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Abstract: Blood transfusion is a common and often necessary medical procedure during surgery.
However, most physicians rely on their personal clinical experience to determine whether a patient
requires a transfusion. This generally involves considering the risk of blood loss during surgery, and
the preparation of blood is thus regularly requested before surgery. However, unused blood is a
particularly severe problem, especially in orthopedic procedures, which not only increases medical
resource wastage but also places a burden on medical personnel. This study collected the records
of 1396 patients who received an orthopedic surgery in a regional teaching hospital. Data mining
techniques, namely support vector machine, C4.5 decision tree, classification and regression tree,
and logistic regression (LGR) were employed to predict whether patients undergoing an orthopedic
surgery required an intraoperative blood transfusion. The LGR classifier, which was constructed
using the CfsSubsetEval module and GeneticSearch method, exhibited optimal prediction accuracy
(area under the curve: 78.7%). This study investigated major variables involved in blood transfusions
to provide a clear reference for evaluating the necessity of preparing blood for surgical procedures.
Data mining techniques can be used to simplify unnecessary blood preparation procedures, thereby
reducing the workload of medical staff and minimizing the wastage of medical resources.

Keywords: blood transfusion prediction; data mining; supervised learning techniques; orthopedic
surgery; feature selection

1. Introduction

Intraoperative blood transfusions are commonly performed when loss of blood flow, blood
components, or oxygen occur due to excessive bleeding. Without such measures, patients are at an
increased risk of heart failure and death. Thus, predicting whether a blood transfusion is necessary for
surgical patients is an issue of great concern in the field of medicine. Clinically, blood transfusions are
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often necessary in cardiovascular, orthopedic (e.g., hip and knee joint replacement), gynecological (e.g.,
radical hysterectomy), and urological (e.g., radical prostatectomy) surgical procedures [1]. However,
blood transfusion may induce some risks, such as transmission of bacterial or viral infections. Therefore,
the World Health Organization (WHO) urges member states to utilize transfusion alternatives and
develop individualized Patient Blood Management (PBM) programs to reduce transfusion needs.
The three pillars of PBM are as follows: (i) detection and treatment of preoperative anemia; (ii) reduction
in perioperative RBC loss; and (iii) harnessing and optimizing the patient-specific physiological reserve
of anemia (including restrictive hemoglobin transfusion triggers) [2].

To prevent excessive blood loss during surgery, preoperative blood preparation is often necessary
in certain departments and disciplines. Previous studies have identified that more than 60–70% of
prepared blood products go unused [3]. A further investigation of this trend has revealed that most
physicians often determine whether a transfusion is necessary on the basis of their clinical experience,
which results in a waste of related medical resources. Furthermore, it can impose a burden on medical
staff. For example, two nursing personnel must perform joint assessments to facilitate accurate blood
preparation. In addition, unnecessary requests for blood can put pressure on blood bank personnel to
ensure the accurate management and storage of blood. Accordingly, enhancing the prediction accuracy
of whether an intraoperative blood transfusion is necessary may effectively resolve current problems in
clinical practice. The guideline of the Maximum Surgical Blood Order Schedule (MSBOS)–the amount
of blood to be cross-matched for specific elective operations–has been used to rationalize the number of
units of blood routinely cross-matched for elective surgical procedures and has concomitantly reduced
the unnecessary use of blood [4–7]. However, some primary concerns regarding the MSBOS are that
the recommendations are often outdated, based on opinion, do not include recently developed surgical
procedures, and are not based on institution-specific blood utilization data.

Previous studies on intraoperative blood transfusion [8–12] have focused primarily on variables
related to patients’ physiological characteristics (e.g., weight, age, and sex) [13] and medication history
(e.g., whether the patient is receiving nonsteroidal anti-inflammatory drugs or blood thinners) [10],
the type and duration of the surgical procedure [14,15], the use of tranexamic acid [16,17], and whether
patients have a history of cardiopulmonary disease [18]. A review of the literature revealed that most
studies on related topics have investigated patients in the United States and Europe, but no study has
addressed patients in Asian countries. In addition, these studies have mainly employed statistical
analyses, whereas supervised learning algorithms have rarely been employed in their analysis of
related variables. Moreover, no viable prediction model has been proposed regarding the clinical
application of blood transfusions.

