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Abstract: The fast development of smart sensors and wearable devices has provided the opportunity
to develop intelligent operator workspaces. The resultant Human-Cyber-Physical Systems (H-CPS)
integrate the operators into flexible and multi-purpose manufacturing processes. The primary
enabling factor of the resultant Operator 4.0 paradigm is the integration of advanced sensor and
actuator technologies and communications solutions. This work provides an extensive overview
of these technologies and highlights that the design of future workplaces should be based on the
concept of intelligent space.

Keywords: Operator 4.0; Industry 4.0; Internet of Things (IoT); Human-Cyber-Physical Systems
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1. Introduction

The continuous innovations of Cyber-Physical Systems (CPS), the Internet of Things (IoT),
the Internet of Services (IoS), robotics, big data, cloud and cognitive computing and augmented reality
(AR) result in significant change in production systems [1,2]. As these technologies revolutionize
industrial production, the high-tech strategy of the German government launched to promote the
computerization of manufacturing was named as the fourth industrial revolution (Industry 4.0).
China developed its own initiative. Made-in-China 2025 is a strategic plan announced in 2015
to increase competitiveness in cutting-edge industries including the manufacturing sector [3–5].
The approach of China is also based on the most modern IT technologies [6] that are not only
used to improve the efficiency of the production, but also to share manufacturing capacity and
support cooperation [7]. The U.S. has introduced “reindustrialization” policies to reinvigorate its
manufacturing industry. By releasing the “New Robot Strategy,” Japan is attempting to accelerate the
development of cooperative robots and unmanned plants to revolutionize the robot industry, cope with
the aggravation of Japanese social and economic issues and enhance international competitiveness.
The “New Industrial France”, the “high-value manufacturing” strategy of the U.K. and the “advanced
innovators’ strategy” of South Korea have similar CPS-based focus points [8]. The common goal of
these developments is to integrate the supply chain. Industry 4.0 and additive manufacturing, when
combined, can help enable the creation of products that are first-to-market and fully customized.
Thanks to the benefits of additive manufacturing, not only the consumer can find more customized
products and services, but also the manufacturer has a chance to create more efficient and scalable
production flow [9]. All in all, these novel manufacturing technologies appear to herald a future in
which value chains are shorter, more collaborative and offer significant sustainability benefits.

Organizations should be prepared for the introduction of Industry 4.0-based complex production
systems. Recently developed maturity or readiness models are mainly technology focused [10,11] and
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assess the Industry 4.0 maturity of industrial enterprises in the domain of discrete manufacturing [12].
Thanks to the fast and flexible communications between CPSs, smart sensors and actuators, real-time
and self-controlled operations can be realized [6,13]. The new smart IoT devices have the potential to
design mobile machines that replace human minds [14]. Researchers at Oxford University estimated
that approximately 47% of all U.S. employment will be at a high risk of computerization by the early
2030s [15]. A survey conducted by PricewaterhouseCoopers (PwC) found that 37% of employees were
worried about the possibility of redundancy due to automation [15,16].

Although the increase in the degree of automation reduces costs and improves productivity [17],
human operators are still essential elements of manufacturing systems [18,19]. The increasing degree
of automation also does not necessarily lead to enhanced operator performance [20]. Handling
human factors is a challenging problem concerning both cellular manufacturing [21] and human-robot
interaction [22]. For example, smart factories have to take into consideration operators who are
aging or apprentices by using advanced technologies to help people to integrate into the modern
manufacturing workforce [23].

Industry 4.0 (especially IoT devices and CPS) allows new types of interactions between operators
and machines [24]. These interactions will generate a new intelligent workforce and have significant
effects on the nature of work. The integration of workers into an Industry 4.0 system consisting of
different skills, educational levels and cultural backgrounds is a significant challenge. The new concept
of Operator 4.0 was created for the integrated analysis of these challenges. The concept of Operator 4.0
is based on the so-called Human-Cyber-Physical Systems (H-CPSs) designed to facilitate cooperation
between humans and machines [25].

