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Featured Application: The PSLC device studied in this work could be used as privacy windows
and provide a convenient indoor environment. Doping of silver nanowires optimizes the
performance of PSLC smart windows.

Abstract: Polymer stabilized liquid crystal (PSLC) devices modulating the light that goes through
them have broad applications. In this study, to improve the electro-optical properties of a PSLC
device, Ag nanowires with diameter about 20 nm were doped into PSLC active layer with different
concentrations. The influence of Ag nanowires concentration on the driving voltage, on-state response
time and frequency modulation characteristics of a PSLC device were studied. The results indicate
that the doping of Ag nanowires can reduce the driving voltage of PSLC cell up to 42%. The response
time of the PSLC cell can decrease by about 41%. Meanwhile, frequency modulation does not show
significant improvement upon Ag nanowire doping. Overall, Ag nanowire doping can improve the
electro-optical properties of PSLC device effectively.

Keywords: PSLC device; Silver nanowires doping; Electro-optical property; Smart glass; Privacy window

1. Introduction

Smart windows [1,2] that can modulate light are a type of intelligent building material and can
save energy in buildings. At present, most commercially available smart windows are controlled by
electric field. Materials with such function are mainly liquid crystal (LC) [3–5] and electrochromic oxide.
For LC based smart windows, the orientation of LC molecule will change when an electronic field is
applied. The incident light will be modulated by the LC molecules, and be reflected, scattered and so
on. Electrochromic materials show a change of color as induced either by an electron transfer (redox)
process or by a sufficiently high electrochemical potential [6]. Compared with electrochromic smart
glass, LC based smart glass has many advantages, such as low cost, good stability, easy regulation and
fabrication of large size preparation. As a result, LC based smart windows are expected to occupy the
mainstream of smart glass market [7].

Privacy windows that can switch between scatting state and transparent state are one of the most
popular types of LC-based smart glass. There are two kinds of privacy windows: polymer dispersed
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liquid crystal (PDLC) based and polymer stabilized liquid crystal (PSLC) based [8–10]. PDLC is a
composite material with submicron LC droplets embedded in a polymer matrix. Without an electric
field, the LC molecules in the PDLC device are randomly orientated, scattering the incident light
and the device is opaque. When an electric field is applied, the LC molecules are reoriented into the
same direction and the device becomes transparent, with the transmittance approaching 90% with a
sufficiently high electric field [11]. On the contrary, PSLC incorporates only small amount of polymer
into LC material to stabilize the orientation of LC molecules. Without electric field, the LC molecules
are orientated in the same direction as alignment layer and the polymer, and the device is transparent.
With an applied electric field, the LC molecules are reoriented to the perpendicular direction. Since the
polymer network will disturb and impede the rotation of LC molecules, a multi-domain structure will
form and the incident light will be scattered, causing the device to become opaque [12]. In application,
PSLC devices, which are transparent without electric field, are more economical and convenient than
PDLC devices. Furthermore, PSLC devices have lower threshold voltage, shorter response time,
higher contrast and wide viewing angle [13], making them also widely used as displays, spatial light
modulators, hologram-formed light modulators [14], temperature sensors [15], flexible displays [16],
and other devices besides smart windows.

Although PSLC devices have been widely used, the critical electro-optical performance of the
devices still needs to be optimized, including threshold voltage, response time and other optical
parameters. In recent years, nanoscale materials have been widely used to improve the electro-optical
response properties of LCs [17–19]. It has been found that the dispersed nanomaterial can change the
properties of the host LC, such as the electrical, optical and magnetic properties [20]. At the same time,
the nanomaterial can trap ions in LC material, decreasing the ion concentration and conductivity of
LC, which would improve the electro-optical property of the LC host [21]. Chou et al. doped titania
nanoparticles of different sizes in nematic LCs. They observed that smaller size nanoparticles can
lower the threshold voltage of the device [22]. Others have doped metal oxide nanoparticles (MgO,
SiO2 and Y2O3) [23,24] in a nematic LC matrix. The order parameters of the LC-NP composite are
reduced, which leads to a reduction in the threshold voltage required to redirect the LC director along
the applied electric field.