According to the electronic medical records (EMRs) collected for this study, orthopedic surgery
requires the highest volume of blood, the most frequent transfusions, and incurs the highest cost
from unused blood products, suggesting that the prediction accuracy in orthopedic departments
requires significant improvement. Therefore, to prevent unnecessary blood preparation, the aim of this
study is to develop a prediction model to determine whether an orthopedic surgery patient requires a
preoperative blood preparation for an intraoperative or postoperative blood transfusion. To make the
precision model applicable in clinical practice, we only consider the set of independent variables (IVs)
which can be retrieved before the onset of surgery. Supervised learning algorithms were employed to
analyze the influence of each variable, and a prediction model was devised to provide a reference to
facilitate clinical decision-making by related medical personnel in preoperative blood preparation.

2. Materials and Methods

All the medical histories of inpatients were collected from the electronic medical record system
at a regional teaching hospital in Southern Taiwan. The inpatients who underwent an orthopedic
surgery from July 2011 to December 2013 were included. Because intraoperative or postoperative
blood preparations usually occur under emergency conditions and cannot be predicted, the patients
having an intraoperative or a postoperative blood preparation were not considered in the study.
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Moreover, patients younger than 20 years of age were also excluded. In addition to the factors
suggested in previous studies, chronic disease history and data from liver and renal function tests,
namely glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), blood urea
nitrogen (BUN), and creatinine levels, were included as the study variables. These test results were
included because abnormal liver function can affect coagulation and thus increase the need for an
emergent intraoperative blood transfusion. Moreover, patients with poor renal function or who
require dialysis often have lower hemoglobin (HB) levels and are thus at a greater risk of requiring an
intraoperative blood transfusion. The Chia-Yi Christian Hospital Institutional Review Board approved
the study protocol (CYCH-IRB No. 103018). Written consent from the study was deemed unnecessary
because the dataset comprises only anonymized secondary data for research purposes, and the Chia-Yi
Christian Hospital Institutional Review Board issued a formal written waiver of the need for consent.

2.1. Data Source

With the approval of the institutional review board, the medical records of all patients whose
orthopedic physicians requested preoperative blood preparation between July 2011 and December
2013 were retrieved from a blood bank database. According to the manual report in the case hospital
in 2013, the number of orthopedic surgeries is 671 and the number of blood units prepared for these
patients is 2052. Among them, only 848 blood units (41.3%) were used for 316 patients (47.1%). From
the records, details on the blood product specifications, product quantity, the serial number of blood
preparation services, physician identification numbers, and medical history numbers were linked to
inpatient identification numbers to obtain the corresponding diagnostic, operation, and procedure
codes. Finally, the aforementioned data were used to access relevant EMRs and retrieve information
on inpatient physical assessments, preoperative blood and biochemistry evaluations, preoperative
anesthesia consultation evaluations, medical and medication histories, and smoking or alcohol history.

2.2. Variable Definition and Selection

On the basis of a review of the literature and consultations with the relevant specialists, the
dependent variable of this study was the decision to perform a blood transfusion within 48 h of
surgery. A total of 35 IVs (Table 1) retrieved before the onset of surgery were considered in our
study [1,3,9–15,18–26].

Table 1. Variable definition.

Category Variable Name Definition Type

Demographic AGE Age Numerical
GENDER Male/Female Categorical

Body checkup

DBP Diastolic blood pressure Numerical
SBP Systolic blood pressure Numerical
BT Body temperature Numerical
HR Heartbeat rate Numerical
RR Respiratory rate Numerical
BMI Body mass index (kg/m2) Numerical

Laboratory

HB Hemoglobin Numerical
PLT Platelets Numerical
INR International normalized ratio Numerical
APTT Activated Partial Thromboplastin Time Numerical
GOT Glutamic-pyruvic transaminase Numerical
GPT Glutamic-oaa transaminase Numerical
BUN Blood urea nitrogen Numerical
CRT Creatinine Numerical
NA Na Numerical
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Table 1. Cont.

