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Abstract: Longitudinal-connected air suspension has been proven to have desirable dynamic
load-sharing performances for multi-axle heavy vehicles. However, optimization approaches
towards the improvement of comprehensive vehicle performance through the geometric design
of longitudinal-connected air suspension have been considerably lacking. To address this, based on
a 5-degrees-of-freedom nonlinear model of a three-axle semi-trailer with longitudinal air suspension,
taking the changes of driving conditions (road roughness, speed, and load) into account, a height
control strategy of the longitudinal-connected air suspension was proposed. Then, in view of the
height of the air spring under various driving conditions, the support vector regression method was
employed to fit the relationship models between the performance indices and the driving conditions,
as well as the suspension geometric parameters (inside diameters of the air line and the connectors).
Finally, to tackle the uncertainties of driving conditions in the optimization of suspension geometric
parameters, a double-loop multi-objective particle swarm optimization algorithm (DL-MOPSO) was
put forward based on the interval uncertainty theory. The simulation results indicate that compared
with the longitudinal-connected air suspension using two traditional geometric parameters, the
optimization ratios for dynamic load sharing coefficient and root-mean-square acceleration at various
spring heights are between −1.04% and 20.75%, and 1.44% and 35.1%, respectively. Therefore,
based on the signals measured from the suspension height sensors, through integrated control
of inflation/deflation valves of air suspensions, as well as the valves’ inside connectors and air
lines, the proposed DL-MOPSO algorithm can improve the comprehensive driving performance
of the longitudinal-connected three-axle semi-trailer effectively, and in response to changes in
driving conditions.
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1. Introduction

The suspension system of multi-axle trucks is an important component that affects the driving
performance of vehicles. In previous studies, the optimization and control of truck suspensions mainly
targeted road-friendliness, ride comfort, and steering stability [1–3], but not enough attention has been
paid to an important performance index that affects the safety of the road traffic, namely, the dynamic
load-sharing performance of the multi-axle groups. The dynamic load-sharing performance of the
multi-axle groups refers to the ability to distribute the load evenly between the axles within the
multi-axle groups during driving [4]. Favorable dynamic load-sharing can reduce the peak forces
from tires: on the one hand, it can prevent tire blowout caused by single-axle overloading and the
braking failure caused by load transfer during braking; on the other hand, it is closely related to the
road-friendliness, able to delay the occurrence of ruts, cracks, looseness, pits, and peeling on roads [5].
Therefore, the dynamic load-sharing of multi-axle trucks is a comprehensive index covering driving
safety and road-friendliness.

Load-sharing is relatively weak for leaf springs (usually employing centrally pivoted walking
beams, trunnion shafts, etc.) and unconnected air suspensions of multi-axle trucks [6,7]. To address
this issue, an Australian design for longitudinal-connected air suspensions connects the air springs in
the axle groups on the same side through larger-than-industry air lines and connectors so that air could
be exchanged between air bags more readily. This kind of suspension not only has a damping effect
similar to that of air suspension with additional air chambers, but also, when applied to the multi-axle
groups of tractors or semi-/full-trailers, can have the air bag force transferred rapidly between different
axles through the air lines and connectors, thus effectively improving the load-sharing of vehicles [8].

Many on-road tests have been performed to analyze the performance of the longitudinal-connected
air suspension. The Organization for Economic Co-operation and Development (OECD) indicated
that the load-sharing coefficient (an indicator for load-sharing capacity) of multi-axle trucks in western
countries ranged from 0.904 to 0.925 [9]. Studies commissioned by the National Road Transport
Commission of Australia found that installation of larger air lines on multi-axle air suspension increased
longitudinal air flow between air springs on adjacent axles [10]. The Queensland Department of
Main Roads discovered that improvements in dynamic load-sharing coefficient (DLSC) of 4–30% for
a tri-axle coach and 37–77% for a tri-axle semi-trailer were obtained by altering the conventional-sized
longitudinal air connection (three 6.5 mm inside diameter connectors connecting 6.5 mm inside diameter
air lines) to a larger air connection (three 20 mm inside diameter connectors at the air springs connecting
50 mm inside diameter air lines) [8]. However, due to the limitations of on-road tests, only vehicle
speed and a limited number of air connections were considered in most tests, such that the effect of
some other factors, e.g., the static absolute air pressure of the air spring, static height of the air spring,
and load-sharing, were not able to be taken into account.

Limitations of on-road tests can be addressed by developing realistic models of connected air
suspension. Xu et al. developed a 4-degrees-of-freedom (DOF) half-vehicle model and compared
the transferring characteristics between the laterally interconnected and non-interconnected air
suspension. It was found that the laterally interconnected air suspension could significantly decrease
the amplitude of roll angle [11]. Li et al. developed an 8-DOF mathematical model of a car with
laterally interconnected air suspension [12,13]. It is indicated that these suspensions outperformed
unconnected suspensions in terms of vibration isolation and torsion elimination. With respect
to the modelling of longitudinal-connected air suspension, Davis proposed a model of a tri-axle
semi-trailer with longitudinal-connected air suspensions [8], and used a variable “load-sharing
fraction” to represent the load-sharing ability of the suspension. However, the physical meaning of the
variable was not explored completely, leaving that detail for others to study. More advanced models
of similar tri-axle semi-trailers have been developed by Roebuck and Kat based on aerodynamics
and thermodynamics [14,15]. In these models, isothermal gas compression process was assumed;
in addition, the effective areas of the air springs were simplified as constants while the vehicle was
travelling. Regarding these issues, a more accurate nonlinear model of a tri-axle longitudinal-connected
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air suspension was formulated by Chen et al. [16,17]. Based on this model, the effects of driving
conditions (road class, vehicle speed, and vehicle load) and air suspension parameters (static height
and static absolute air pressure of air spring, inside diameters of air line and connector) on dynamic
load-sharing were analyzed comprehensively. It is indicated that the air line diameter and the connector
diameter are two key geometric factors affecting DLSC, and the influence of air line diameter on
load-sharing is more significant than that of the connector. Zhu et al. derived the system equations of
a pitch-plane 4-DOF half-car with longitudinal-connected air suspension. The effects of pipe length,
pipe diameter, and the local loss ratio factor on the vehicle pitch transmissibility properties, rather
than the load-sharing, were investigated [18].