The doping of noble metal nanoparticles in PDLC device will cause surface plasmon excitation
at the nanoparticle–polymer interface [25] and influence the electro-optical properties of PDLC.
Yaroshchuk et al. used inorganic nanoparticles to improve the view angle of PDLC [26,27]. Zhang et al.
found the droplet size in PDLC decreases with the increase of Ag nanoparticle concentration,
thus reducing the response time [28]. Filpo et al. doped single-walled carbon nanotubes (SWNTs) in
reverse PDLC. They found that the driving voltage was reduced [29]. Wang et al. doped nano-graphite
in PDLC devices and reduced the driving voltage [30]. Hinojosa et al. reported the surface plasmon
excitation of doped Au nanoparticles improves the transmittance and driving voltage of PDLC [31].
Choi et al. used a silver nanowire–graphene oxide hybrid electrode to prepare a flexible polymer
dispersed liquid crystal display, which makes the electro-optical performance of PDLC superior [32].
Nanoparticles are also doped in polymer stabilized cholesteric liquid crystal (PSCLC) to improve
device performance. Zhang et al. doped FexNiy nanoparticles into the PSCLC film, which extends the
viewing angle of PSCLC and improves the frequency response [33].

Inspired by these works, and to improve the electro-optical properties of PSLC devices, this study
doped Ag nanowires in PSLC devices. The effects of Ag nanowires concentrations on the electro-optical
properties of PSLC were studied, including driving voltage, response time and frequency modulation.

2. Materials and Methods

The working principle of PSLC device fabricated in this study is shown in Figure 1. When no
electric field is applied, the negative LC and polymer molecules are orientated perpendicularly to the
substrate. In this state, the incident light will not be scattered and the device is transparent. When an
electric field is applied, the negative LC molecules want to orientate parallel to the substrate, but the
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polymer network will disturb the rotation and a multi-domain structure will form. The incident light
will be scattered and the device becomes opaque.
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Figure 1. Schematic of PSLC device without electric field (transparent state) and with electric field
(scattering state).

2.1. Materials

The silver nanowires used in this study (purchased from Shanghai Chaowei New Materials Co.,
Ltd., Shanghai, China) have diameter of 20–35 nm and a length of 10-20 µm. The SEM image of the
silver nanowires is shown in Figure 2.
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Figure 2. SEM image of Ag nanowires used in the experiment.

The materials used in the PSLC device include a negative LC mixture, a photo polymerizable LC
monomer and a photo initiator. The negative LC mixture was purchased from Jiangsu Hecheng new
materials Co. Ltd., Nanjing, China. The dielectric constant ∆E is −8.3, ne is 1.633, no is 1.484, melting
point is −40 ◦C, and clear point is 94 ◦C. The photo polymerizable monomer used in this study is
RM82 from Merck KGaA, Darmstadt, Germany. The photo initiator is Irgacure 651 (IR651, BASF SE,
Ludwigshafen, Germany). The liquid crystal monomer has acrylate groups at both ends. Under UV
irradiation, these acrylate groups will react with each other and form a polymer network. This reaction
was started by the photo-initiator. The molecular structure of RM82 and IR651 are shown in Figure 3.
The alignment agent used in this study is a vertically oriented polyimide purchased from Shenzhen
Dalton electronic materials Co. Ltd., Shenzhen, China.
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The concentration of materials used for PSLC fabrication in this study is shown in Table 1.
The amount of negative LC was adjusted slightly when the concentration of silver nanowire changed.

Table 1. Proportion of materials required for the experiment.

Experimental Materials Concentration

Negative LC 96.5 wt.%
RM82 3 wt.%
IR651 0.5 wt.%

Silver nanowires 0.01, 0.02, 0.05, 0.1 wt.%

2.2. Fabrication Process of PSLC Device

The PSLC mixture with negative LC, RM82 and IR651 were mixed together according to the ratio
in Table 1 with magnetic stirrer for 30 min at 60 ◦C. The silver nanowire solution was diluted to a
concentration of 0.5 mg/mL using ethanol, and dispersed for 1 h by ultrasonication. Then 20, 40,
100, or 200 mL of silver nanowire solution were added to 0.1 g PSLC mixed solution, respectively,
resulting in 0.01, 0.02, 0.05, 0.1 wt% of silver nanowires concentration in PSLC. After another 30 min of
ultrasonication, the mixtures were placed at room temperature for 72 h to remove the ethanol.

