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Abstract: Insulator faults detection is an important task for high-voltage transmission line inspection.
However, current methods often suffer from the lack of accuracy and robustness. Moreover, these
methods can only detect one fault in the insulator string, but cannot detect a multi-fault. In this paper,
a novel method is proposed for insulator one fault and multi-fault detection in UAV-based aerial
images, the backgrounds of which usually contain much complex interference. The shapes of the
insulators also vary obviously due to the changes in filming angle and distance. To reduce the impact
of complex interference on insulator faults detection, we make full use of the deep neural network to
distinguish between insulators and background interference. First of all, plenty of insulator aerial
images with manually labelled ground-truth are collected to construct a standard insulator detection
dataset ‘InST_detection’. Secondly, a new convolutional network is proposed to obtain accurate
insulator string positions in the aerial image. Finally, a novel fault detection method is proposed
that can detect both insulator one fault and multi-fault in aerial images. Experimental results on a
large number of aerial images show that our proposed method is more effective and efficient than the
state-of-the-art insulator fault detection methods.

Keywords: unmanned aerial vehicle; high-voltage transmission line inspection; aerial image; insulator
fault detection

1. Introduction

The status detection of electric power equipment is an essential technique for the high-voltage
transmission lines inspection in which a wide variety of sensors are used [1]. Over the past few decades,
vision sensor-based methods have been developed rapidly, and many topics have been examined, such
as insulator detection [2], power line detection [3,4], and power tower detection [5,6]. Early studies
show that the insulator string is one of the most important pieces of equipment of the high-voltage
transmission line as it can provide both mechanical support and electrical insulation. However, due to
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the influences such as lightning strikes, material aging, and overloading, insulator faults usually occur
after a period of running time, as shown in Figure 1. Therefore, effective detection of the insulator
faults is an important task for high-voltage transmission line inspection.
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model [32]. In the work of Wang [14], a threshold filtering scheme based on Lab color space is 
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the insulator area to its external rectangle area. However, this method can be significantly affected 
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performance will degrade in cases in which insulators are overlapped. To solve this problem, Zhai et 
al. [20] propose a two-step strategy to obtain more accurate insulator locations. First, the insulators 
are roughly located by a saliency detection method. After that, the insulators are finely segmented 
from the background through a series of rules. Finally, an adaptive morphology method is proposed 
to detect the insulator fault. However, this method cannot achieve good performances in complex 
scenes that contain various types of background interference which are usually more salient than the 
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Figure 1. Insulator string (Red color) is composed of evenly spaced insulators, and it will have insulator
fault (Blue color) after running for a period of time. At present, an important reason for the low
effectiveness of insulator detection and insulator fault detection is the complex background interference
(Yellow color) in the aerial image.

In traditional manual inspection, people have to walk along paths near high-voltage transmission
lines, and then check each insulator status by using various types of instruments, such as audition
sensors [7], infrared imagers [8–10], cameras [11], and ultraviolet imagers [12]. However, the traditional
manual method is inefficient and not feasible in practice as high-voltage transmission lines are usually
built in complex surroundings containing forests and lakes. Recently, with the development of the
unmanned aerial vehicle (UAV) control and image processing technique, insulator status inspection
has trended towards the analysis of aerial images captured by UAVs [13]. The existing methods
can be generalized into three main categories: (1) Man-made features-based methods, (2) machine
learning-based methods, and (3) deep learning-based methods.