In summary, achievements have been made in the analysis of the load-sharing of longitudinal-
connected air suspension based on both theoretical modeling and field tests. Although it is widely
recognized that air line diameter and connector diameter are important factors affecting load-sharing,
the optimization of these geometric parameters towards integrated driving performances, such as
load-sharing and ride comfort, has rarely been reported. For electronically controlled air suspension,
under certain height of the air springs, road roughness, driving speed, and vehicle load are all uncertain
variables (change within certain ranges) and have a nonlinear relationship with the load-sharing.
Therefore, the determination of the key geometric parameters of longitudinal-connected air suspension
is a problem for uncertain, nonlinear, and multi-objective optimization.

The traditional stochastic programming method and fuzzy programming method can solve
the uncertain optimization problems, but a large amount of uncertainty information is needed to
construct the exact probability distribution or fuzzy membership function of the variable [19,20].
Since it is very difficult to get such uncertain information, these two methods are strongly limited in
applications. By introducing order relations of interval numbers, Moore et al. proposed an interval
number optimization method to transform the uncertainty optimization problem into a deterministic
optimization problem of inner and outer nesting [21,22]. This method only needs to get the possible
ranges of uncertain parameters rather than their exact distributions. Thus, it can reduce the difficulty
of uncertainty optimization effectively and it has been widely employed for optimization in various
engineering fields [23,24].

By introducing the interval number optimization method, the uncertain, nonlinear, and multi-
objective optimization problem can be transformed into a nonlinear certain multi-objective optimization
problem subject to two loops of nesting. One issue associated with the new problem after the
transformation is that the objective functions are usually discontinuous and non-derivable; traditional
gradient-based optimization methods, such as the steepest descent method and gradient projection
method, have difficulties in solving such problems [25]. However, heuristic algorithms can overcome
the difficulty in solving optimization problems caused by discontinuity and non-derivativity [26,27].
Another issue associated with the new problem is that owing to two loops of nesting, the repeated
iterations of the inner and outer algorithms bring burdens to the computational process. Accordingly,
high accuracy and efficiency are necessary for the optimization algorithm. Compared with other
heuristic optimization algorithms, particle swarm optimization (PSO) features faster iteration speed,
fewer parameters to be adjusted, simpler structure, and stronger capacity for global search [28,29].

Therefore, considering the uncertainty of the road roughness, driving speed, and vehicle load,
this paper combines interval number optimization with multi-objective particle swarm optimization
(MOPSO), and proposes a double-loop multi-objective particle swarm optimization (DL-MOPSO)
algorithm to optimize the key geometric parameters of the longitudinal-connected air suspension,
focusing on the comprehensive driving performance. In the DL-MOPSO algorithm, the inner loop
algorithm is used to calculate the interval range of the target function when the uncertain variable is
changing, while the outer loop algorithm is used for global optimization of the inner diameters of the
optimal air lines and connectors.

The rest of the paper is organized as follows: Firstly, a nonlinear coupling model between road
excitation and a tri-axle semi-trailer with longitudinal-connected air suspensions is described briefly.
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The strategy for controlling the height of the longitudinal-connected air suspension is designed,
taking road roughness, driving speed, and vehicle load into account. Secondly, at each spring height,
the relationships of the load-sharing and ride comfort indices with the changes of the driving conditions
and suspension parameters are fitted, respectively, based on support vector regression. Finally, based
on the interval uncertainty theory, a DL-MOPSO algorithm is designed to optimize the inner diameters
of the air lines and connectors when the driving conditions are changing. Moreover, the effectiveness
and robustness of the DL-MOPSO algorithm are analyzed by comparing the optimized results with
the results using conventional-sized longitudinal-connected air suspension, under the circumstances
of various spring heights and driving conditions.

2. Mathematic Models and Load-Sharing Criteria

2.1. Mathematic Models of the Tri-Axle Semi-Trailer and Road Roughness Excitation

A basic half-model representing a typical tri-axle semi-trailer with longitudinal-connected air
suspension in most western countries was employed, as shown in Figure 1. This model includes
5-DOF, which are vertical displacement of sprung mass and three unsprung masses, z, x1, x2, x3, as well
as the pitch angle of the sprung mass ϕ.
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The equations of motion of the semi-trailer are given by

mt1
..
x1 = (q1 − x1)kt1 + c1(

.
z − .

x1 −
.
ϕl)− (Ps1 − P0)As1 +

1
3

mg (1)

mt2
..
x2 = (q2 − x2)kt2 + c2(

.
z − .

x2)− (Ps2 − P0)As2 +
1
3

mg (2)

mt3
..
x3 = (q3 − x3)kt3 + c3(

.
z − .

x3 +
.
ϕl)− (Ps3 − P0)As3 +

1
3

mg (3)

J
..
ϕ = [(Ps3 − P0)As3 − c3(

.
z − .

x3 +
.
ϕl) + 1

3 mg]l
−[(Ps1 − P0)As1 − c1(

.
z − .

x1 −
.
ϕl)− 1

3 mg]l
(4)

m
..
z = (Ps1 − P0)As1 + (Ps2 − P0)As2 + (Ps3 − P0)As3

−c1(
.
z − .

x1 −
.
ϕl)− c2(

.
z − .

x2)− c3(
.
z − .

x3 +
.
ϕl)− mg

(5)

where mt1, mt2, mt3 and q1, q2, q3 are the unsprung masses and road excitations of the three axles,
respectively; m is the sprung mass of the semi-trailer; J is the moment of inertia of the gross sprung
mass around the lateral axis; Ps1, Ps2, Ps3 and As1, As2, As3 are the dynamic absolute air pressures
and dynamic effective areas of the three air springs, respectively; P0 is atmospheric pressure; l is the
wheelbase; c1, c2, c3 are the damping coefficients of three dampers; and kt1, kt2, kt3 are the stiffness of
the three tires.