The PSLC mixtures with different silver nanowire concentration were filled into a cell with
5 µm gap and ITO electrode on both internal surface by capillary force at 60 ◦C. The samples were
cooled on hot stage to room temperature slowly after the cells were fully filled. Then, the samples
were photo polymerized by 320–400 nm UV light with light intensity of 500 mW/cm2 for 300 s at
room temperature.

2.3. Electro-Optical Property Characterization

The alternating electric field with a square wave function was provided by a function generator
(33220A, Agilent Technologies Inc., Santa Clara, CA, United States). The electric signal from the
function generator was amplified through a high-voltage linear amplifier (F20A, FLC Electronics
AB, Partille, Sweden). The output voltage was measured by an oscilloscope (DSOX3032T, Keysight
Technologies, Santa Rosa, CA, United States). Transmittance of the samples were measured by
spectrometer (HR2000+, Ocean Optics Inc., Largo, FL, United States). The wavelength of 550 nm was
select to evaluate the transmittance. A halogen lamp (LS-3000, Keyence (CHINA) Co., Ltd., Shanghai,
China) was used to provide white light. Response time of the samples were measure by photodiode
(FSD1010, Thorlab Inc., Newtown, NJ, United States) with time resolution of 65 ns. The output
signal of photodiode was amplified and then transformed by an acquisition card (USB6002, National
Instruments, Austin, TX, United States), then collected by computer with a LabVIEW program. A 5 W
White LED was used to provide white light. The experiment setup is shown in Figure 4.
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response time, the integrating sphere was replaced with a photodiode, while the spectrometer was
replaced by amplifier and acquisition card).

3. Results and Discussion

3.1. Effect of Ag Nanowires on the Driving Voltage of PSLC Devices

The voltage–transmittance (V–T) curves, threshold voltages and leakage current of the Ag
nanowire doped PSLC according to the Ag nanowire concentration are shown in Figure 5. The V–T
curve of PSLC devices under 1 kHz square wave AC driving are shown in Figure 5a. All PSLC devices
have transmittance above 95% at off state and the transmittance decreases as the voltage increases.
All devices can reach a scattering state with transmittance under 18%. However, the transmittance
at both on and off state decreased slightly with small amount of Ag nanowire doping at 0.01 wt.%,
and the transmittance increased as the Ag nanowire concentration was increased up to 0.1 wt.%. This is
because, when the concentration is too high, Ag nanowires cannot be evenly distributed in the LC
and tend to aggregate together, resulting in the interconnection between the silver nanowires [34].
When the voltage continuously increased, aggregation of silver nanowires will form a local short
circuit and burn up the device, thus affecting the device performance and increasing the transmittance
of the device.

Meanwhile, the V–T curve of the PSLC had a different tendency: the threshold voltages (V10 and
V90) shifted as a function of the Ag nanowire concentration. It shifted to the left side first as the Ag
nanowire concentration increased to 0.02 wt.%, and then shifted to the right side as the Ag nanowire
concentration continued to increase. The V–T curve of PSLC devices doped with 0.01 wt.%, 0.02 wt.%,
and 0.05 wt.% Ag nanowires are on the left side of the undoped PSLC device. However, the V–T curve
of PSLC device doped with 0.1 wt.% Ag nanowires is on the right side of the undoped PSLC device,
meaning it has worse performance than the undoped PSLC device. The voltages for 10% transmission
(V10) and 90% transmission (V90) show the same tendency. As shown in Figure 5b, V10 and V90 greatly
decreased with a small amount of doping at 0.01 wt.% Ag nanowires, and the values decreased as
the Ag nanowire concentration was increased up to 0.02 wt.%. However, the V10 and V90 values
started increasing when the Ag nanowire concentration continued increasing up to 0.1 wt.%. When the
doping concentration is 0.02 wt.%, the threshold voltage is lowest, reduced by 35–42% compared with
undoped PSLC device.