In the man-made feature-based methods, multiple features including color [11,14], shape [15–17],
edge [18,19], gradient [20], texture [21], key-points [22–25] and their fusions [26,27] have been explored.
Meanwhile, some mathematical models have also been applied, such as the snake model [28], Hough
transform [29], Active Contour Model [30], Fuzzy c-means [31], and Receptive field model [32]. In the
work of Wang [14], a threshold filtering scheme based on Lab color space is proposed to locate the
insulators in aerial images. Then, the coordinates of each insulator are obtained through a developed
mathematical model. Finally, the insulator fault is determined by the ratio of the insulator area to its
external rectangle area. However, this method can be significantly affected by the complex background
contains objects that are similar in color to the insulators. Moreover, its performance will degrade in
cases in which insulators are overlapped. To solve this problem, Zhai et al. [20] propose a two-step
strategy to obtain more accurate insulator locations. First, the insulators are roughly located by a
saliency detection method. After that, the insulators are finely segmented from the background through
a series of rules. Finally, an adaptive morphology method is proposed to detect the insulator fault.
However, this method cannot achieve good performances in complex scenes that contain various types
of background interference which are usually more salient than the insulators. Moreover, this method
can only detect one fault in an insulator string, and cannot detect multi-fault in an insulator string.
In [17,28], the Otsu algorithm is applied to obtain the insulator regions. Subsequently, the insulator
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contours are achieved by the wavelet modulus maximum method or snake model. Finally, each
insulator contour is fitted to an ellipse by the Hough transform or the least square method, and the
insulator fault can be judged by calculating the number of insulators. However, both [17,28] can only
determine whether there are insulator faults in the aerial image but cannot give the positions of the
insulator faults. Wu et al. [30] consider that the insulators in aerial images often exhibit the problem
of texture inhomogeneities. To solve this problem, the texture features of insulators is extracted by
a semi-local operator under the Beltrami framework. Then, a new active contour is proposed to
extract insulators from an aerial image. However, this method is time-consuming and far from a
practical application. In the work of [22,24,25], the key-point features of the insulator are analyzed.
Subsequently, the SURF or DoG (Difference of Gaussians) key-point features are used to locate the
insulators in an aerial image. Finally, an elliptical spatial descriptor is applied to check the insulator
faults. However, although these methods can achieve perfect performance in some cases, they can be
easily affected by the filming angle and distance when applied in practical applications. To enhance the
robustness of insulator faults detection. Jiang et al. [27] adopt multiple insulator features containing
color, shape, and texture, to extract the insulators from the complex background. After that, they
develop an insulator piece-to-piece distance-based strategy to detect the insulator fault. However, due
to the high computational complexity of the feature extraction strategy, this method is also far from
a real-time application. Moreover, this method is only applicable to independent situations among
adjacent insulators in the aerial image. Based on observations of many man-made feature-based
methods, these methods are quite sensitive to background interference. Moreover, their performance
is usually suppressed by the filming angles and filming distances.

In the machine learning-based methods, AdaBoost [33,34], Sparse representation-based classifier [35],
SVM [36], Cascade classifier [37], and KNN [38] are applied to locate the insulator positions and detect
the insulator faults. Shang and Li [34] extract seven invariant moment features of insulator by using
samples from 300 insulator aerial images to train an AdaBoost classifier. Then, they use the trained
AdaBoost classifier to locate the insulators in the aerial image. Finally, they design a strategy similar to
that of [27] to detect insulator faults. Experiment results show that their proposed method can be used
to detect multi-fault in an insulator string. However, because the filming angle and distance are always
changing during UAV inspection, the insulators in aerial images are usually overlapped, which means
it is quite hard to obtain the spatial information of each insulator. Consequently, the method proposed
in [34] can only achieve good performance when insulators are isolated. In [35], an insulator dataset is
constructed and the HOG (Histogram of Oriented Gradient) feature of each image is calculated. After
that, the PCA (Principal Component Analysis) is applied to create an over-complete dictionary for each
insulator sample. Finally, a sparse-representation-based classifier is trained to obtain the positions of
insulator faults. However, only using an over-complete dictionary of the HOG feature to train a classifier
cannot achieve good performance in the background with complex texture interference. To compensate for
this shortcoming. Yan et al. [36] applied fusion features composed of HOG and LBP (Local Binary Pattern)
features to train an SVM (Support Vector Machine) classifier. Experiment results show that this method can
obtain multi-angle insulator’s locations in complex scenes. In the work of [37], haar-like feature, integral
graph feature and directional gradient histogram feature are combined to train a cascade classifier and
an SVM classifier. Then, the two classifier models are applied to locate the insulators. Finally, the fault
location can be determined by an incremental contour value-based strategy. In [38], a KNN classifier is
trained to distinguish between insulator caps and background clutter. Then, an automatic insulator fault
detector is developed to analyze each cap for faults based on an elliptical descriptor. Figure 1 in [38] shows
that their proposed method has the potential to detect insulator multi-missing-fault. However, since there
is currently no publicly-available dataset for insulator missing faults detection, their dataset contains only
10 images with insulator missing faults. Although the machine learning-based methods have increased the
accuracy of insulator location and faults detection, all of them have a common limitation in that they are
time-consuming as they have to adopt the slide-window strategy to check the whole aerial image.
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In the past five years, object detection has achieved great breakthroughs with the development of
hardware equipment and deep learning theory. Many representative deep convolutional networks
such as RCNN [39], Fast-RCNN [40], Faster-RCNN [41], YOLOv1 [42], YOLOv2 [43], YOLOv3 [44],
and their variants [45] are proposed and validated on public datasets [46]. These methods depict
objects by learning high-dimensional semantic features. Specifically, SPP-Net, RCNN, Fast-RCNN,
and Faster-RCNN belong to two-stage networks while YOLOv1, YOLOv2, and YOLOv3 are one-stage
networks. The two-stage methods have two common shortcomings: that they are time-consuming and
hard to train. On the contrary, the one-stage methods can run in real-time at a moderate expense of
accuracy compared with the two-stage methods [47–49]. Therefore, one-stage methods have higher
feasibility for deployment on embedded devices. Motivated by these pioneering researches, it is
worth investigating how to use deep learning models to locate insulators and detect faults in aerial
images [1]. Although there are few related works, a summary of literatures are given and analyzed as
follows: In the work of [40,41,48,49], Fast-RCNN and Faster-RCNN are adopted to locate the insulators.
However, the training process of Fast-RCNN and Faster-RCNN is complicated and difficult to deploy.
Moreover, they cannot locate insulators in aerial images in real-time. In [50], Faster-RCNN uses
rectangle bounding boxes to label the insulator positions in the aerial image. After that, U-net is
developed to segment the fault contour in the rectangle bounding boxes. The performance of this
cascade framework will degrade in cases in which insulators are serious overlapping. Moreover, there
is no public dataset for insulator fault detection. Accordingly, it is hard to train an end-to-end network
with good performance for insulator faults detection. To address this challenge, Tao et al. [51] segment
the insulator string that contains insulator fault from an aerial image. Subsequently, they paste the
segmented insulator string on another aerial image that only contains background to augment their
insulator fault dataset. However, the insulator fault in a simulated aerial image is similar to that of the
original aerial image: this disadvantage will affect the experimental results, which in turn affect the
generalization ability of their proposed network.