In order to solve the above equations, a detailed model of longitudinal-connected tri-axle air
suspension is needed to express Ps1, Ps2, and Ps3 as functions of the 5 variables (5 DOF). Specifically,
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an adiabatic process is assumed for the air inside air springs when the vehicle is travelling, and the
air flow inside the connectors is considered to be an incompressible steady flow [15,30]. This model
correlated well with the measurements. A concise spectral model is used in this study to represent
the road roughness excitations. This vehicle–road integrated model takes the nonlinearity of the air
transmission between the air springs into account, and thus correlates well with the experimental
results of field tests. The details of the models and their experimental validation can be found in the
previous work of the authors [16]. To avoid repetition, they are not described in this paper. Parameters
of the longitudinal-connected tri-axle semi-trailer model are tabulated in Table 1.

Table 1. Parameters of the longitudinal-connected tri-axle semi-trailer model (conventional-size
longitudinal connection).

Parameter Value Dimension Description

As10 0.0785 m2 static effective area of each air spring

Vs10 0.0102 m3 static volume of each air spring

hs0 0.13 m static height of each air spring

df 0.0065 m inside diameter of each connector

ds 0.0065 m inside diameter of the longitudinal air line

L 1.4000 m Wheelbase

Ps10 463,129 Pa static absolute air pressure inside each air spring, each
connector, and the air line

P0 101,325 Pa atmosphere pressure

M 8700 kg gross sprung mass of the semi-trailer

mt1 336 kg unsprung mass of each air spring

J 5684 kg m2 moment of inertia of the gross sprung mass around the
lateral axis

kt1 1,960,000 N/m stiffness of dual tires on each hub

crebound 288,600 N s/m damping coefficient of each damper when dynamic
height of respective suspension is increasing

cbump 184,500 N s/m damping coefficient of each damper when dynamic
height of respective suspension is decreasing

The prototype of the tri-axle semi-trailer with Kenworth Airglide 200 longitudinal-connected
air suspension was tested on three typical urban road sections at speeds ranging from 60 km/h to
80 km/h [16]. Strain gauges (one per hub) were mounted on the neutral axis of each axle between the
spring and the hub to record the shear force on the hubs, i.e., air spring force, and accelerometers were
mounted as closely as possible to each hub and to the corresponding upper positions at the chassis to
derive the height of each air spring. In addition, six air pressure transducers were employed to obtain
the pressures inside the air springs.

Based on the experimental data, the effective area of each air spring was obtained by dividing
the respective shear force by the respective pressure inside the air spring, and the volume of each air
spring was derived by multiplying the respective effective area by the respective spring height. Thus,
the dynamic effective area of each air spring is approximated as a function of the dynamic height of
the corresponding air spring y, i.e.,

As1 = −7.670500y3 + 2.866880y2 − 0.354226y + 0.093002. (6)

The effective area multiplied by the dynamic spring height yields

Vs1 = −7.670500y4 + 2.866880y3 − 0.354226y2 + 0.093002y. (7)
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2.2. Load-Sharing Criteria

Criteria need to be chosen to evaluate the load-sharing of the semi-trailer. A metric often used to
characterize the magnitude of dynamic forces of the ith wheel in an axle group is the DLC (dynamic
load coefficient) [6], defined as

DLCi =
σi

Fmean(i)
, (8)

where σi denotes the standard deviation of Fi(j), which is the instantaneous force at wheel i (Fi(j) =
1/3mg + k(qi − xi)); and Fmean(i) denotes the mean wheel-force of wheel i. Although DLC is usually
referred to as a road-friendliness criterion and has been criticized for not being mutually exclusive
with another load-sharing criterion, the load-sharing coefficient (LSC), it still has been widely used as
one measure to differentiate suspension types from each other (e.g., steel vs air) [3,4,31].

De Pont pointed out that LSC does not address dynamic load-sharing [32]. The DLSC was
proposed as an alternative to LSC to account for the dynamic nature of wheel-forces and instantaneous
load-sharing during travel, and is defined as [32]

DLSCi =

√√√√√√ k
∑

j=1
(DLSi(j)− 1

k

k
∑

j=1
DLSi(j))

2

k
. (9)

The dynamic load-sharing of wheel i, DLSi(j), is

DLSi(j) =
nFi(j)
n
∑

i=1
Fi(j)

, (10)

where n is the number of wheels on one side of an axle group, and k is the number of terms in
the dataset.

In this study, the average DLSC of tires on the same side of the semi-trailer axle group was
employed as a metric of load-sharing.

3. Control Strategy of Air Spring Height

The Kenworth Airglide 200 longitudinal-connected air suspensions investigated in this paper
are passive suspensions. In order to enhance their comprehensive driving performance preliminarily,
the air spring height control strategy shall first be designed based on the driving conditions. The natural
frequency of the air suspension is expressed as

f =
1

2π

√
Ky

m1
(11)

where f, Ky, and m1 indicate the natural frequency of air suspension, spring stiffness, and sprung mass,
respectively. Ky is formulated as [33]

Ky = k · ps10 ·
A2

s1
Vs1

+
dAs1

dy
(ps10 − p0) (12)

Ps10 changes with the sprung mass (Ps10 = m1g/As1 + p0); by introducing Equations (6) and (7)
into Equation (12), the air spring stiffness at different heights can be obtained.

The design range for the natural frequency of rear suspension of the semi-trailers is
1.70~2.17 Hz [34]. Based on Equations (11) and (12), the proper ranges of spring heights can be
derived with different sprung masses [35], and the optimal heights were determined as the medians of
the ranges. Therefore, four control heights were set for the air suspension [33], specifically as follows:
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I. In time of load-free idling and driving (when the actual load is less than 1/2 of the full load, it is
defined as no load), the height of the spring is H0 (0.16 m).

II. In time of full load (when the actual load is equal to or more than 1/2 of the full load, it is
defined as a full load), the spring height is set based on the vehicle speed and road condition as follows:

(1) In the case that the vehicle is kept static or moving at low speed (speed < 50 km/h), when the
road is in good condition, the spring height is set to H1 (0.13 m); when the road condition is relatively
poor, the spring height is set to H2 (0.15 m). The number of times that the height signal from the
suspension height sensor exceeds the calibrated height value within an observation period (0.5 s) is
recorded as N. If N is greater than 4, the road condition is considered as poor; otherwise, the road
condition is good.