Although the state of the art in the area of Industry 4.0 has been reviewed recently [3] and
systematic literature reviews are frequently published [26–28], there is a need to study how the fourth
industrial revolution will not entirely replace operators; instead, sensors, smart devices, mobile IoT
assets and technologies will be used to design systems for operator support.

This paper focuses on the elements of this infrastructure and proposes an intelligent space-based
design methodology for the design of Operator 4.0 solutions. According to this goal, the development
and application of advanced Internet of Things technologies with regard to smart sensing technologies,
IoT architectures, services and applications will be discussed by following the types of Operator 4.0
solutions proposed by Romero et al. [23,25].

The paper is comprised of the following structure. The elements of Operator 4.0 solutions are
presented, and a novel design methodology based on the concept of intelligent space is proposed in
Section 2. The required infrastructural background is presented in the remaining sections. The IoT
solution for tracking operator activities is introduced in Section 3, while IoT-based solutions developed
to support operator activities by providing feedback are summarized in Section 4. Conclusions and
recommendations based on the review are proposed in Section 5.

2. Framework of Operator 4.0 Solutions

The concepts of Operator 4.0, cyber-physical systems and intelligent space are introduced and
connections between these methodologies discussed in this section.

2.1. The Operator 4.0 Concept and Human-Cyber-Physical Systems

The Operator 4.0 typology depicts how the technologies of the fourth industrial revolution
will assist the work of operators [25]. Operator 1.0 is defined as humans conducting manual work.
The Operator 2.0 generation represents a human entity whose job is supported by tools, e.g.,
by Computer Numerical Control (CNC) of machine tools. In the third generation, the humans
are involved in cooperative work with robots and computer tools, also known as human-robot
collaboration. This human-robot collaboration in the industrial environment is a fascinating field with
a specific focus on physical and cognitive interaction [29]. However, the new set of solutions is based
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on even more intensive cooperation between operators and production systems. This new Operator
4.0 concept represents the future of workplaces [25] (see Figure 1).

The main elements of the Operator 4.0 methodology are explained in Table 1. Analytical
operator-type solutions utilize big data analytics to collect, organize and analyze large datasets [23].
Augmented Reality (AR) can be considered as a critical enabling technology for improving the transfer
of information from the digital to the physical world of the smart operator. The collaborative operator
works together with Collaborative robots (CoBots). Healthy operator solutions measure and store
exercise activity, stress, heart rate and other health-related metrics, as well as GPS location and other
personal data. Smarter operators interact with machines, computers, databases and other information
systems, as well as receive useful information to support their work. Social operators use mobile and
social collaborative methods to connect to smart factory resources. Super-strength operators increase
the strength of human operators to be able to conduct manual tasks without effort using wearable
exoskeletons, while virtual operators interact with the computer mapping of design, assembly or
manufacturing environments.

Figure 1. (R)evolution of the tasks of operators in manufacturing systems.

Table 1. Elements of the Operator 4.0 methodology according to [23,25].

Type of
Operator 4.0 Description Examples

Analytical
operator

The application of big data analytics in real-time
smart manufacturing.

Discovering useful information and predicting
relevant events [30,31].

Augmented
operator

Augmented Reality (AR)-based enrichment
of the factory environment. AR improves
information transfer from the digital to the
physical world.

Smartphones or tablets are used as Radio Frequency
IDentification (RFID) readers and can become key
tools of smart manufacturing [32–34].

Spatial AR projectors support automotive
manufacturing [35–37].

Collaborative
operator

Collaborative robots (CoBots) are designed to
work in direct cooperation with operators to
perform repetitive and non-ergonomic tasks.

Rethink-Robotics with Baxter and Sawyer promises
low-cost and easy-to-use collaborative robots [38].

Healthy
operator

Wearable trackers are designed to measure
activity, stress, heart rate and other
health-related metrics, as well as GPS
location and other personal data.

Apple Watch, Fitbit and Android Wear-based
solutions had already been developed [23].

