ue,min
i (Ee

i − Ee,min
i,in ) = 0, ue,max

i (Ee,max
i,in − Ee

i ) = 0

ug
i,m(d̃i,mEg,ρ

i + ẽi,m,tE
g,1−ρ
i + f̃i,m) = 0

ue,min
i ≥ 0, ue,max

i ≥ 0, ug
i,m ≥ 0,

(A7)

and Equation (4a) along with Equation (4b).

Appendix B. Consensus Algorithm, Initializations and Projection Conditions

(a) The two different discrete-time systems considered are as follows:

(P1) χi(k + 1) = ∑
j∈N+

i

ri,jχj(k) (A8)
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(P2) χ̃i(k + 1) = ∑
j∈N+

i

si,jχ̃j(k) (A9)

Since R is row stochastic, P1 forms the first-order consensus protocol. Each node reaches the final common
value χi(∞) = wTχ(0). Since S is column stochastic, the summation of all state variables is a constant, i.e.,
∑ χ̃i(k) = ∑ χ̃i(0).

(b) We let ue,min
i = ue,max

i = ug
i,m = 0. Then, according to the first three equations of Equation (12), the optimal

solution of Ee
i , Eg,ρ

i and Eg,1−ρ
i of each energy hub can be determined by the unique Lagrange multipliers λe

and λe, given by 
Ee

i = ap
i λe − b

p
i

Eg,ρ
i = ap,c

i λe − op,c
i λg − b

p,c
i

Eg,1−ρ
i = ah,c

i λg − oh,c
i λe − b

h,c
i

(A10)

where ap
i = ηee

i /2ae
i , b

p
i = be

i /2ae
i , ap,c

i = 2β
g
i η

e,chp
i /ϑ, op,c

i = (γ
g
i ηboil

i − 2β
g
i η

h,chp
i )/ϑ, b

p,c
i = (2β

g
i bg

i −
γ

g
i bg

i )/ϑ, oh,c
i = γ

g
i η

e,chp
i /ϑ, ah,c

i = (2α
g
i ηboil

i −γ
g
i η

h,chp
i )/ϑ, b

h,c
i = (2α

g
i bg

i ,−γ
g
i bg

i )/ϑ, and ϑ = 4α
g
i β

g
i − (γ

g
i )

2
.

(c) Ee
i (0), Eg,ρ

i (0) and Eg,1−ρ
i (0) can be designed as any admissible values, and the other variables are

initialized as 

yi,e,p(0) = le
i /2− Ee

i (0)

yi,e,c(0) = le
i /2− Eg,ρ

i (0)

yi,g,c(0) = lh
i − Eg,1−ρ

i (0)

λi,e,p(0) = λi,e,c(0) = λi,g,c(0) = 0

(A11)

(d) To map the infeasible values into the feasible operating region, the cases for no active constraints, one
active constraint and two active constraints are separately discussed to further give the corresponding
identification conditions as follows:

(1) None of the constraints are active constraints, i.e., the optimal solutions before and after considering the
inequality constraints have the same values. The identification condition of this case is if xg,ρ

i (k) and

xg,1−ρ
i (k) satisfy

d̃i,mxg,ρ
i (k) + ẽi,mxg,1−ρ

i (k) + f̃i,m > 0 (A12)

then there are no active constraints; otherwise, the optimal solution belongs to another case.
(2) Only one inequality constraint is an active constraint. Let } represent any one inequality equation.

The identification condition of this case is that if there exist solutions xg,ρ
i,},, xg,1−ρ

i,}, and ug
i,} ≥ 0 satisfying



2αi
gxg,ρ

i,} + bg
i + γi

gxg,1−ρ
i,} = λi,e,c(k)η

e,chp
i

+λi,g,c(k)η
h,chp
i + ug

i,}d̃i,}

2βi
gxg,1−ρ

i,} + bg
i + γi

gxg,ρ
i,} = λi,g,c(k)ηboil

i + ug
i,} ẽi,}

d̃i,}xg,ρ
i,} + ẽi,}xg,1−ρ

i,} + f̃i,} = 0

d̃i,mxg,ρ
i,m + ẽi,mxg,1−ρ

i,m + f̃i,m > 0

(m = {1, · · · , 4} − })

(A13)

then } is the only active constraint; otherwise, the optimal solution belongs to another case.
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(3) Two inequality constraints are active constraints. In this case, let } and ` represent two adjacent constraints

(e.g., 2 and 3) and the corner point determined by them be defined as (xg,ρ
i,}`,, xg,1−ρ

i,}`, ). The identification

condition of this case is that if there exist solutions ug
i,} ≥ 0 and ug

i,` ≥ 0 satisfying



2αi
gxg,ρ

i,}` + bg
i + γi

gxg,1−ρ
i,}` = λi,e,c(k)η

e,chp
i

+λi,g,c(k)η
h,chp
i + ug

i,}d̃i,} + ug
i,` d̃i,`

2βi
gxg,1−ρ

i,}` + bg
i + γi

gxg,ρ
i,}` = λi,g,c(k)ηboil

i

+ug
i,} ẽi,} + ug

i,` ẽi,`

(A14)

then, } and ` are the two active constraints; otherwise, the optimal solution belongs to another case.