(2) If the vehicle is moving at high speed (speed > 70 km/h), when the road is in good condition,
the spring height is set to H3 (0.11 m).

(3) 50~70 km/h is the hysteretic interval of the speed [33]. Hysteresis of 20 km/h is provided to
prevent frequency occurrence of height level changes during travelling.

4. Development of Multi-Objective Optimization Functions for Comprehensive
Driving Performance

The optimization of key geometric parameters of longitudinal-connected air suspension was
respectively undertaken with each spring height. As indicated in Section 2.2, the average DLSC of tires
on the same side of the semi-trailer axle group was selected as the index for evaluating load-sharing.
The root mean square of the acceleration of the sprung mass (a) was selected as the ride comfort index.

4.1. Fitting Models of Evaluation Indices Based on Support Vector Regression

For a certain spring height, IRI (international roughness index), vehicle speed, and load vary
within a certain range. Besides this, during the process of manufacturing, the inner diameter of the
air pipe is no smaller than that of the connector. Table 2 shows the ranges of the variables at different
spring heights.

A full factorial experiment method was employed for the simulation of the vehicle–road coupling
model described in Section 2.1. For each spring height, each uncertain variable was set to three levels,
and each design variable was set to four levels [36]. Eliminating the experimental schemes in which
the inner diameter of the air pipe is smaller than that of the connector, a total of 270 schemes remained.
Simulation results of 220 schemes, which were randomly selected from the 270 schemes, were used for
training of the fitting model, while the simulation results of the other 50 schemes were employed for
the performance testing of the fitting model. Since support vector regression (SVR) features favorable
fitting precision, fitting efficiency, and wide application range [37], it was used to fit the regression
models of DLSC and a with the changes of the uncertain and design variables, respectively, based on
the simulation results of the training schemes. The regression models are

f1(X, U) =
l

∑
i=1

(α∗1i − α1i)K(x1i, x) + b1 (13)

f2(X, U) =
l

∑
i=1

(α∗2i − α2i)K(x2i, x) + b2 (14)

where f1(X, U), f2(X, U) are the expressions of DLSC and a after fitting via SVR, respectively;
X = [x1, x2]

T is the design vector; U = [u1, u2, u3]
T is the uncertain vector; l = 220; αji and

a∗ji are Lagrange multipliers, j = 1, 2; K(xji, x) is the kernel function; xji is the support vector;

x = [x1, x2, u1, u2, u3]
T ; and bj is the bias term.
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Table 2. Ranges of variables at different spring heights.

Variable Type Description Dimension Range of Variable at
Spring Height H0

Range of Variable at
Spring Height H1

Range of Variable at
Spring Height H2

Range of Variable at
Spring Height H3

Uncertain variable u1 IRI m/km [1, 10] [1, 5] [6, 10] [1, 5]
Uncertain variable u2 Speed km/h (0, 90] (0, 50] (0, 50] [70, 90]
Uncertain variable u3 Load kg [0, 3735] [3735, 7455] [3735, 7455] [3735, 7455]

Design variable x1 Inner diameter of air line mm [5, 100] [5, 100] [5, 100] [5, 100]
Design variable x2 Inner diameter of connector mm [5, 100] [5, 100] [5, 100] [5, 100]
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Figure 2 shows the comparisons between the simulation values of Simulink models and the
fitted values of SVR models using the test schemes. The coefficient of determination (R2) was chosen
to test the goodness of fit of the SVR models. It is shown in the figure that the values of R2 are
close to 1 for both the DLSC and a, which means that the accuracy of the SVR models is desirable.
Thus, the SVR models can be used as the internal particle swarm fitness functions of the subsequent
DL-MOPSO algorithm.
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fitted values of SVR models using the test schemes. The coefficient of determination (R2) was chosen 
to test the goodness of fit of the SVR models. It is shown in the figure that the values of R2 are close 
to 1 for both the DLSC and a, which means that the accuracy of the SVR models is desirable. Thus, 
the SVR models can be used as the internal particle swarm fitness functions of the subsequent 
DL-MOPSO algorithm. 
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at the spring height of H2; (f) Comparisons of a between the two models at the spring height of H2;
(g) Comparisons of DLSC between the two models at the spring height of H3; (h) Comparisons of a
between the two models at the spring height of H3.

4.2. Multi-Objective Optimization Functions Considering Uncertainty of Driving Conditions

Based on the interval number optimization method, for any design vector X, when the uncertainty
vector U is constantly changing, the possible values of the regression functions f1(X, U), f2(X, U) can
form intervals as follows:

f I
1 (X) =

〈
f C
1 (X), f W

1 (X)
〉
=
{

f1(X)
∣∣∣ f C

1 (X)− f W
1 (X) ≤ f1(X) ≤ f C

1 (X) + f W
1 (X)

}
(15)

f I
2 (X) =

〈
f C
2 (X), f W

2 (X)
〉
=
{

f2(X)
∣∣∣ f C

2 (X)− f W
2 (X) ≤ f2(X) ≤ f C

2 (X) + f W
2 (X)

}
(16)

where f1(X), f2(X) are all possible values of f1(X, U), f2(X, U), respectively; f I
1 (X), f I

2 (X) are the
intervals formed by f1(X), f2(X), respectively; f C

1 (X), f W
1 (X) are the midpoint and radius of the f I

1 (X)
interval, respectively; and f C

2 (X), f W
2 (X) are the midpoint and radius of the f I

2 (X) interval, respectively.
In order to form objective functions representing the uncertainty of driving conditions,

the following functions are used [26]:

F1(X) =
0.5 f C

1 (X)
ψ1

+
0.5 f W

1 (X)
ζ1

(17)

F2(X) =
0.5 f C

2 (X)
ψ2

+
0.5 f W

2 (X)
ζ2

(18)

where F1(X) and F2(X) are the evaluation functions of the intervals f I
1 (X) and f I

2 (X), respectively;
and ψi and ζi are the minimum values of f C

i (X), f W
i (X) in the full factorial experiments, respectively.

The values of ψi and ζi at different spring heights are listed in Table 3.