The reduction of the residual DC voltage through metal nanomaterial doping in the nematic LC
is discussed in the literature [35,36]. Metal nanomaterials mixed in LC materials can capture ionic
impurities and enhance the electro-optic properties of LCs. Due to the small size effect of the silver
nanowire, when a voltage is applied, the surface of the silver nanowire will be polarized, and thus the
ionic impurities in the liquid crystal mixture will be absorbed by the silver nanowire surface. Therefore,
the reason that doping a certain concentration of Ag nanowires can reduce the threshold voltage of
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the PSLC device is Ag nanowire doping can effectively eliminate the ionic impurities in the LC and
reduce the conductivity in the PSLC device. Figure 5c shows the current–voltage curves of PSLC
devices doped with different concentrations of Ag nanowires. At a certain voltage, the current of PSLC
devices doped with 0.01 wt.% and 0.02 wt.% Ag nanowires decreasing when the concertation of Ag
nanowire increases. When the Ag nanowire doping concentration is 0.02 wt.%, the current is the lowest,
which represents the lowest conductivity. This is because the ionic impurities in the PSLC mixture
is captured by the Ag nanowires. When the conductivity of LC material is the lowest, the electric
field and force applied on the liquid crystal molecule is the strongest. Therefore, the threshold voltage
is the lowest and the response is the fastest. As a result, small amount of Ag nanowire doping can
reduce the amount of ionic impurities and device conductivity effectively, making the device have
a better electro-optical response. This result is consistent with the V–T curves and threshold voltage
variation tendency in Figure 5a,b. Since the length of the silver nanowires used in this study is about
20 µm, the density of Ag nanowire was too high when the doping concentration of the Ag nanowires
increased to 0.05 wt.% and 0.1 wt.%. and the Ag nanowires became short-circuited with each other
and increased the conductivity, causing the actual electric field to decrease and the driving voltage
to increase.
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Figure 5. Voltage–Transmittance (V–T) curves, threshold voltages and leakage current of the Ag 199 
nanowire doped PSLC according to the Ag nanowire concentration: (a) V–T curve; (b) variations in 200 
voltages for 10% transmission (V10) and voltages for 90% transmission (V90); and (c) leakage current 201 
according to the Ag nanowire concentration. 202 

3.2. Effect of Ag Nanowires on Response Time of PSLC Devices 203 

Figure 5. Voltage–Transmittance (V–T) curves, threshold voltages and leakage current of the Ag
nanowire doped PSLC according to the Ag nanowire concentration: (a) V–T curve; (b) variations in
voltages for 10% transmission (V10) and voltages for 90% transmission (V90); and (c) leakage current
according to the Ag nanowire concentration.
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3.2. Effect of Ag Nanowires on Response Time of PSLC Devices

The response time of PSLC with different Ag nanowire concentration with 30 V, 1 kHz square
wave driving is shown in Figure 6a. Here, both the turn on or rising time from clear state to scattering
state (an interval from 90% transmittance to 10% transmittance) and the turn off or falling time shows
the same variation tendency with threshold voltage as the Ag nanowire concentration increases.
The turn on time of PSLC first decreased to about a half and then increased to about double of undoped
PSLC as Ag nanowire concentration increased. However, the change of turn off time was very limited,
with all around 5 ms.
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Figure 6. Response time of the Ag nanowire doped PSLC according to the Ag nanowire concentration: 223 
(a) response time according to the Ag nanowire concentration; (b) comparison of response time of 224 
pure PSLC and 0.02 wt.% Ag nanowire doped PSLC; and (c) input signal and output signal of PSLC 225 
with 0.02 wt.% Ag nanowire.  226 

3.3. Effect of Ag Nanowires on Frequency Response of PSLC Devices 227 

Figure 6. Response time of the Ag nanowire doped PSLC according to the Ag nanowire concentration:
(a) response time according to the Ag nanowire concentration; (b) comparison of response time of pure
PSLC and 0.02 wt.% Ag nanowire doped PSLC; and (c) input signal and output signal of PSLC with
0.02 wt.% Ag nanowire.