Appendix C. Proof of Theorem 1

M =



Rpp Rpc 0 0 0 0

Rcp Rcc 0 0 0 0

0 0 R 0 0 0

Ap(I − Rpp) −ApRpc 0 Spp Spc 0

−ApcRcp Apc(I − Rcc) −Opc(I − R) Scp Scc 0

OhcRcp −Ohc(I − Rcc) Ahc(I − R) 0 0 S


, (A15a)

∆ =



0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

0 0 0 −Ap 0 0

0 0 0 0 −Apc Opc

0 0 0 0 Ohc −Ahc


, V =


VT

1

VT
1

VT
1

VT
1



T

=



0 0 1 0

0 0 1 0

0 0 0 1

vp 0 −κppvp κpcvp

vc 0 −κppvc κpcvc

0 vc κcpvc −κhhvc


, (A15b)

WT


WT

1

WT
1

WT
1

WT
1

 =


1T Ap 1T Apc −1TOpc 1T 1T 0T

0T −1TOhc 1T Ahc 0T 0T 1T

wT
p wT

c 0T 0T 0T 0T

0T 0T wT
c 0T 0T 0T

, Q =


0 0 0 0

0 0 0 0

1 0 −κpp κpc

0 1 κcp −κhh

 (A15c)

The eigenvalue perturbation approach is employed to analyze the convergence properties of the presented
algorithm. Along with Equations (7)–(10), we get

Θ(k + 1) = (M + η∆)Θ(k) (A16)

where Θ = [λT
e,p, λT

e,c, λT
g,c, yT

e,p, yT
e,c, yT

g,c]
T .

Due to the definition of R, R, S and S, it is not difficult to verify that R, R, S and S are all primitive with
the maximum eigenvalue 1. Based on Lemma 1, there exist four vectors wT , v, wT and v, satisfying wT R = wT ,
Sv = v, wT R = wT and Sv = v meanwhile wT1 = 1, 1Tv = 1, wT1 = 1 and 1Tv = 1. Therein, 1 denotes a
vector with all its elements being 1. To facilitate the analysis, wT and v are expressed in the corresponding block

vectors form, i.e., wT =
[
wT

p , wT
c

]
and v =

[
vT

p , vT
c

]T
. Furthermore, M is a lower block triangular matrix whose

eigenvalues are the union of R, R, S and S, so M has four maximum eigenvalues ψ1 = ψ2 = ψ3 = ψ4 = 1 while
the other eigenvalues lie in the open unit disk on the complex plane. Then, the eigenvalue perturbation approach
is used to analyze the eigenvalue changing of M after perturbing by η∆. Let κpp = ∑ ap + ∑ ap,c, κpc = ∑ op,c,
κcp = ∑ oh,cv and κhh = ∑ ah,c. On this basis, V and WT are defined as the right and left eigenvectors of M,
respectively. In this way, WTV = I. Then, along with ∆, V and WT, the matrix WT∆V can be mathematically
represented as follows:

WT∆V = Q (A17)
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Since the object function is a convex function, it is not difficult to verify κpcκcp < κhhκpp. According to
Q, we have the four eigenvalues of WT∆V satisfying dψ1/dη = dψ2/dη = 0, dψ3/dη < 0 and dψ4/dη < 0,
which means ψ1 and ψ2 do not change against η, and ψ3 and ψ4 become smaller when η > 0. Thus, there exists
an upper boundary ς such that 0 < η < ς. Except for ψ1 = ψ2 = 1, the remaining eigenvalues lie in the

open unit disk. Moreover, it can be verified that
[
1T , 1T , 0T , 0T , 0T , 0T , 0T]T and

[
0T , 0T , 1T , 1T , 0T , 0T]T are the

two independent eigenvectors of M corresponding to ψ1 and ψ2, respectively. That means that, as k→ ∞ , all of
yi,e,p(k), yi,e,c(k) and yi,g,c(k) converge to 0, i.e., the electricity and heat power supply–demand balance constraints
are satisfied. At the same time, λi,e,p(k), λi,e,c(k) converge to a common value, while λi,g,c(k) converges to another
common value. Therefore, the optimality conditions (KKT conditions of optimality) are satisfied.
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