Table 3. Parameters ψi and ζi at different spring heights.

Height (m) ψ1 ζ1 ψ2 (m/s2) ζ2 (m/s2)

H0 0.38 0.36 0.7 0.58
H1 0.22 0.16 0.18 0.14
H2 0.56 0.19 0.4 0.2
H3 0.37 0.17 0.42 0.31
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Then, the multi-objective optimization functions can be written as
min

X
(F1(X))

min
X

(F2(X))

s.t. x1 > x2, xmin
i ≤ xi ≤ xmax

i , i = 1, 2.

(19)

5. Multi-Objective Optimization Algorithm Based on DL-MOPSO

A DL-MOPSO algorithm was designed to solve the above uncertain multi-objective optimization
problems. The inner loop MOPSO algorithm is used to calculate the interval range of the objective
function when the uncertainty vector U is changing, while the outer loop MOPSO algorithm is applied
for optimization of the above interval.

One drawback associated with the heuristic algorithms is that they easily fall into local optimal
solutions. In order to address this issue, firstly, the crowding distance and the mutation operator were
adopted in the inner and outer MOPSO algorithms to ensure the diversity of non-dominated solutions
in the external archives [29]. The uniformly distributed non-dominated solutions enhanced the ability
of the algorithm to jump out of a local optimum. Secondly, in the iteration process of particles, excessive
exploitation will lead to insufficient convergence and affect optimization accuracy, while excessive
exploration will lead to lack of diversity and fall into a local optimum. In the DL-MOPSO algorithm,
the velocity and position of each particle was updated using the inertia weight coefficient to achieve
both desirable exploitation and exploration performances of the search space [38]. The flow chart of
the algorithm is shown in Figure 3.

The steps of the algorithm are as follows:

(1) Set the number of the swarm particles as 100 for the outer loop MOPSO algorithm, that is, the pth
generation outer swarm is [X1, X2, . . . , X100] (the initial value of p is 1);

(2) Select the design vector Xi (the initial value of i is 1) in the pth generation outer swarm and enter
into the inner-loop MOPSO algorithm;

(3) Set the number of the swarm particles as 150 for the inner loop MOPSO algorithm, that is,
the inner swarm is [U1, U2, . . . , U150] for the nth generation (the initial value of n is 1);

(4) Substituting the uncertainty vector Ut (the initial value of t is 1) in the nth generation inner
swarm and the design vector Xi into Equations (13) and (14), calculate the fitness function of the
inner-loop MOPSO algorithm and save its value;

(5) If t > 150, jump to Step (6); otherwise, t = t + 1, jump to Step (4);
(6) n = n + 1; from the position-updating formula of the inner particles, a new inner swarm is

derived: [U1, U2, . . . , U150];
(7) If n > 250, jump to Step (8); otherwise, jump to Step (3);
(8) According to the maximum and minimum values of the fitness function of the inner-loop

MOPSO algorithm already saved, output the intervals
〈

f C
1 (Xi), f W

1 (Xi)
〉
,
〈

f C
2 (Xi), f W

2 (Xi)
〉

to
the outer-loop MOPSO algorithm for developing the fitness function of the outer MOPSO;

(9) Calculate the fitness function of the outer loop MOPSO algorithm via Equations (17) and (18) to
update the Pareto solution set in the external archival set of the outer-loop MOPSO algorithm.
There are no more than 100 Pareto solutions in the solution set;

(10) If i > 100, jump to Step (11); otherwise, let i = i + 1 and jump to Step (2);
(11) p = p + 1; get a new outer swarm based on the position-updating formula of the outer particles:

[X1, X2, . . . , X100];
(12) If the outer-loop MOPSO algorithm satisfies the convergence condition, jump to Step (13);

otherwise, jump to Step (1). When one of the following two conditions is satisfied, it is determined
as convergence: I. The maximum number of iterations is achieved. II. After 30 continuous
iterations, there is no new Pareto solution saved in the external archive set;
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(13) Output the front of the Pareto solution set.
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After performing the DL-MOPSO algorithm, the Pareto solution sets at different spring heights
are illustrated in Figure 4, where F1 and F2 are values of F1(X) and F2(X) expressed in Equations (17)
and (18).

It is shown from Figure 4 that the DLSC and a are contradictory in the Pareto solution set. In order
to select the optimal solution, the TOPSIS (Technique for Order Preference by Similarity to an Ideal
Solution) method was used to get the optimal solutions of Xi [39], which are shown in Table 4.
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Figure 4. (a) Pareto solution set of H0; (b) Pareto solution set of H1; (c) Pareto solution set of H2; and
(d) Pareto solution set of H3.

Table 4. Optimal geometric parameters of longitudinal-connected suspension at different spring
heights based on the DL-MOPSO algorithm.

Height (m) x1 (mm) x2 (mm)

H0 100 62
H1 100 69
H2 100 76
H3 100 60

It is indicated from Table 4 that the optimal value of x1 (inner diameter of air line) is constant,
while the optimal value of x2 (inner diameter of connector) changes with spring height. The change of
the inside area of the connectors can be realized through control valves placed in the connectors to
change their inside areas, along with the control of spring height.

In previous studies, two traditional types of longitudinal connections were usually used to
connect the passive air suspensions on the same side: Type 1 (three 6.5 mm inside diameter connectors
connecting a 6.5 mm inside diameter air line) and Type 2 (three 20 mm inside diameter connectors
connecting a 50 mm inside diameter air line) [8]. The longitudinal connection with the optimal
parameters is defined as Type 3.