Military-based applications can predict potentially
problematic situations before they arise [23].

Smarter
operator

Intelligent Personal Assistant (IPA)-based
solutions that utilize artificial intelligence.

Help the operator to interact with machines,
computers, databases and other information
systems [39].

Social operator

Enterprise Social Networking Services (E-SNS)
focus on the use of mobile and social
collaborative methods to connect smart operators
on the shop-floor with smart factory resources.

The Social Internet of Industrial Things interacts,
shares and creates information for the purpose of
decision-making support [40].

Super-strength
operator

Powered exoskeletons are wearable, lightweight
and flexible biomechanical systems.

Powered mechanics to increase the strength of a
human operator for effortless manual functions [41].

Virtual operator

Virtual Reality (VR) is an immersive, interactive
multimedia and computer-simulated reality
that can digitally replicate a design, assembly
or manufacturing environment and allow the
operator to interact with any presence within it.

Provide the users with an environment to explore the
outcomes of their decisions without putting
themselves or the environment at risk [42].

The Virtual Reality (VR)-based gait training program
provides real-time feedback [43].

Multi-purpose virtual engineering space [44].



Appl. Sci. 2018, 8, 1650 4 of 19

With regards to the development of Operator 4.0-based automation systems, attention has to be
paid to the design principles of Industry 4.0 solutions, which are decentralization, virtualization,
reconfiguration and adaptability [45–47]. How these principles should be applied during the
development process is presented in Table 2.

Table 2. Design principles of Industry 4.0 applied to Operator 4.0 solutions.

Design principle Description Application

System integration
It combines subsystems into one system. Vertical integration connects
manufacturing systems and technologies [48]; horizontal integration
connects functions and data across the value chain [49].

Analytical operator

Modularity It is important for the ability of the manufacturing system to adapt to
continuous changes [50–52].

Augmented
operator

Interoperability

It allows human resources, smart products and smart factories to
connect, communicate and operate together [50]. The standardization
of data is a critical factor for interoperability because the components
have to understand each other.

Collaborative
operator

Product personalization The system has to be adapted to frequent product changes [53].

Smarter operator
Decentralization

It is based on the distributive approach, where the system consists of
autonomous parts, which can act independently [50]. It simplifies the
structure of the system, which simplifies the planning and
coordination of processes and increases the reliability [54].

Corporate social
responsibility It involves environmental and labor regulations. Social operator

Virtualization It uses a digital twin, i.e., all data from the physical world are
presented in a cyber-physical model [55]. Virtual operator

The Operator 4.0 concept aims to create Human-Cyber-Physical Production Systems (H-CPPS) that
improve the abilities of the operators [23]. The allocation of tasks to machines and operators requires
the complex semantic model of the H-CPS. Operator instructions can be programmed into a machine,
but handling uncertainty and the stochastic nature are difficult. Adaptive systems are suitable to handle
these problems with the help of more frequent monitoring and model adaptation functions [56–59].
Real-time operator support and performance monitoring require accurate information concerning
the activities of operators, which means all data related to operator activities should be measured,
converted, analyzed, transformed into actionable knowledge and fed back to the operators. Based
on this requirement, the operator should be connected from the bottom (connection) to the top
(configuration) levels of the cyber-physical systems [60]. To support this goal, an overview concerning
the elements of CPS from the perspective of operators is given in Table 3, and the levels of CPSs with a
description of the functions and tasks are presented in Figure 2.

As tasks should be transformed into a form that computers can understand, task analysis is
becoming more and more crucial due to the difficulties of the externalization of the tacit knowledge
of the operators [61]. Tacit knowledge contains all cognitive skills and technical know-how that
are challenging to articulate [62,63]. Without elicit tacit knowledge, the chance of losing critical
information and best practice is very high [64]. Hierarchical task analysis extended with the ‘skill, rule
and knowledge” framework can capture tacit knowledge [65], an approach which has been proven to
be useful in manufacturing [66]. Sensor technologies are essential to elicit tacit knowledge, for example
the tacit knowledge of the operator can be captured by a ‘sensorized’ hand-held belt grinder and a
3D scanner to generate a program of a robot that can replace the operator [67]. The modeling of the
physical reality and realizing it in the CPS are critical tasks [68–71].

