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Abstract: Unmanned aerial vehicles (UAVs) are an emerging and promising alternative for monitoring
of transmission lines in terms of flexibility, complexity, working speed, and cost. One of the main
challenges is to enable UAVs to become as autonomous as possible. A vital component toward this
direction is the robust and accurate estimation of the UAV placement with respect to the transmission
grid. This work faces this challenge by developing a transmission line autonomous tracking system,
which allows the placement of a commercial drone over a transmission grid using a monocular
camera. This feature provides accurate positioning for the vehicle even where the Global navigation
satellite system (GNSS) signal is denied, enabling to report the status of transmission lines, at any
time. The system isolates transmission grid conductors in each acquired RGB-image using an
image-processing algorithm based on Hough transform, morphological operations, and Gabor filters.
With this information, the system computes the location of the UAV using a geometric approach that
relates transmission lines building parameter and optical geometry. However, it has the problem of
gradual error accumulation when the drone moves. In this regards, the estimated position of the drone
is computed by the maximum likelihood estimation (MLE) by the position information estimated by
visual-system, the inertial measurement unit (IMU) and GNSS. The proposed positioning system
showed an efficiency of 91.44% in field experimentation in the extraction of transmission conductor,
with a root mean square the error of 0.18 m in the UAV localization.

Keywords: robotics; robot vision systems; image motion analysis; transmission line inspection

1. Introduction

Inspection of power system assets—including conductors, protection systems, towers, transformers
and other devices—plays an important role in addressing the growing need for sustainable energy
worldwide. High-voltage overhead transmission lines are essential assets in power systems that require
careful and frequent monitoring to reduce probable failures related to environmental, operational,
animal or human threats [1,2] and to ensure their proper operation. However, monitoring process is
often neglected or shelved due to more pressing priorities, high deployment costs or industrial policies,
which brings hardship to both unprepared businesses and society at large [3,4].

Within this context, the development of machinery based on autonomous robots, dedicated
systems and intelligent machines, helps face the increasingly complex challenges within a rapidly
expanding power industry [5], ensuring an efficient, cost-effective and safe maintenance process [6].
Currently, robotics presents itself as an affordable alternative to perform maintenance tasks in power
systems, due to its technical characteristics, its outstanding performance to improve several industrial
process [7] and its adaptability to different and hostile environments such as: electrical substations [8],
high voltage overhead transmission lines [9] or power plants [10].
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Several mechanisms have been developed to perform inspection tasks in an energized transmission
grid. Among the most noteworthy initiatives are brachiating robots, unmanned aerial vehicles and
ground vehicles [9], each with its own advantages, disadvantages and characteristics, as summarized
in Table 1. Unmanned aerial vehicles (UAV) have reached technological summit during the last
decade [11], due to their top-quality technical and economic performance. During this period of time,
UAVs evolved from a niche market of small scale applications to a common inspection, treatment
and surveillance platform of electric equipment mounted on transmission grids. This technology can
be used to perform inspection tasks of equipment under hazardous conditions or access restrictions,
due to it navigation is only affected by Chilean Flight Regulation-DAN 151, where the guidelines to
perform the UAV flight over high voltage overhead transmission lines is summarized.

Inspection tasks include methods in which a dataset provided by a huge number of different
sensors is interpreted by computer analysis to identify specific conditions or certain types of defects [9].
The variety of sensor needs is illustrated in Figure 1. These sensors can be mounted in aerial platforms
in order to increase the flexibility, to reduce the inspection time and to avoid operational risks [12].
The use of UAVs has become increasingly popular for visual industry inspection; the systems are
equipped with different cameras, which provide image representations in visual, infrared or ultraviolet
spectral bands and each of these bands has advantages for detecting a huge number of damages or
defects [9,13]. Of note among the main applications of visual inspection are to evaluate the condition of
structural components such as wires [14], conductors [15], and towers and to detect contamination or
physical damages on power insulators [16]. In addition, visual inspection work is highly used to detect
encroachment on the ground or near the tower structure. In off-line applications, the UAV can store
several images of the transmission grid, which are analyzed to detect patterns that would indicate
fatigue, cracks [17], rust, corrosion [18] or other damages. In addition, the surveillance of transmission
lines against terrorist attacks can be developed by UAVs [19].
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Figure 1. The main threats in transmission lines and their impact.

The thermal analysis provides relevant information about the status of different mechanisms
mounted on a transmission grid [20]. Currently, this process is carried out with a wide range of real-time
monitoring devices that determine the dynamic thermal rating of a transmission grid [20–22] and are
mounted on the line. The use of UAVs, coupled with infrared imaging could be used to autonomously
detect failing components or insulator leakage currents [23]. On the other hand, ultraviolet cameras
could be used to detect sources of corona and arcing [24] that indicate insulator hardware failure and
can cause damage to other components [25].