6. Analysis of Optimization Results

In order to compare the performances of three types of connections (Type 1, Type 2, and Type 3),
according to the range of the uncertain variables at the four spring heights shown in Table 2, the upper
bound, middle value, and lower bound of each uncertain variable were selected as driving conditions
1–3, respectively. Comparisons were made among the three types of connections in the three driving
conditions at each spring height, respectively. The results are shown in Tables 5–8.
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Based on Tables 5–8, the optimization rates of Type 3 relative to Type 1 and Type 2 are illustrated
in Figure 5. The optimization rate refers to the reduction ratio of DLSC and a using Type 3 connection,
compared with using Type 1 and Type 2 connections. As shown in the figures, with respect to different
spring heights and driving conditions, compared with the two traditional types, the optimization
rate of a is 1.44~35.1%. The DLSC optimization rate reaches 0.44~20.75% in most cases, except for
a slight increase (1.04%) relative to Type 1 longitudinal connection in Condition 2, when the spring
height is H0. The reason for the increase of DLSC is that the optimization in this paper targets the
minimum evaluation functions corresponding to the variation intervals of DLSC and a when the
uncertain variable is changing, so the optimization effect may not be desirable when the uncertain
variables take a certain set of values. However, in most driving conditions, the DL-MOPSO algorithm
proposed in this paper can guarantee the comprehensive driving performance of the semi-trailer with
longitudinal-connected air suspensions.

Table 5. Comparisons among the three types of connections at the spring height of H0.

Type of Longitudinal
Connection Conditions

Uncertain Variables Evaluation Criteria

u1 u2 u3 α DLSC

Type 1
Condition 1 1 10 0 0.08172 0.02151
Condition 2 5.5 30 1870 0.34561 0.09851
Condition 3 10 50 3735 1.16307 0.14593

Type 2
Condition 1 1 10 0 0.0811 0.02023
Condition 2 5.5 30 1870 0.33927 0.10141
Condition 3 10 50 3735 1.10252 0.14496

Type 3
Condition 1 1 10 0 0.07933 0.02014
Condition 2 5.5 30 1870 0.32748 0.09953
Condition 3 10 50 3735 0.99083 0.13814

Table 6. Comparisons among the three types of connections at the spring height of H1.

Type of Longitudinal
Connection Conditions

Uncertain Variables Evaluation Criteria

u1 u2 u3 α DLSC

Type 1
Condition 1 1 10 3735 0.04262 0.00662
Condition 2 3 30 5595 0.11011 0.02303
Condition 3 5 50 7455 0.3235 0.03932

Type 2
Condition 1 1 10 3735 0.03985 0.00533
Condition 2 3 50 5595 0.10722 0.01988
Condition 3 5 30 7455 0.29532 0.03437

Type 3
Condition 1 1 10 3735 0.03533 0.00525
Condition 2 3 50 5595 0.10236 0.01936
Condition 3 5 30 7455 0.2518 0.03273

Table 7. Comparisons among the three types of connections at the spring height of H2.

Type of Longitudinal
Connection Conditions

Uncertain Variables Evaluation Criteria

u1 u2 u3 α DLSC

Type 1
Condition 1 6 10 3735 0.21827 0.03467
Condition 2 8 30 5595 0.28506 0.05775
Condition 3 10 50 7455 0.60039 0.07671

Type 2
Condition 1 6 10 3735 0.20694 0.02883
Condition 2 8 30 5595 0.27991 0.05379
Condition 3 10 50 7455 0.55921 0.0696

Type 3
Condition 1 6 10 3735 0.18811 0.02836
Condition 2 8 30 5595 0.26783 0.05096
Condition 3 10 50 7455 0.48512 0.0651
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Table 8. Comparisons among the three types of connections at the spring height of H3.

Type of Longitudinal
Connection Conditions

Uncertain Variables Evaluation Criteria

u1 u2 u3 α DLSC

Type 1
Condition 1 1 70 3735 0.11499 0.01418
Condition 2 3 80 5595 0.38438 0.03368
Condition 3 5 90 7455 0.74421 0.04992

Type 2
Condition 1 1 70 3735 0.10555 0.01322
Condition 2 3 80 5595 0.33886 0.02966
Condition 3 5 90 7455 0.63298 0.04238

Type 3
Condition 1 1 70 3735 0.09014 0.01305
Condition 2 3 80 5595 0.2696 0.02863
Condition 3 5 90 7455 0.48293 0.03956Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 19 
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Figure 5. (a) Optimization rate of Type 3 relative to Type 1 and Type 2 at H0; (b) Optimization rate 
of Type 3 relative to Type 1 and Type 2 at H1; (c) Optimization rate of Type 3 relative to Type 1 and 
Type 2 at H2; (d) Optimization rate of Type 3 relative to Type 1 and Type 2 at H3. 

From an engineering point of view, favourable dynamic load-sharing (low DLSC) can ensure 
the equalization of the axle group load across all wheels/axles, which has at least two advantages: 
(a) it reduces the possibility of a tire bursting as well as enhancing the maneuverability and stability 
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at H2; (d) Optimization rate of Type 3 relative to Type 1 and Type 2 at H3.

From an engineering point of view, favourable dynamic load-sharing (low DLSC) can ensure the
equalization of the axle group load across all wheels/axles, which has at least two advantages: (a) it
reduces the possibility of a tire bursting as well as enhancing the maneuverability and stability of the
vehicle; and (b) it alleviates the rutting and fatigue that contributes to pavement damage. Desirable
ride comfort (low α) decreases the possibility of damage to goods during transportation and thus
reduces transportation costs.

7. Conclusions

In order to improve the load-sharing and riding comfort of longitudinal-connected air suspension,
a nonlinear model for a 5-DOF tri-axle semi-trailer with longitudinal-connected air suspension was
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formulated based on fluid mechanics and thermodynamics. The strategy for controlling the height of
the longitudinal-connected air suspensions was designed according to road roughness, driving speed,
and vehicle load. Then, for various spring heights of the semi-trailer, the SVR algorithm was adopted
to fit the relational models of the load-sharing and the ride comfort indices, respectively, with the
changes in driving conditions and suspension parameters. The coefficient of determination indicated
that the goodness of fit of the fitting models was desirable.

A DL-MOPSO algorithm was proposed to tackle the uncertainty of the road roughness, driving
speed, and vehicle load in the optimization of geometric parameters of the longitudinal-connected air
suspension. In the DL-MOPSO algorithm, the inner-loop algorithm is utilized to calculate the interval
range of the target function when the uncertain variable is changing, while the outer-loop algorithm is
used for global optimization of the inner diameters of the optimal air lines and connectors. The optimal
inner diameter of air lines is a constant value at various spring heights. However, the optimal inner
diameter of the connector changes with spring height. This can be realized through the control of
valves placed in the connectors to change their inside areas, along with the control of spring height.