Category Variable Name Definition Type

K K Numerical
GLU Blood glucose Numerical

Surgery

SURGEON Surgeon ID Categorical
OP Surgery category (ICD-9-CM code) Categorical

ASA American Society of Anesthesiologists (ASA) class
(ASA I/ASA II/ASA III/ASA IV/ASA V) Categorical

ANES_TYPE Anesthesia type (GA-tube/GA-LM/SA/EA) Categorical
TU The use of tourniquet (Yes/No) Categorical
EM_SUR Emergency surgery (Yes/No) Categorical
OP_DAYS (Wait OP days) Numerical

History

LUNG Whether the patient had lung disease? (Yes/No) Categorical

CVD Whether the patient had cardiovascular disease?
(Yes/No) Categorical

DM Whether the patient had diabetes? (Yes/No) Categorical
HT Whether the patient had hypertension? (Yes/No) Categorical
LIVER Whether the patient had liver disease? (Yes/No) Categorical
KIDNEY Whether the patient had renal disease? (Yes/No) Categorical
SMOKE Whether the patient had smoke? (Yes/No) Categorical
ALCOHOL Whether the patient had alcohol? (Yes/No) Categorical

ANTI_COA Whether the patient had used anticoagulant drug
use? (Yes/No) Categorical

The study employed the data mining software, WEKA 3.6.11, and used three Correlation-based
Feature Subset Selection (CfsSubsetEval) methods to generate three datasets (referred to as Datasets
A, B, and C). The CfsSubsetEval module evaluates both the prediction power of each IV and the
degree of redundancy between any two IVs; the subset of features that are highly correlated with
the dependent variable but not strongly correlated with one another are preferred. Dataset A was
processed using the CfsSubsetEval module with the GreedyStepwise method to retrieve the following
4 IVs: OP, BMI, HB, and PLT. Dataset B was generated using the CfsSubsetEval module with the
RankSearch and GainRatioAttibuteEval methods to acquire the following 13 IVs: SURGEON, OP, AGE,
BMI, DBP, HB, PLT, INR, GOT, BUN, NA, OP_DAYS, and LIVER. Finally, the CfsSubsetEval module
and GeneticSearch method were used to construct Dataset C, which contained the following 12 IVs:
SURGEON, OP, AGE, GENDER, BMI, DBP, HB, PLT, INR, GOT, OP_DAYS, and KIDNEY.

2.3. Investigated Classification Techniques

The data mining techniques selected in this study were support vector machines (SVMs),
classification and regression trees (CARTs), C4.5 algorithm, and logistic regression (LGR) [27–31].
SVM, a supervised learning method for classification, is currently one of the most effective methods for
high-dimensional data (Cortes and Vapnik, 1995). An SVM initially maps input and output variables
to a high-dimensional vector space by using structural risk minimization, which minimizes boundary
errors by induction. Then, the SVM seeks a separating hyperplane to divide the data into two or more
categories. Therefore, a new instance can be mapped into one of the subspaces projected by a set of
hyperplanes, and the majority class in this subspace is assigned to the new instance.

Decision tree (DT) is a classification technique commonly used in data mining. In the tree,
each internal node represents a single IV. Each branch represents one or more possible values of
the selected IV, and each leaf-node represents a class label. During tree construction, the DT-based
algorithms recursively select an IV to reduce the impurity of the instance group. When the stopping
criteria are satisfied, a class label will be assigned to a leaf-node. Both CART and C4.5 are DT-based
algorithms, but they have two major differences during the tree-growing phase: (1) the impurity
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measure of CART is the Gini index, while in C4.5, it is the gain ratio; (2) CART method builds binary
trees, while C4.5 builds a multiway tree.

Regression analysis is a statistical learning method; it analyzes the collected data to develop a
mathematical model for predicting the output variable. It aims at determining the correlation strength
between the input and output variables. LGR is a nonlinear regression model, where the dependent
variable is categorical. LGR can be used to predict the probability of an event by fitting the data objects
to a logistic function, that is, it allows input variables with any value to be put into the logistic function
to obtain a probability value between 0 and 1.