Although cameras are the most used sensors in UAV surveys, there are other sensors based on
different technologies (e.g., vibrational sensing, leakage current sensing), which can be used to identify
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a wide variety of phenomena in transmission grid devices [26]. Vibration sensors are highly used to
detect different phenomena such as tower tampering, avian nesting activity, lightning strikes, damages
in ceramic insulators and damages in tower foundation. An indicator of the insulator contamination
level can be used to detect leakage currents [12,27]. However, these sensors cannot be directly mounted
on robotic platforms because they must be in contact with the structure. In this context, UAVs are
provided with a data acquisition system that allows them to collect the data from remote sensors.

Table 1. Comparison of three main robotic platforms used to perform inspection work in transmission
lines.

Type of Robot Ground Vehicles Brachiating Robots Unmanned Aerial Vehicles

Payload
Restriction Low Medium High

Navigation
Restriction

Ground
accessibility.

Crossing
obstacles.

Chilean flight
regulation.

Autonomy High Medium Low

Maintenance
work Yes

Temporary
repairs. No

Development
cost Very high High Low

Industrial
prototypes

LineMaster [28]
Elevator IV [29]

ROBTET [30]

LineROVer [31]
Expliner [32]

LineScout [33]

AIBOT-6 [34]
UAV-Borne [35]

Nevertheless, technology constraints related to the payload and autonomy could affect critical
processes such as navigation and localization, restricting the use of these platforms. A navigation
system based on global navigation satellite system (GNSS) is currently the most adopted sensing mode
to locate aerial platforms over different industrial environments [36]. In an electrical environment,
however, the use of GNSS is limited because it has size and weight constraints of aerial platforms and
sensors; it can be affected by electromagnetic interference; it cannot operate in cluttered urban areas;
and it is not reliable at low altitudes and suffers from satellite signal cuts [37].

In this context, several works are focused on overcoming positioning issues. Piloted airborne
platforms equipped with artificial vision systems are an alternative for solving many problems related
to UAVs [11,38]. Capturing remote sensing data from satellites is also a possible solution, but it has
several restrictions related to the unfavorable revisit time and spatial and spectral resolutions [39].
An artificial vision system mounted in an UAV has the potential to fill this gap, by providing a
cheap and flexible way to gather the transmission line information while carrying out the inspection
process [40,41]. The images are processed with the purpose of detecting faults [42] and vegetation [43]
or to extract power-lines for analysis [44,45]. Power wires can be detected using a line segment
detection algorithm [46] or Hough transform with parallel constraint [47]. Visual inspection is a line
with great application for aerial robots, since it offers the feature of capturing images in dangerous
areas with difficult access [48,49].

This work describes the development and implementation of a transmission lines detection
system, focusing on autonomous drone flight. The system extracts geometric patterns associated to the
transmission line design andl based on such patterns, it is possible to obtain the position and attitude of
the aerial platform, allowing to locate the drone over an electric network without using GNSS receiver.
A novel two-stage visual navigation algorithm is proposed which can be mounted on any manual,
teleoperated or robotic platform due to its flexibility. The transmission detection is an important action
to guarantee the positioning of the platform. In this context, the algorithm in its first part applies image
processing tools and develops a cropped power grid image, isolating the power-lines from the rest of
the environment. An important challenge is related to perspective distortion, the system addresses
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this issue using texturing filtering and perspective correction algorithm. In addition, texturing filtering
can simultaneously remove the background noise of power lines as well as generate edge maps.
The system applies Hough transform to edge maps to detect straight lines in images that can be
related to power-lines. Finally, the system determines power-lines by taking advantage of the regular
characteristics of power lines. Additionally, the system uses the prior information of platform position
in order to reduce the computational cost and to improve the power line detection. The second stage
determines the distance to wires and the robot position using Bayesian methods. The system merges
sensor information (IMU and GNSS) with visual information provided by our system using Maximum
Likelihood Estimation. This information would allow the equidistant flight over the transmission lines.

2. Material and Methods

The visual-based positioning system proposed in this work allows to locate and maneuver a
commercial drone over a transmission grid. As shown in Figure 2, in the proposed approach the UAV
acquires visual images of the conductors using a monocular camera and sent each image to a ground
station. The system position is estimated and the navigation commands are sent back to the UAV in
order to maintain the position respective to the transmission lines.

1. A commercial UAV is positioned over a transmission grid, controlled by an operator. The distance
from the UAV to conductors varies depending on the safety, lighting conditions and camera
characteristics, requiring at least 1 m between the conductors and the vehicle.