Compared with the two traditional suspensions, the optimization rates of DLSC and a are
−1.04~20.75% and 1.44~35.1%, respectively. The reason for the slight increase of DLSC in Condition 2
when the spring height is H0 is that the optimization in this paper targets the minimum evaluation
function corresponding to the DLSC and a variation interval when the uncertain variable is changing,
so the optimization effect may not be good when the uncertain variable takes a certain set of values.
Generally, the DL-MOPSO algorithm proposed in this paper can guarantee the comprehensive driving
performance of the semi-trailer with longitudinal-connected air suspension and is robust to change in
driving conditions. Based on the signals measured from the suspension height sensors, the proposed
method can be realized through integrated control of inflation/deflation valves of air suspensions, as
well as the valves inside connectors and air lines.

Author Contributions: Conceptualization, Y.C. and W.H.; Methodology, H.P.; Software, S.H.; Validation, L.D.;
Formal Analysis, J.H. and H.P.; Investigation, L.D.; Resources, Q.S.; Data Curation, Q.W.; Writing—Original Draft
Preparation, Y.C. and S.H.; Writing—Review & Editing, Q.S. and J.H.; Visualization, Q.W.; Supervision, Y.C.

Acknowledgments: This research was funded by the National Natural Science Foundation of China (grant number
51305117) and the Fundamental Research Funds for the Central Universities (grant number JZ2017HGTB0212).
And the APC was funded by the National Natural Science Foundation of China (grant number 51305117).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gong, B.; Guo, X.; Hu, S.; Xu, L. Ride comfort optimization of a multi-axle heavy motorized wheel dump
truck based on virtual and real prototype experiment integrated Kriging model. Adv. Mech. Eng. 2015, 7,
1–15. [CrossRef]

2. Trigell, A.S.; Rothhämel, M.; Pauwelussen, J.; Kural, K. Advanced vehicle dynamics of heavy trucks with the
perspective of road safety. Veh. Syst. Dyn. 2017, 55, 1–46. [CrossRef]

3. Li, J.; He, J.; Li, X. Multi-objective optimization of vehicle air suspension based on simulink-mfile mixed
programming. Appl. Mech. Mater. 2014, 509, 63–69. [CrossRef]

4. Davis, L.E.; Bunker, J.M. Load-sharing in heavy vehicle suspensions: new metrics for old. In Proceedings of
the Second Infrastructure Theme Postgraduate Conference, Brisbane, Australia, 12 November 2008.

5. Cebon, D. Vehicle-Generated Road Damage: A Review. Veh. Syst. Dyn. 1989, 18, 107–150. [CrossRef]
6. Sweatman, P.F. A Study of Dynamic Wheel Forces in Axle Group Suspensions of Heavy Vehicles; Technical Report;

Australian Road Research Board (ARRB): Vermont South, Victoria, Australia, 1983.
7. Organisation for Economic Cooperation and Development, Scientific Expert Group. Dynamic Loading of

Pavements; Technical Report; OECD Road Transport Research: Paris, France, 1992.
8. Davis, L.; Bunker, J. Altering heavy vehicle air suspension dynamic forces by modifying air lines. Int. J.

Heavy Veh. Syst. 2011, 18, 1–17. [CrossRef]
9. Cantieni, R.; Krebs, W.; Heywood, R. Dynamic Interaction between Vehicles and Infrastruction Experiment (Divine);

Technical Report; Organisation for Economic Co-operation and Development (OECD): Paris, France, 1998.

http://dx.doi.org/10.1177/1687814015584257
http://dx.doi.org/10.1080/00423114.2017.1319964
http://dx.doi.org/10.4028/www.scientific.net/AMM.509.63
http://dx.doi.org/10.1080/00423118908968916
http://dx.doi.org/10.1504/IJHVS.2011.037957


Appl. Sci. 2018, 8, 1454 17 of 18

10. Roaduser Systems Pty Ltd. Stability and On-Road Performance of Multi-Combination Vehicles with Air Suspensions
Systems Project. Overarching Report; Technical Report; National Road Transport Commission: Canberra,
Australia, 2005.

11. Xu, X.; Zou, N.; Chen, L.; Cui, X. Modelling and analysis of parallel-interlinked air suspension system based
on a transfer characterisation. Int. J. Heavy Veh. Syst. 2016, 12, 1–23. [CrossRef]

12. Li, Z.; Ju, L.; Jiang, H.; Xu, X.; Li, M. Experimental and simulation study on the vibration isolation and torsion
elimination performances of interconnected air suspensions. Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
2016, 230, 679–691. [CrossRef]

13. Li, Z.; Ju, L.; Jiang, H.; Xu, X. Imitated skyhook control of a vehicle laterally interconnected air suspension.
Int. J. Veh. Des. 2017, 74, 204–230. [CrossRef]

14. Cebon, D.; Roebuck, R.L.; Dale, S.G. Optimal control of a semi-active tri-axle lorry suspension. Veh. Syst.
Dyn. 2006, 44 (Suppl. 1), 892–903.

15. Kat, C.-J.; Els, P.S. Interconnected air spring model. Math. Model. Syst. 2009, 15, 353–370. [CrossRef]
16. Chen, Y.; He, J.; King, M.; Chen, W.; Zhang, W. Effect of driving conditions and suspension parameters on

dynamic load-sharing of longitudinal-connected air suspensions. Sci. Chin. 2013, 56, 666–676. [CrossRef]
17. Chen, Y.; He, J.; King, M.; Chen, W.; Wang, C.; Zhang, W. Model Development and Dynamic Load-Sharing

Analysis of Longitudinal-Connected Air Suspensions. Stroj. Vestn. 2013, 59, 14–24. [CrossRef]
18. Zhu, H.; Yang, J.; Zhang, Y. Modeling and optimization for pneumatically pitch-interconnected suspensions

of a vehicle. J. Sound Vib. 2018, 432, 290–309. [CrossRef]
19. Abbasa, M.; Bellahcene, F. Cutting plane method for multiple objective stochastic integer linear programming.