These examples illustrate that Operator 4.0 solutions should be based on contextual task analysis,
which requires precise chronological time-synchronization of the operator actions, sensory data and
psycho-physiological signals to infer the cognitive states [72] and emotions [73] associated with the
decisions and operator actions.
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Sensors and feedback technologies of the interactive intelligent space can be used not only for
improving the abilities of the operators, but also for the extraction of their tacit knowledge. In the
following section, these technologies will be detailed.

Figure 2. Architecture of cyber-physical systems.

Table 3. Levels of cyber-physical systems from the perspective of operators.

Level Function Example

Configuration

Self-optimize
Prediction and online feedback with regard to quality issues
[74,75]Self-adjust

Self-configure

Cognition

Collaborative diagnostic and
decision-making Virtual Reality (VR) [76–78]

Remote visualization for
humans Augmented Reality (AR) [79–81]

Cyber

Digital twin Decision-making based on a digital twin [82–84]

Model of operator Worker-movement diagram [85–88]

Monte Carlo simulation of a stochastic process model [89,90]

Conversion

Smart analytics

Online performance monitoring based on sensor fusion [91,92]Degradation and performance
prediction

Connection Sensor network
Wearable tracker [93,94]

Indoor positioning system [95–99]

2.2. The Operator 4.0 Concept and Intelligent Space

In the previous section, the key functions of Operator 4.0 solutions were shown to be related to the
monitoring and support of operator activities. The most significant trend is related to the development
of human-machine interfaces that embrace interaction in a set of novel ways [100]. As the operator
performs tasks, real-time information is provided about the production system and real-time support
is received from it. Interactive human-machine systems had already been introduced in the Hashimoto
Laboratory at the of University of Tokyo [101] where an intelligent Space (iSpace) system has been
designed for the virtual and physical support of people and mobile robots [102]. Intelligent interaction
space supports the operators to complete their work with high efficiency, high success rate and low
burden [103]. The iSpace framework is shown in Figure 3.
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Figure 3. Intelligent Space (iSpace)-based integrated sensor signals can be used to monitor the work of the
operators, extract their tacit knowledge, synchronize activities and provide contextualized information.

The events within iSpace are continuously monitored by Distributed Intelligent Network Devices
(DINDs) consisting of various networked sensors, e.g., indoor positioning systems and cameras for
localization. DINDs interpret events in the physical space and provide services (feedback) to operators
using physical devices, e.g., microphones, displays, etc. According to the horizontal integration
concept, the proposed iSpace is also connected to suppliers and customers. This concept highlights
that iSpace should relay on the CloudThings architecture that integrates Internet of Things (IoT) and
cloud computing [104], as cloud computing enables a convenient, on demand and scalable network
access to a shared pool of configurable computing resources.

Resources, users and tasks are the three core elements of intelligent interaction space (see Figure 4).
The user-resource-task model supports the design of interaction among these components [103],
the interactions of which should handle how resources trigger the tasks and how the tasks are assigned
to the operators based on their availability, performance and competence.

Figure 4. The design of connections between resources, users and tasks is the key to the design of
intelligent interaction space.

Intelligent space should respond to requests from people, so the activities of the operators must be
identified by cameras, internal positioning systems or based on voice signals, and these multi-sensory
data should be processed by artificial intelligence and machine learning solutions [102]. The acquired
information is transmitted via a wireless network and processed by dedicated computers, so any



Appl. Sci. 2018, 8, 1650 7 of 19

event involving or a change in the monitored parameters inside the space is carefully analyzed
and processed [105].

This section highlighted that the development of H-CPSs requires an appropriate design concept.
According to the concept of intelligent space the architecture must be modular, scalable and integrated,
which results in low installation and maintenance costs and easy configuration [106].