2.4. Experimental Setup and Performance Measure

Parameter values were automatically adjusted using WEKA. The classification performance
of the SVM, C4.5, CART, and LGR models was compared to select the optimal model. Ten-fold
cross-validation was applied to all experimental evaluations. Specifically, each dataset is partitioned
into ten complementary subsets; any nine were used for model training, and the remaining subset was
used for model testing. The validation was repeated 10 times, and the average results were reported in
our study.

To evaluate the efficacy of these prediction models, the accuracy, sensitivity, and specificity were
evaluated using a confusion matrix (Table 2). These metrics were determined using the following
formulas: sensitivity = TP/(TP + FN), specificity = TN/(TN + FP), and accuracy = TP + TN/(TP + FP +
FN + TN). In addition, the area under the receiver operating characteristic curve (AUC) was included
as an indicator of the model performance, with larger AUCs indicating higher accuracy.

Table 2. Variable definition.

Predicted Class

Blood Transfusion No Blood Transfusion

Actual Class
Blood Transfusion TP FN

No Blood Transfusion FP TN

3. Results

From the blood bank databases and medical records of the study hospital, 1698 blood preparation
records were obtained for patients who underwent an orthopedic surgery. Filtering and preprocessing
the data to remove records with missing values or data errors yielded 1396 records for subsequent
analyses, which included 661 clinical cases with an intraoperative blood transfusion as well as 735
cases without an intraoperative blood transfusion.

In Dataset A, the four significant IVs were first tested on the SVM, C4.5, CART, and LGR classifiers.
The results in Table 3 reveal that the accuracy of the LGR classifier was the highest (71.80%), followed
by the CART classifier (71.10%), and the C4.5 classifier had the lowest accuracy rate (70.30%). The AUC
results revealed that the LGR had the highest accuracy (77.40%), while the SVM classifier had the
lowest accuracy (70.30%).

Table 3. Experimental results for Dataset A. AUC: area under the receiver operating characteristic
curve; SVM: support vector machine; CART: classification and regression tree; LGR: logistic regression.

Classifier Accuracy Sensitivity Specificity AUC

SVM 70.8% 78.4% 62.3% 70.3%
C4.5 70.3% 69.0% 71.7% 72.3%

CART 71.1% 71.4% 70.7% 74.1%
LGR 71.8% 79.2% 63.7% 77.4%
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In Dataset B, the 13 significant IVs were processed using the same four classifiers. The results in
Table 4 show that the prediction accuracy of the CART classifier was the highest (71.80%), followed
by LGR (71.70%), and the SVM classifier was the lowest (71.10%). The AUC results showed that
the optimal performance was exhibited by the LGR classifier (78.30%), while the least favorable
performance was by the SVM classifier (70.80%).

Table 4. Experimental results for Dataset B.

Classifier Accuracy Sensitivity Specificity AUC

SVM 71.1% 76.6% 64.9% 70.8%
C4.5 71.3% 75.5% 66.7% 73.8%

CART 71.8% 75.6% 67.5% 73.9%
LGR 71.7% 77.7% 65.1% 78.3%

Finally, in Dataset C, the 12 significant IVs were analyzed using the same four classifiers.
The analysis results in Table 5 show that the highest accuracy was obtained by the CART classifier
(73.10%), followed by the LGR classifier (72.20%) and C4.5 classifiers (72.20%), and the lowest was for
the SVM classifier (71.10%). The AUC results showed that the optimal performance was obtained by
the LGR classifier (78.70%), while the least one was obtained by the SVM classifier (70.70%).

Table 5. Experimental results for Dataset C.

Classifier Accuracy Sensitivity Specificity AUC

SVM 71.1% 78.0% 63.5% 70.7%
C4.5 72.2% 78.6% 65.1% 74.5%

CART 73.1% 78.1% 67.5% 74.3%
LGR 72.2% 78.4% 65.4% 78.7%

Results showed that the LGR classifier was the optimal classifier and yielded the highest prediction
accuracy for all three datasets. In addition, the variables in Dataset C exhibited a relatively satisfactory
prediction model performance, indicating that the combination of the CfsSubsetEval module and
the GeneticSearch method can generate higher prediction accuracy. However, the prediction model
generated from Dataset C must be performed based on 12 IVs. If data for all 12 variables cannot be
obtained in clinical practice, Dataset A can be used alternatively because it still produces satisfactory
prediction accuracy (77.40%) with only four IVs (OP, BMI, HB, and PLT).