2. The exteroceptive information is acquired with a monocular camera, which is mounted at bottom
of the UAV.

3. To avoid the direct incidence of sunlight, a two-axis hand-held gimbal changes the camera vision
point to avoid sensor saturation.

4. The positioning process computes the placement of the camera based on conductors geometric
design. In addition, the system is capable of storing a compressed image, with geo-referenced
information as a back up and as support to a future inspection work.

5. The current version for the positioning system only performs the flight over three-phase transmission
grids with conductors approximating straight lines without interruption. Its operating system is
flexible in order to add other features. Transmission lines with other distribution can be detected
using Hough transform variations since the system is based on the geometric pattern.

6. A navigation strategy consists of two stages: (i) power-line detection; and (ii) electrical tower
detection. Our visual positioning system is focused on the first goal. Therefore, the system is
disabled when the UAV is near an electrical tower, changing to manual mode. The maximum
speed is 75 km

h . However, we limit this velocity to 25 kph to increase the probability of power-lines
detection and to reduce blurring effects.

7. The drone has a flight autonomy of 30 min (empirically determined). If the drone detects a low
energy level of its batteries, the vehicle selects between two flight modes: land (attempts to bring
the UAV straight down) or return to the launch (the UAV navigates from its current position to
hover above the home position), depending on the distance to starting point.

8. The drone performs inspection tasks along a length of about 10 km in 1 h intervals (Battery
charging time).

9. The proposed drone operates in a dry ambient, ideally at a standard environment of 20 ◦C and
50% humidity. However, the aerial platform can also be placed in a rugged ambient, whose
temperature is not less than 5 ◦C or more than 40 ◦C and whose humidity is not more than 80%.
The apparatus cannot be directly exposed to rain and it is capable of facing wind gusts of up to
10 km

h .
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GRAI

Figure 2. UAV inspection in transmission lines.

Hardware Design

A drone with six rotors was designed, implemented, and tested for the autonomous inspection of
transmission lines. The robotic platform can be described in general terms as follows:

• The drone deployed in real applications has a flight controller (Type Erle Brain 2 with a 900 MHz
quad-core ARM Cortex-A7 CPU processor), which has a flight control unit (a computer that
provides basic flight controls) and a companion computer (computational system in charge
of image processing and image broadcasting). Additionally, the controller has an inertial
measurement unit (IMU), an integrated altimeter and an embedded Kalman Filter for the
treatment of signals. The UAV also has a GNSS antenna with an absolute error of 1 m.

• Visual data are acquired with the SJ4000 Turnigy HD ActionCam 1080P Full HD video camera.
According to the manufacturer, the visual camera in TV mode has a resolution of 1920 × 1080 pixels.

• The monocular camera has been previously calibrated to find the focal point and to estimate
its parameters. Additionally, the camera is aligned with a gimbal that compensates the fast
dynamic rotation of the hexacopter and controls the image plane to stay horizontal and parallel
to power-lines. This process is essential for smooth target tracking in the image. The visual
information is sent to a computational device that is in charge of higher-level behaviors, in an
embedded form, such as the image processing and image broadcasting.

• The information extracted is stored locally in a 16 GB internal memory and sent as a data packet
at regular intervals to a companion computer to prevent problems occurrence. To perform this
process, the drone is equipped with a communication system based on a transmitter/receiver
433 MHz and WIFI connection employed for telemetry operations, and transmitter/receiver
5.8 GHz employed for image broadcasting.

• The UAV works with the Robot Operating System (ROS-Indigo) [50], adapted to the specifications
of this problem.

The general scheme of the sensory and processing system embedded in the UAV is shown in
Figure 3.
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Figure 3. General diagram of the hardware developed in the robotic platform.

3. Visual-Based Positioning System

A mathematical formulation of the proposed positioning algorithm is developed in this section.
The algorithm consists of three stages: image pre-processing, transmission line detection and spatial
positioning of the UAV, as summarized in Figure 4.
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3.1. Image Pre-Processing

Lens distortion and noise directly disturb acquired images, decreasing the detection of power
conductors in the images. Therefore, the system must be capable of filtering out these phenomena to
measure the separation between conductors in world units and to determine the drone’s location in the
work-space. With this aim, traditional camera calibration method estimates the intrinsic and extrinsic
parameters and distortion coefficients, while the digital signal processing algorithms—presented
herein—reduce the noise, correct image defects and remove blurry distortion, guaranteeing the
transmission lines detection [51].

On the other hand, each pre-processed image has several extra objects, which are not related to the
transmission grid. These objects from the scene must be attenuated or removed; otherwise, the system
must intensify the pixels related to the transmission lines to isolate the three-phase transmission
lines from the image background. With this goal, the image is subjected to anisotropic Gaussian
filtering [52], which improves the texture quality of transmission lines and removes irrelevant data,
regardless of line location in the image, as well as its length and slope.