3. IoT-Based Solutions for Operator Activity Tracking

From the viewpoint of operators, connection and conversion are the most critical levels of
cyber-physical systems as these two levels are responsible for interaction. As smart sensors are
key components of solutions for Cyber-Physical Production Systems (CPPS) [13], it is necessary to
overview what kinds of tools are available for monitoring the activity of the operators.

Usually, operator activity is monitored by Radio Frequency IDentification (RFID)-based object
tracking [107]. This technology can collect real-time data about the activities of workers (operators) and
machines, as well as movements of materials [108] and workpieces [109,110]. Multi-agent supported
RFID systems realize location-sensing systems [111] and intelligent-guided view systems [112]. RFID
systems for human-activity monitoring provide an excellent opportunity to observe the work of the
operators [113]. With the help of these devices, the whole production process, as well as production and
waiting times have become measurable online. Based on this information, Shop Floor Control (SFC)
and optimization can also be realized. When the RFID readers are placed such that the duration of the
tasks can be estimated, how the production line is balanced in addition to the effect of product
changes can be evaluated, as well as real-time data for OEE (Overall Equipment Effectiveness)
calculations provided [114].

The tracking of production can be significantly improved by the Indoor Positioning System (IPS)
utilized for localizing the positions of the products and operators [95]. The applications of IPS and its
potential benefits in terms of process development are complied in Table 4.

Context-aware systems require unobtrusive sensors to track each step of the performed
task [115]. As wearable sensors are becoming more common, their utilization is also becoming more
attractive [116]. However, hand motion-based activity recognition is still challenging [117] and requires
the application of advanced machine learning algorithms [118]. Tracking operator activity is a
challenging and highly infrastructure-demanding task, which should utilize information stream
fusion approaches to improve the robustness of the algorithms [119]. How all these smart sensor-based
IoT technologies can be used to design Operator 4.0-type solutions is compiled in Table 5.

Table 4. Applications of indoor positioning systems in production management.

Application
Area Description Examples

Performance
monitoring

Measure effects of process development and
Business Process Reengineering (BPR).

Analyze moving- and staying-time of operators
[120].

Movement
analysis

Spaghetti diagram of operator movement to
reduce unnecessary movement and optimize the
layout and supply chain.

Reduce the duration of material handling [121].
Reduce the number of unnecessary movements
of operators [120]. Support real-time
Manufacturing Execution Systems (MES) [122].

Support 5S
workplace
organization
methodology
projects

Track tools and optimize the place of application
and storage.

Decrease of stock and scrap. Improve activity
times [120].

Digital twin
Direct process the on-line information inside the
process-simulation tools. Prove the real-time
architecture for the digital twin method.

The main elements of the real-time architecture
are the ‘digital twin’ and IPS [123].
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Table 5. Sensors of Operator 4.0 solutions.

Type of Operator 4.0 Type of Sensor Examples

Analytical operator Infra-red sensors Discover and predict events [102]

Olfactory sensors Electronic nose [124]

Augmented operator

Microphones Capturing voices and the location of speakers [125]

Visual sensors

Machine vision systems for quality inspection [126,127]

Virtual operator

Image processing, e.g., panoramic images [128], create the
environment of virtual reality [129]

Smart camera for probabilistic tracking [130]

Collaborative operator
Localization sensors

IPS in manufacturing [95] and hybrid locating systems [131]

Mapping and localization using RFID technology [132] and
efficient object localization using passive RFID tags [133,134]

Social operator Smart and social factories based on the connection between
machines, products and humans [135]

Smarter and healthy operator Wearable sensors

Smart watch with embedded sensors to recognize objects [136]

The smart glove maps the orientation of the hand and fingers with
the help of bend sensors [137]

4. IoT-Based Solutions to Support Operator Activities

The operators not only have to provide real-time information about their actions, but at the
same time require real-time support in their work. Industrial wearable [93] and communication [138]
solutions help to handle this challenge. The previous section showed what kind of techniques exist to
collect information from the operator. In this section, potentially applicable feedback technologies will
be introduced, which are related to the configuration level of cyber-physical systems [60].