4. Discussion

To further explore the effects of the IVs on the dependent variable, the attribute selection module
in WEKA was adopted to analyze the significant variables. The gain ratio (GainRatioAttributeEval)
was applied to rank the variables according to their gain ratio. The experimental results in Figure 1
reveal that variables such as HB, BMI, PLT, OP_DAYS, AGE, INR, OP, DBP, and the variables related to
liver and renal function have a larger influence on intraoperative blood transfusion.

First, HB was found to have the greatest effect on preoperative blood preparation, which
corresponded with results from other literature [32–37]. The relationship between decreasing HB levels
and the need for an intraoperative blood transfusion was further explored by employing HB as the sole
variable to conduct a univariate analysis using the C4.5 classifier. The retrieved classifications were HB
≤ 12.1 g/dL: Y (656.0/172.0), HB > 12.1 g/dL: N (831.0/268.0) (Y indicates the status of intraoperative
blood transfusion). The results of accuracy, sensitivity, specificity, and AUC were 0.677, 0.77, 0.573,
and 0.664, respectively.
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The effect of BMI came second after HB, which was found to be more influential than the
other primary factors considered by specialists (e.g., PLT, OP, AGE, and LIVER). Similar to previous
findings [14,15,38], the evaluation of BMI indicated that patients with a high BMI may require treatment
with the same volume of blood loss. Furthermore, a lower PLT (i.e., PLT ≤ 80,000) indicates a high
amount of blood loss. This is because poor blood coagulation may be caused by cirrhosis or severe
sepsis, which was supported by a previous study reporting that blood preparation may be suitable
with a PLT of <100,000 [15].

Notably, surgical waiting time (OP_DAYS) was also found to have a marked influence mainly
on patients with open wounds because the need for an intraoperative blood transfusion is higher for
patients who experience continuous blood loss and have longer surgical waiting times [10].

Next, our study identified AGE as a vital factor for determining whether a blood transfusion
should be performed, which is consistent with the findings of many previous studies [3,9–12,20,23,26].
Although some previous studies have considered that INR is irrelevant to the need for a blood
transfusion, the results of the present study showed that INR is relevant to the need for a
blood transfusion.

Finally, regarding the type of OP, specialists consider that the decision to prepare blood is highly
likely to be affected by events that occur during surgery. For instance, most limb operations do not
require blood preparation because tourniquets are used when the need for blood preparation increases
or for operations with a high risk of bleeding (e.g., spinal, thigh bone, knee, and hip replacement
operations).

5. Conclusions

The identification of the predictors for blood transfusions in surgical patients has long been
a topic of concern in medicine; statistical models are commonly utilized in the literature. Until
recently, data mining and machine learning techniques have proven to possess an excellent ability
to construct prediction models in the medical domain. This study sought to develop a reliable
prediction model by using SVM, DT, and LGR supervised learning algorithms to improve current
clinical decision-making procedures for blood management. The results may provide a clinical
reference for evaluating preoperative blood preparation and may serve as a reminder to high-risk
patients when preparing blood for a transfusion before surgery, thereby enhancing overall service
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quality and safety. In addition, our study also contributes to the literature related to the novel use of
data mining techniques for transfusion medicine.

Three concerns were identified as research limitations. First, the gold standard of blood transfusion
in surgical patients is the doctor’s clinical judgement, and over-transfusion might be a problem in such
scenario. It may be worth repeating the study after reviewing whether a transfusion is appropriate by
a well-trained team. Second, we primarily investigated the need for a blood transfusion within 48 h of
surgery and did not consider that physicians may have already performed a blood transfusion for the
patient prior to that threshold. Third, a history of anticoagulant use does not consider prescriptions
from other hospitals or purchases from other sources.

The present study confirmed that data mining techniques possess satisfactory accuracy for
predicting whether a blood transfusion will be necessary in orthopedic procedures. Future studies
of the prediction of blood volume or using other variables such as surgery duration and blood loss
volume should be considered. Further applications in other medical departments are expected to
generate satisfactory outcomes and improve the safety of surgery.
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