The filter bank consists of an edge filter, at 6, 12 or 24 orientations and one scale
(
σx, σy

)
= (1, 3).

The orientations are selected based on the computational time and the image size. The resulting image
in each filtering process is filter with the Sobel detector to intensify the edges and to obtain a binarized
version with the probable power wires. The system delivers a tensor with 6, 12 or 24 binarized images.

A fixed pattern in the transmission grid, mainly on its conductors, is the symmetric geometric
design. The system looks for patterns with similar characteristics to conductor in each binarized image.
In this work, the UAV flies over transmission grids with conductors approximating a straight line,
without interruption. Hough transform can be successfully used to solve this problem, since this
method identifies the section of the binarized image where high probability of finding straight lines
exists [53].

The Hough transform defines a straight line as a co-linear set of points, mapping R2 into the
function space of sinusoidal functions defined by:

f : (x, y)→ ρ = x cos (θ) + y sin (θ) (1)

where ρ and θ are the perpendicular distance of the line `i to the center of the coordinates and the
angle between the normal of this line and x-axis, respectively.

In this context, the algorithm returns a dataset with all lines (ρi and θi) that meet the previous
specifications related to the geometric design of the transmission grid for each binarized image. Then,
all measurements related to same line are merged using Fuzzy C-Means algorithm.

3.2. Transmission Line Detection

Transmission lines detector uses the geometric design and uniformity of transmission lines to
establish the power wires in each image. At this stage, the purpose is to find a set with three or more
straight lines that fulfill the parallelism and equidistance of transmission lines. Using the parameters
ρ (the distance between the line and the origin) and tan (θ) (slope) that are provided by Hough
transform, it is possible to prove these conditions. However, topographic relief and camera tilt disturb
the equidistant line recognition process, as shown in Figure 5a. These negative events are corrected
using an image orthorectification process.

The image orthorectification process corrects the adverse effects using the geometric relation
between different angles and known distances; this relation is displayed in Figure 5b, where each
parameter is described as follows:

• α1 and α2 are the angles between the real points of power-lines and focal point.
• γ is the draft angle of the camera around x-axis.
• ψ is the field of view (FOV).
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• d1 and d2 are the distorted distances measured in pixels between power-line in the center and
power-line left and right, respectively.

• d, d′1 and d′2 are the real distances measured in pixels between transmission line phases, when
the camera plane is parallel to power-lines plane.

FO
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Figure 5. Analysis of the camera attitude -including the main angles for mathematical expressions:
(a) effect of the topographic relief and the camera tilt in the acquisition of images; and (b) necessary
angles for orthogonal correction.

Using geometry, it is possible to solve this problem and to compute the distance d′1 as a function
of d1:

d′1 = d1 ×
(

cos (γ)
tan (γ− α1)

+ sin (γ)

)
(2)

and d′2 as function of d2:

d′2 = d2 ×
(

cos (γ)
tan (γ + α2)

+ sin (γ)

)
(3)

The system acquires several images at fixed height hre f above the transmission lines to determine
the relation between image units and world units. In this work, power wires were manually extracted
in each image, and the separation between them was directly measured in the image. The estimated
reference distance d̂ is determined using a consistent estimator of the mean. This will help to determine
the measurement of the separation between power wires as well as the drone position, as shown in the
next section.

3.3. Estimation of the Position Based on Visual Data

The estimated height is determined by applying an inverse linear function that relates the
measured distance, the reference distance and reference height to the camera height. The height
is defined as:

ĥ =
hre f × d̂
d′1 + d′2

× sin(γ); (4)

where ĥ is the estimated drone height to transmission lines, hre f is the reference height and d̂ is the
reference distance in the image in number of pixels

As explained above, during off-line mode the reference separation d̂ is established. Hence,
it is possible to compute the x-position and y-position of the camera in relation to the center-line
transmission system as:

x̂ =
ĥ

tan (γ− α)
× cos (δ) (5)

ŷ =
ĥ

tan (γ− α)
× sin (δ) (6)
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where x̂ and ŷ are the estimated x-position and y-position of the camera in relation to the center power
conductor, respectively and δ is the rotation angle of the camera around the z-axis.