Eur. J. Oper. Res. 2006, 168, 967–984. [CrossRef]
20. Liu, B.; Iwamura, K. Fuzzy programming with fuzzy decisions and fuzzy simulation-based genetic algorithm.

Fuzzy Sets Syst. 2001, 122, 253–262. [CrossRef]
21. Moore, R.E. Methods and Applications of Interval Analysis; The Society for Industrial and Applied Mathematics:

Philadelphia, PA, USA, 1979.
22. Ishibuchi, H.; Tanaka, H. Multiobjective programming in optimization of the interval objective function.

Eur. J. Oper. Res. 1990, 48, 219–225. [CrossRef]
23. Bai, L.; Li, F.; Cui, H.; Jiang, T.; Sun, H.; Zhu, J. Interval optimization based operating strategy for

gas-electricity integrated energy systems considering demand response and wind uncertainty. Appl. Energy
2016, 167, 270–279. [CrossRef]

24. Feng, Y.; Zhang, Z.; Tian, G.; Lv, Z.; Tian, S.; Jia, H. Data-driven accurate design of variable blank holder
force in sheet forming under interval uncertainty using sequential approximate multi-objective optimization.
Future Gener. Comput. Syst. 2018, 86, 1242–1250. [CrossRef]

25. Allotta, B.; Pugi, L.; Colla, V.; Bartolini, F.; Cangioli, F. Design and optimization of a semi-active suspension
system for railway applications. J. Mod. Transp. 2011, 19, 223–232. [CrossRef]

26. Ma, Y.; Xu, T.; Qian, F. Machine tool support multi-objective robustness design under uncertainties.
Comput. Integr. Manuf. Syst. 2017, 23, 482–487.

27. Cheng, J.; Duan, G.F.; Liu, Z.Y.; Li, X.G.; Feng, Y.X.; Chen, X.H. Interval multiobjective optimization of
structures based on radial basis function, interval analysis, and NSGA-II. J. Zhejiang Univ. Sci. A 2014, 15,
774–788. [CrossRef]

28. Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization.
IEEE Trans. Evol. Comput. 2004, 8, 256–279. [CrossRef]

29. Raquel, C.R.; Naval, P.C., Jr. An effective use of crowding distance in multiobjective particle swarm
optimization. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation,
Washington, DC, USA, 25–29 June 2005; pp. 257–264.

30. Pugi, L.; Galardi, E.; Carcasci, C.; Rindi, A.; Lucchesi, N. Preliminary design and validation of a real time
model for hardware in the loop testing of bypass valve actuation system. Energy Convers. Manag. 2015, 92,
366–384. [CrossRef]

31. Davis, L.E.; Bunker, J.M. Suspension Testing of 3 Heavy Vehicles—Dynamic Wheel Force Analysis; Department of
Main Roads-Queensland Government: Brisbane, Australia, 2009.

32. De Pont, J. Assessing Heavy Vehicle Suspensions for Road Wear; California Transit Association: Wellington, New
Zealand, 1997.

http://dx.doi.org/10.1504/IJVNV.2016.077468
http://dx.doi.org/10.1177/0954407015591664
http://dx.doi.org/10.1504/IJVD.2017.086430
http://dx.doi.org/10.1080/13873950902955783
http://dx.doi.org/10.1007/s11431-012-5091-3
http://dx.doi.org/10.5545/sv-jme.2012.755
http://dx.doi.org/10.1016/j.jsv.2018.06.043
http://dx.doi.org/10.1016/j.ejor.2002.11.006
http://dx.doi.org/10.1016/S0165-0114(00)00035-X
http://dx.doi.org/10.1016/0377-2217(90)90375-L
http://dx.doi.org/10.1016/j.apenergy.2015.10.119
http://dx.doi.org/10.1016/j.future.2017.02.048
http://dx.doi.org/10.1007/BF03325762
http://dx.doi.org/10.1631/jzus.A1300311
http://dx.doi.org/10.1109/TEVC.2004.826067
http://dx.doi.org/10.1016/j.enconman.2014.12.061


Appl. Sci. 2018, 8, 1454 18 of 18

33. Chen, Y.K.; He, J.; King, M.; Chen, W.W.; Zhang, W.H. Stiffness-dam;ping matching method of an ECAS
system based on LQG control. J. Cent. South Univ. 2014, 21, 439–446. [CrossRef]

34. Yu, Z. Automobile Theory, 5th ed.; China Machine Press: Beijing, China, 2009; pp. 203–251.
35. Thite, A.N.; Coleman, F.; Doody, M.; Fisher, N. Experimentally validated dynamic results of a relaxation-type

quarter car suspension with an adjustable damper. J. Low Freq. Noise Vib. Act. Control 2017, 36, 148–159.
[CrossRef]

36. Anderson, M.J.; Whitcomb, P.J. Design of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2000.
37. Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines; Association for Computing Machinery:

Washington, DC, USA, 2011; pp. 1–27.
38. Hu, W.; Gray, G.; Zhang, X. Multiobjective Particle Swarm Optimization Based on Pareto Entropy. J. Softw.

2014, 25, 1025–1050.
39. Shojaeefard, M.H.; Khalkhali, A.; Faghihian, H.; Dahmardeh, M. Optimal platform design using

non-dominated sorting genetic algorithm II and technique for order of preference by similarity to ideal
solution; application to automotive suspension system. Eng. Optim. 2018, 50, 471–482. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11771-014-1957-9
http://dx.doi.org/10.1177/0263092317711989
http://dx.doi.org/10.1080/0305215X.2017.1324853
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematic Models and Load-Sharing Criteria 
	Mathematic Models of the Tri-Axle Semi-Trailer and Road Roughness Excitation 
	Load-Sharing Criteria 

	Control Strategy of Air Spring Height 
	Development of Multi-Objective Optimization Functions for Comprehensive Driving Performance 
	Fitting Models of Evaluation Indices Based on Support Vector Regression 
	Multi-Objective Optimization Functions Considering Uncertainty of Driving Conditions 

	Multi-Objective Optimization Algorithm Based on DL-MOPSO 
	Analysis of Optimization Results 
	Conclusions 
	References