Figure 6b shows the comparison of temporal response of a pure PSLC and a PSLC with 0.02 wt.%
Ag nanowire doping. There was no noticeable difference in the turn off time of the samples, but the
turn on time of PSLC with 0.02 wt.% Ag nanowire doping was only 12.9 ms, i.e. 41% lower than the
undoped PSLC.

Figure 6c shows the input signal and output signal of a PSLC with 0.02 wt.% Ag nanowire doping.
It shows the Ag nanowire doped PSLC has very fast response to electric field. The turn off process
of a PSLC device is elastic response, during which the negative LC molecule reorientation is driven
by the vertical alignment layer and vertical aligned LC network. This process is almost linear and
the Ag nanowire doping had very little influence on it. The turn on process is dielectric response.
Ag nanowire doping can lower the ionic impurities in LC, which would enhance the electric field and
thus increase the speed of dielectric response. On the other hand, Ag nanowire doping can increase
the polar anchoring energy in the PSLC [37], which would also shorten the turn on time.
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3.3. Effect of Ag Nanowires on Frequency Response of PSLC Devices

Figure 7a–c shows the transmittance versus driving frequency curve of PSLC device with different
Ag nanowire doping concentration at 10 V, 20 V and 30 V respectively. At 10 V, the transmittance of
all PSLC devices decreases first and then increase as the frequency increases. Lowest transmittance
can be obtained at 10 kHz. At 20 V and 30 V, the change of transmittance from 100 Hz to 100 kHz is
negligible. At 1 MHz, the PSLC devices stop responding to electric field, which may be because this
frequency is higher than the crossover frequency (f c) of the dielectric anisotropy of the LC used in
this experiment. Under high driving voltage, the difference between PSLC devices with different Ag
nanowire doping concentration is very small. The difference of F–T curves under low driving voltage
is mainly caused by the variation of threshold voltage. As shown in Figure 7d, from 100 Hz to 10 kHz,
the threshold voltage of all PSLC devices first decreases and then increases as the frequency increases.
This trend is the same for all PSLC devices. This is because the dielectric constants of LC used in this
study increase first and then decrease as a function of the frequency regardless of Ag nanowire doping
concentration. The influence of driving frequency on the response time of PSLC at 30 V with different
Ag nanowire doping concentration is shown in Figure 7e. It shows that, with the gradual increase
in frequency, from 100 Hz to 10 kHz, the device response time has a slight downward trend, but not
much. When the frequency increases from 10 kHz to 100 kHz, the response time gradually increases as
the frequency increases. This trend is also the same for all PSLC devices. Therefore, the PSLC devices
in this study have a good frequency modulation property, but the Ag nanowire doping has very little
influence on the frequency response.
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4. Conclusions

Electro-optical properties of PSLC device were successfully improved by Ag nanowires doping
into PSLC active layer. When doping concentration is only 0.02 wt.%, the threshold voltage V10 and
V90 values can be reduced by 35–42% compared to undoped PSLC device. The main reason is Ag
nanowire doping can effectively eliminate the ionic impurities in LC and thus reduce the conductivity
of PSLC active layer. The turn on response time of PSLC device with 0.02 wt.% Ag nanowire doping is
only 12.9 ms, which is 41% lower than that of undoped PSLC device. However, the change of turn
off response time is negligible. This is because Ag nanowire doping can increase the polar anchoring
energy and lower the ionic impurities in LC mixture, thus enhancing the dielectric response of LC
molecules. Since the turn off process is an elastic response, doping has limited influence on this.
The Ag nanowire doped PSLC shows similar frequency modulation performance with undoped PSLC
device, with no significant improvement. All the present results imply that Ag nanowire doping can
improve the performance of electro-optical devices such as adaptive optics devices, e.g. PSLC smart
windows, which in general require a fast response and low threshold voltage.
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