Visual-based positioning cannot be applied if the transmission lines are not visible since any
outcome can be returned by the system under such circumstances. However, the robotic platform
has two additional sensors (IMU and GNSS receiver), with different probability density functions
(pdf ), estimating the spatial positioning of the UAV. This information can be used with any Bayesian
method to estimate the system placement. With this aim, in this work was implemented the
maximum likelihood estimation [54], associating a Gaussian probability density function to each
sensor. The corresponding analysis presented in Equations (7) and (8) reveals that the new estimation θ̂

is a weighted average and the new uncertainty σθ
2 can be generated through addition of the reciprocals:

θ̂ =
z1σ2

2σ3
2 + z2σ1

2σ3
2 + z3σ1

2σ2
2

σ1
2σ22 + σ22σ32 + σ1

2σ32 (7)

σθ
2 =

σ1
2σ2

2σ3
2

σ1
2σ22 + σ22σ32 + σ32σ1

2

σθ
−2 = σ1

−2 + σ2
−2 + σ3

−2 (8)

where zi is the measurement of each sensor and σi
2 denotes its variance (in this work, the parameters

z1 and σ1
2 are related to IMU, z2 and σ2

2 are related to GNSS and z3 and σ1
3 are related to our system).

4. Results

A set of experiments were conducted in laboratory, simulation and field environments.
The proposed approach was simulated using the GAZEBO software [55] and linking this with ROS [50]
and MATLAB [56]. Finally, field tests in a real transmission grid, located in the township of Casablanca,
in the Valparaiso Region, Chile were carried out.

4.1. Laboratory Validation

A scale model 1:8 of a three-phase distribution system with power-lines, approximating a straight
line and without interruption was used in the laboratory validation. The model was wrapped with
camouflage at the bottom to simulate the different objects which could be found in a transmission grid
environment. The UAV movement was simulated by a KUKA robotic arm model KR-6.

Laboratory experiments were conducted in the Centro Integrado de Manofactura y Automatización
(CIMA) at the Universidad Técnica Federico Santa María, located in Valparaíso, Chile. The procedure
can be summarized in six main steps:

1. The positioning system was mounted in the clamp of robotic arm to simulate the UAV attitude.
2. The parameter reference separation by the acquisition an image set (30 images) at a fixed attitude

in off-line mode was proposed.
3. The operator set up the robot height with respect to wires of the model, and the path to be

followed by the robot.
4. The robotic arm automatically moved on the pre-determined path, recording a video sequence.
5. Visual data were analyzed in MATLAB programming environment (MathWorks, Natick, MA,

USA). The robotic arm position provided by the software from the manufacturer was used as the
reference in each experiment.

6. The estimated placement of the camera was shown in a graphical user interface (GUI).

Three experiments were carried out to prove the algorithm behavior: straight line path, circular
path, and circular variable path. Figure 6 shows schematics of experiments developed in indoor tests.
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Figure 6. Paths followed by the testing robot: (a) straight line; (b) circular; and (c) circular Variable.

The first experiment consisted of moving the positioning system in a straight line path at three
different heights, maintaining the camera plane fixed and parallel to the power-lines plane, as shown
in Figure 7a. A database with 600 visual images was analyzed to investigate the behavior of the
positioning system in each trail. It is possible to observe that the camera positioning (magenta dots)
converges to the reference (blue dots) in Figure 7a for each studied height. In terms of the root medium
squared error (RMSE), our approach was within this tolerance limit for this type of applications [57,58].
Furthermore, The algorithm accuracy was higher than 90.35% in the three-phase system detection,
as shown in Table 2a.

Table 2. Laboratory results. Statistical analysis of different developed experiments: (a) straight line
path; (b) circular path; and (c) circular variable path.

(a)

Height mm 650 850 1050

Analyzed frames 600 600 600
True positives 543 575 573

Accuracy % 90.35 95.67 95.53
RMSE mm 18.94 13.81 10.30

(b)

Radius mm 550 650 850 950

Analyzed frames 1003 1143 1247 1174
True positives 882 898 1144 984

Accuracy % 87.93 78.5 91.7 83.7
RMSE mm 47.74 55.77 63.69 58.44

(c)

Radius mm 550 650 850 950

Analyzed frames 1003 1143 1247 1174
True positives 973 1061 1128 1093

Accuracy % 96.9 92.7 90.4 93
RMSE mm 58.81 60.97 59.32 47.12

The second experiment consisted of moving the positioning system in a circular path. The camera
plane rotated around the power-lines plane, as shown in Figure 7b. The second set of data acquired
from the visual sensor allowed analyzing the accuracy and reliability of relative positioning from five
different radii by processing more than 1000 visual images in each trail. Results of absolute positioning
are shown in Figure 7b where the blue line is the height reference and the magenta line is the camera
positioning and the statistical analysis is tabulated in Table 2b. Moreover, the algorithm accuracy was
higher than 78.5% in the three-phase system detection.