In the early applications, the production activities required to complete orders were scheduled
and managed by Shop Floor Control Systems (SFCS). In [139], a hierarchical SFCS (shop, workstation,
equipment) was adopted. In [140], a vision-based human-computer interaction system was introduced
that interacts with the operator and provides feedback. Complex hardware was installed in intelligent
environments, equipped with a steerable projector and spatial sound system, to position the character
within the environment [141].

A potential grouping of feedback technologies is the following: fix-mounted devices (e.g., LED
TVs), mobile devices (e.g., tablets, smartphones) and wearable devices (e.g., smart glasses). Intuitive
displays can reduce the cost of operator intervention as the performance of the operator is improved
by the auditory and visual understanding [142]. Visual collaboration systems can provide appropriate
instructions for each step of the assembly task [140]. All groups are used correctly and efficiently, but the
novelty of wearable devices compared to the ‘simple’ mobile devices is the total freedom of movement
and free use of limbs [143]. So far, some of these only provide a human-machine interface (HMI) and
need a (mobile) computer (e.g., a smartphone) to operate, but the tendency is that every device will
work separately and can cooperate with other devices through some communication solutions (e.g.,
LAN/WiFi, Bluetooth). Headsets, VR helmets, smart gloves and smart clothes are examples of the
types of devices presented in Table 6. The importance of this area is shown in the statistical increase in
the numbers of sales. So far, these kinds of solutions have resulted in approximately $5.8 billion in
business [144].

The connections between the categories of Operator 4.0 solutions and potential feedback
technologies are shown in Table 6. Which feedback opportunity is expedient is defined by the task in
question. For example, in the case of the super-strength operator, the feedback indicating danger is a
critical function. The next step of the design is to select the technology that delivers the information.
Danger can be indicated with the help of smart glasses or by a speaker. As soon as the operator hears
the warning alarm, the danger can be avoided. In the case of smart glasses, the worker can obtain more
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detailed information about the type and location of risk. The potential applications of these solutions
are summarized in the last column of the table.

Table 6. Feedback technologies for Operator 4.0 solutions.

Operator 4.0 Feedback Technologies Examples

Analytical
operator Report/potential danger

Smart glasses,
smartphones, tablets
and personal displays

Big data-based development of a
manufacturing process [145].

Augmented
operator Each possible feedback Smart glasses AR for tractor manufacturing [146]. Smart

glasses [23,26].

Collaborative
operator

Waiting for
interaction/technical
problem

Smart glasses,
smartphones, tablets,
personal displays,
headsets and
smartwatches

Collaborative operator workspace [147].

Healthy
operator

Need rest Smart glasses,
smartphones, tablets,
personal displays and
headsets

Measurement of physiological parameters
[148,149]. Security issues [150].Change activity

Need a medical test

Smarter
operator

Answer to a question Smart glasses,
smartphones, tablets,
personal displays and
headsets

Chatbot [151] and AI provide support to
operators [152].Notice about an event

Process

Social operator

Emergency
Smart glasses,
smartphones, tablets,
personal displays and
headsets

Facebook-based product avatar [40] and
Social Manufacturing (SocialM) [53].

Process

Manufacturing

Technical information

Super-strength
operator

Optimal
route/targeting/training

Smart glasses, tablets
and smartphones

Navigation [153,154] and targeting
[154–156].

Force feedback on a hand or
whole arm

Smart gloves and
special exoskeletons

HaptX[157,158], VRgluv[159] and
ABLEProject [41,160] are such technologies.

Danger indicator Smart glasses and
speakers

Safety and risk management (related to
exoskeleton technology) [161].

Virtual operator Collision/weight/pressure Smart clothes/smart
gloves

VR technology in prototyping and testing
[162]. This kind of technology becomes more
efficient with every wearable feedback
device (e.g., smart gloves [163]) that use
(secondary) human senses directly.