Appl. Sci. 2019, 9, 165 11 of 22

Finally, we developed an experiment, called circular variable path, that gathers the first two cases,
as shown in Figure 7c. The camera plane rotates around the power-lines plane as it is not aligned
with the power-lines direction. It is interesting to note that the camera positioning, in magenta color,
converges to its reference in blue color and positioning errors were within expected and suitable ranges
for this application, as shown in the statistical analysis developed in Table 2c. The algorithm accuracy
was higher than 90.4% in the three-phase system detection.
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Figure 7. Laboratory results. Comparative analysis between pre-established path and estimated path
by our approach (blue boxes represents the spatial position of the camera): (a) straight line path;
(b) circular path; and (c) circular variable path.

4.2. Simulation Results

Gazebo software was used to study the behavior of a simulated UAV, equipped with our system.
The working environment consisted of three-phase transmission grid, whose main characteristics are
summarized in Table 3, a simulated UAV and a simulated visual camera. In addition, the pre-calibrated
algorithm was programmed in C/C++ under Ubuntu 16.04 operating system to reduce the processing
time. The procedure can be summarized in three main steps:

1. First, the parameter reference separation by the acquisition an image set (30 images) at a fixed
attitude in off-line mode was proposed.

2. Then, the simulated UAV automatically flew on the pre-determinate path, acquiring the visual data.
3. Finally, our approach analyzed the data and returned the estimated placement of the UAV in

real time. At the same time, the results were plotted in a GUI, developed in MATLAB programming
environment.

Table 3. Transmission line parameters in GAZEBO environment.

Parameter Transmission Line 500 kV

Height 20 m
3φ-Separation 10.50 m between phases
Distribution Horizontal

Two experiments were developed in the simulated environment. First, the UAV attitude was
maintained all the time. The corresponding results are shown in Figure 8. It is possible to determine
that the estimated placement converges to the simulated configuration and the absolute error of the
positioning system was less than 1%.

Under the same conditions, the simulated UAV was maintained at constant height and flew
over the simulated transmission lines, as shown in Figure 9. It is possible to see that the estimated
placement converges to the simulated configuration, provided that the transmission lines are visible
in the analyzed images. Otherwise, the system was able to delete the false estimations, providing
better performance.
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Figure 8. Results of the simulation: Stationary flight of the UAV (flight altitude: 55 m, 60 m and 70 m
to conductors) with frames where transmission lines were not detected.
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Figure 9. Results of simulation: Comparative analysis between pre-establish path and estimated path
by our approach (straight line path).

4.3. Transmission Line Detection Algorithm

Figure 10 presents the resultant images in all stages of the transmission line detection approach,
with regards to: (a) images analyzed under ideal lighting conditions; (b) image brightness increased by
20%; (c) image brightness increased by 60%; and (d) image brightness reduced by 50%.

The acquired image has additional objects, which are not related to the transmission lines.
These objects from the scene have to be filtered or eliminated to isolate the conductors. First, the color
constraint is applied to obtain a gray-scale image. Then, the image brightness is corrected to highlight
power conductors. Finally, the delivered image is filtered using Gabor filters, which simultaneously
remove the background noise of power lines as well as generate edge maps. It is possible to observe
that the system highlights power conductors. However, the delivered image was noisy due to
complex and irregular ground coverage. It is possible to observe that the system highlights power
conductors. However, the delivered image was noisy due to complex and irregular ground coverage.
This disadvantage increases the risk of the positioning system returns erroneous measurements.

The direct bright sunshine can affect the positioning system since the system could not detect
wires and conductors, as shown in Figure 10b,c. Therefore, the system was not able to find and
isolate power-lines in the image. On the other hand, the system could operate under reduced visibility
conditions but not in darkness, as shown in Figure 10d.
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Figure 10. Comparison of power line detection results: (a) ideal lighting conditions; (b) brightness
increased by 20%; (c) brightness increased by 60%; and (d) brightness reduced by 50%.

4.4. Field Experiment Results

The positioning system was mounted on a commercial UAV, and equipped by the UTFSM Robotics
Research Group (GRAI). The complete system was positioned over a transmission system, whose main
parameters are summarized in Table 4. The estimate based on the embedded Kalman Filter was used as
position reference of the UAV. Figure 11 presents the resultant images in all stages of the transmission
line detection approach. The corresponding results are shown in Figures 12 and 13. It is interesting to
note that the estimated position, shown as a magenta dashed line, converges to reference (black line),
provided that the transmission lines are visible in the acquired images, as shown in Figures 12 and 13.
Otherwise, the system compensates poor estimations using Bayesian methods. In this context, we used
the estimator described in Equations (7) and (8) to reduce this negative effect. Table 5 compares the
results obtained in the position estimation, after applying two approaches: simple when the system
returns the position and hybrid when the sensor fusion expression only with the IMU, GNSS and our
approach data. The impact of this solution is shown in Figures 12 and 13, as a cyan dashed line, where
it is possible to note that the system determined the UAV position in the hybrid case despite not seeing
wires, giving the robustness to the system. In terms of the RMSE, the two approaches show similar
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results, although the hybrid method proposed here was slightly smaller and the positioning errors
were, respectively, less than 66.02 cm (x estimation) and 26.29 cm (z estimation) in the simple case and
25.77 cm (x estimation) and 10.26 cm (z estimation) in the hybrid case. Results shows a proper behavior
for aerial applications. On the other hand, the algorithm accuracy was 91.44% in three-phase system
detection. These results show that the system serves to locate any robotic platform in a transmission
grid, under variable lighting conditions or GNSS restrictions.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 11. Results of power line detection algorithm: (a) acquired image; (b) orthorectified image;
(c) gray scale image; (d) filtered image; (e) power lines detected; and (i–k) images filtered by
Gabor filters.
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Table 4. Structural characteristics of the transmission grid.

Parameter Transmission Line 68 kV

Height 12 m

3φ-Separation
2.4 m between left and right wire

1.6 m between left and center wire
0.8 m between right and center wire

Distribution Horizontal

Table 5. Field results: Statistical analysis of different developed experiments.

Frames True
Positi-ves

False
Positi-ves Effici-ency RMSE X

Estimator m
RMSE Z

Estimator m

549 502 47 91.44% 0.2577 0.1026

5. Discussion

In this study, a positioning system based on computer vision was proposed. The experimental
results show that the system is capable of detecting transmission lines with approximately 91.44%
accuracy for each studied case. The system analyzed the geometric patterns of transmission lines.
For this reason, the previous training is not necessary. The main disadvantage was related to data
acquisition and the camera resolution, since it affects the detection of the wires.

Once that three-phase system (three conductors) was segmented, the system was capable of
computing the UAV position respect to three-phase system. We presented two approaches: simple
and hybrid methods. Based on RMSE, the positioning errors were less than 66.02 cm (x estimation)
and 26.29 cm (z estimation) for the simple method, and 25.77 cm and 10.26 cm for the hybrid method.
These results are adequate for aerial applications.

5.1. Consistency Test

To evaluate the visual based transmission line positioning system, we performed consistency tests
following the guidelines presented in [59]. Figure 14 shows the consistency of the estimation of the x
and z coordinates of the drone flying over the transmission lines, in Figure 14a,b, respectively. As can
be seen, the error in both coordinates remains bounded by two times its standard deviation. As ground
truth (and only with the aim of performing the consistency tests) we used the GNSS positioning system
described in Section 2.
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Figure 14. Consistent tests: (a) the consistency of the error in the x coordinate; and (b) the consistency
of the error in the z coordinate.
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5.2. Comparison with Existing Positioning Techniques

Existing positioning architectures are broadly classified as proprioceptive and exteroceptive
by this manuscript. By regarding this separation and the frequency of preference, some leading
positioning methods are discussed, and a detailed comparison is shown in Figure 15 and the main
characteristics are summarized in Table 6.

System
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Figure 15. Comparison of the existing positioning techniques.

5.2.1. GNSS-IMU

GNSS and IMU are the most important parts of the UAV navigation systems. Currently, GNSS-IMU
navigation is the most adopted sensing mode to locate aerial platform in transmission grids.
However, this method is restricted by size and weight constraints and sensors can be affected by
electromagnetic interference.
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Table 6. Comparison of the existing positioning methods.

Characteristics Advantages Disadvantages Works

GNSS-IMU
-Proprioceptive, Ambient
-GNSS and IMU are the base of a
navigation system

-Independent of the grid
-High accuracy
-Not dependent on external lighting conditions

-Size and weight constraints
-High-resolution data is very costly
-Not always available (GNSS-denied areas)
-At least 3 satellites should be detected
-The system can be affected by EMIs

[60,61]

SAR images
-Exteroceptive, Non-ambient
-Mapping of power lines and towers
Disaster monitoring, damaged towers

-Covers vast areas with few images
-Noise immunity, high accuracy
-All-weather imaging capability
-Independent of the grid

-Very high-resolution data is very costly
-Not easy to interpret
-Depending on environmental conditions

[62–64]

LASER
-Exteroceptive, Non-ambient
-Mapping of power conductors and towers
-Vegetation monitoring

-Detailed 3D data directly available
-Noise immunity, high accuracy
-Not dependent on external lighting conditions
-Flexibility in data acquisition

-Small objects are difficult to detect
-High-resolution data is very costly
-Depending on the scanning geometry

[38,62,65,66]

Sonar

-Exteroceptive, Non-ambient
-Mapping of conductors and pylons
-Inspection of power line components
-Detect partial discharges in power lines