Some companies have been testing these innovative technologies in manufacturing processes.
In every case when these techniques are used, the production process is complex, the quality
management is strict and there is a wide variety of products. The results are impressive because
the efficiency improves while the learning time reduces in every observed situation. In the following,
some of these solutions will be introduced.

Smart glasses-based augmented reality is used in the manufacturing of high-horsepower wheeled
tractors with hundreds of variations by the company AGCO [146]. Presently, 100 pairs of glasses are
in use to visualize the next manufacturing step and necessary information for the inspection process.
The results in numbers are promising:

• 50% reduction in learning time (in the case of new workers)
• 30% reduction in inspection time (eliminates paperwork and manual upload)
• 25% reduction in production time (in the case of complex assemblies and low volumes)

Similar advantages of smart glasses were reported at DHL, which is one of the leading logistics
companies in the world [154]. Ten workers who used smart glasses for three weeks managed to
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distribute 20,000 packages (9000 orders), leading to a 25% increase in the efficiency of the operators
and a reduction in errors of 40%.

Quality and reliability are critical in aerospace manufacturing. Boeing and Model-Based
Instructions (MBI) from Iowa State University support the work of the operators. The first solution
was designed to show the instructions for the workers. The installation of the desktop MBI was
static, and there were numerous situations when the operator could not see them during the assembly
process. The tablet MBI used the same instructions as the desktop MBI, but it was mounted on a mobile
arm. The tablet AR was the same tablet that provided the tablet MBI solution; however, the operator
could see the real world on the display of the tablet, and the software added virtual elements into
the video stream. It was observed that the AR technology yielded the best solutions with regard to
first-time quality, speed and worker efficiency out of these three solutions [164,165].

These benefits are in accordance with what was observed in the introduction of general
Industry 4.0 solutions [166]. The examination of 385 published applications shows that the most
common benefits of Industry 4.0 are the enhanced efficiency (47%), prevention of errors (33%),
reduction of cost (33%), employee support (32%) and minimization of lead time (31%). It is worth
noting that the importance of communication (31%), human-machine interfaces (25%) and sensor
technology (11%) were also highlighted.

The review concerning examples of applications showed clearly that the Operator 4.0 concept
works in practice, and the following advantages were observed: (1) elimination of classical paper-based
administration; (2) operators can use their arms freely and receive real-time feedback about the
manufacturing process; (3) the duration of training of workers decreases; and (4) the efficiency of
production increases and the number of errors decreases simultaneously in all cases. In summary,
operators will be more efficient in smart workplaces, where new opportunities will be available to
safeguard their activities and ensure alertness. Production systems will become safer, more controllable
and manageable than ever before. A win-win situation will develop in which humans remain an
important element. Operator 4.0 technologies are only capable of bringing about these benefits when
the manufacturing process is complex and the variety of products is wide. Of course, some advantages
can be observed in cases of traditional mass production, as well, but it is difficult to compensate due to
the high investment and development costs of these technologies.

5. Conclusions

This paper provided an overview of what kind of Industrial Internet of Things-based
infrastructure should be developed to improve the efficiency of operators in production systems.
By following the Operator 4.0 concept proposed by Romero et al. [23,25], the literature survey
demonstrated that smart sensors and wearable devices provide the opportunity to integrate operators
into the concept of smart factories.

It was highlighted that integrated workspaces should have a modular and integrated architecture,
and the development should be based on the concepts of human-in-the-loop cyber-physical systems
and intelligent space to ensure low installation and maintenance costs.

In this work, the architecture and infrastructure of Operator 4.0 technologies were surveyed.
Monitoring and data-driven analytics are the key to process development [26,138]. There are several
exciting model- and algorithm-based aspects of these solutions, e.g., big data, sensor fusion and
optimization and machine learning, whose review would also be timely as significant added value
and reductions in cost can be achieved by the model-based monitoring, control and optimization of
the presented production support systems.
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