-Easy to implements
-Non-complex structure
-Independent of the grid
-Low costs compared to other methods

-Highly affected by noise
-Low resolution [67,68]

EM-field
-Exteroceptive, Non-ambient
-Inspection of power line components
-Measures the voltage drop across wires

-Easy to implements
-Non-complex structure
-Not available when power lines are off

-Requires high and perpetual current flow
-Safety vulnerabilities
-Mechanical constrains

[69,70]

Photogrammetry

-Exteroceptive, Non-ambient
-Vegetation monitoring
-Mapping of conductors and towers
-Fault monitoring in power line components

-Very detailed 3D data directly by laser scanning
-High flexibility in data acquisition
-Low costs compared to other methods
-Potential for diverse applications
-Noise immunity

-Off-line mode, High computational cost
-The method needs landmarks to correct
the scale
-Camera parameters affect directly to measurements
-The technique needs high resolution
-It depends on lighting conditions

[41,49]

Visual

-Exteroceptive, Non-ambient
-Vegetation monitoring
-Inspection of power line equipment
-Mapping of conductors and ground wires

-High spatial resolution
-High flexibility in data acquisition
-Possibility of height measurements from
visual odometry
-Low costs compared to other methods
-Noise immunity

-Cannot be obtained through clouds or in
dark conditions
-The image quality can be affected by vibrations.
-Camera parameters directly affect the measurements
-It depends on lighting and weather conditions
-Dependent of the grid

[62,71]
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5.2.2. Synthetic Aperture Radars

For the positioning of transmission line aerial platforms, synthetic aperture radars (SAR) can
be used for mapping of power lines and towers, monitoring environmental disasters and vegetation
mapping. Although these systems offer sufficient solutions in terms of continuous functioning under
variable environmental conditions and environmental three-dimensional modeling (vegetation, power
structure, and elevation), SAR images are not easy to interpret and they are very expensive depending
on the resolution. In addition, The visibility of power conductors can be extremely poor, depending on
factors such as viewing geometry.

5.2.3. Light-Pulse Distance Sensing

This direct method uses a laser diode (sender and receiver) to detect transmission lines. The main
applications are the mapping of conductors and pylons and detection of trees near the transmission
grid. Its advantage lies in its accuracy, noise immunity and its robustness under variable lighting
conditions. However, several point clouds have to be acquired for mapping small and narrow objects
and the sensor technology can be highly expensive.

5.2.4. Sonar-Pulse Distance Sensing

Ultrasonic waves are sent from the sensor and then collected back to estimate the distance of
an object from UAV. This method has several restrictions related to environmental noise, UAV flight
altitude, and a low resolution. In addition, this method is irregular if too much noise is present in
the environment.

5.2.5. Electric and Magnetic-Field Change Sensing

These sensors can be used to sense the presence of magnetic objects and fields and can be helpful
in determining the position of the drone. However, the calculation of the electric and magnetic field
is extremely complicated, and several electromagnetic interference sources and the noise can affect
the measurements.

5.2.6. Photogrammetry and Visual-Based Positioning

The positioning based on monocular images aims the mapping of conductors in a transmission
grid. In addition, optical aerial images can be used to monitor the vegetation, to inspect power line
components and to map electrical towers. This method stands as a promising candidate to position
aerial platforms in transmission grids due to its flexibility in data acquisition, low cost, and noise
immunity. However, several factors can affect image quality. In addition, the lighting conditions are an
important restriction (cannot be used in dark conditions). The 3D modeling of conductors is extremely
difficult and depends on weather conditions.

6. Conclusions

Aerial remote sensing based on UAVs is a new field for inspection of equipment in electrical
industry, as a result of the ergonomics and flexibility of the new platforms and their high capacity
access in inhospitable areas. This work put forward some artificial vision techniques applied to
the exploitation of information provided for the different sensors. In this study, the performance
of a low cost positioning system for aerial platforms was analyzed. Results show that the location
achieves a very high precision with respect to transmission lines, with 1.5 and 27 cm as the worst
cases in laboratory and field tests, respectively. In addition, the system can operate under different
lighting conditions and on GNSS-denied areas. The system was tested over distribution grid located
in agricultural environments. There are still other tests to be performed to have a complete guarantee.
Experiments showed very good performance in the platform positioning, behaving similarly in all
experiments and within expected and suitable ranges for this application. Although the system has
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been specially designed for UAVs, its operating system is flexible to add on to other platforms, since it
does not depend on the platform type. Moreover, the computational cost was suitable for controlling
a UAV. The absence of such commercially available technology will lead the authors future work to
design, develop and test more efficient hardware and accurate processing algorithms.
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