In general, most of the man-made feature-based methods and machine learning-based methods
are quite sensitive to complex background interference. Moreover, their performances are usually
suppressed by the filming angle and distance. Furthermore, most of these methods are time-consuming
and far from a real-time application. In respect of the existing deep learning methods, since there
are no insulator aerial image datasets available from public resources, such methods have not been
significantly developed at present. Most importantly, regardless of the existing man-made feature-based
methods, machine learning methods, or the deep learning methods, they have no systematic analysis
and solve the problem of the insulator multi-fault detection. Therefore, it is meaningful to propose a
method that can solve the problems in the existing methods.

In this paper, we propose a novel two-step method for insulator faults detection that is based on the
CNN feature of UAV aerial images while considering the unique color and area feature of the insulator
faults. The main idea of the proposed method can be concluded as follows: first, plenty of insulator aerial
images are collected and labelled ground-truth to construct an unprecedented dataset. Subsequently, a new
deep convolutional network is trained and adopted to obtain the accurate insulator position. Finally, the
obtained insulator location is set as a RoI (Region of Interest), and then a novel method is proposed to
detect insulator faults in the RoI. The main contributions of this paper are summarized as follows.

To compensate the shortcoming of the lack of the dataset. We construct a large UAV-based
insulator dataset with plenty of images filmed in various aerial scenes, and we label the ground-truth
for each image. This dataset is suitable for training and testing deep convolutional networks. It also
can be applied for validating the performance of the traditional insulator detection methods.

We propose an effective network to obtain accurate insulator position in the aerial image with
complex background interference. Experimental results show that the performance of our proposed
network is superior to the YOLOv2 and is close to the YOLOv3 network, in which YOLOv2 and
YOLOv3 are considered to be the state-of-the-art object detectors. Most importantly, our proposed
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network’s memory usage is 14.5% less than YOLOv3 and 21.5% less than YOLOv2, which means our
proposed network is more conducive to the deployment of embedded devices.

We develop a new idea to create insulator fault images to compensate for the lack of insulator
faults dataset. After that, we propose a novel method for insulator faults detection in the RoI that are
obtained by our proposed network. Experimental results show that our proposed network is more
effective and efficient than two state-of-the-art insulator fault detection methods. Most importantly,
compared with the previous works, our proposed method can accurately detect not only insulator one
fault but also insulator multi-fault.

The remainder of this paper is organized as follows. Existing methods for insulator detection and
insulator fault detection are reviewed in Section 1. A detailed description of our proposed method
is presented in Section 2. Experimental results and discussion are discussed in Section 3. Finally,
conclusion and future work are shown in Section 4. The experimental results are exhibited in pictures,
and please zoom in for a better view.

2. Proposed Method

Our proposed method includes two main steps: (1). Insulators detection and (2). Insulator
faults detection.

2.1. Insulator Detection

For the insulators’ detection, there are two well-known challenges given as follows: first,
the background of UAV aerial images is usually complex and varied. Therefore, the detector easily
judges background interference as insulators. Second, due to the different filming angle and distance,
the phenotypes of the insulators in each image are extremely different. Consequently, it is necessary to
design an effective and robust model.

2.1.1. Model Structure

As we know, deep convolutional networks have shown a huge success in image recognition.
To better extract high-dimensional semantic features of the objects, some representative backbone
networks, such as AlexNet [52], VGG [53], and ResNet [54], have been developed and validated on
public datasets. A comparison of AlexNet, VGG, and ResNet on ImageNet dataset [46] is shown in
Table 1. Specifically, the performances of ResNet are superior to that of the AlexNet and the VGG, and
they can increase their Top-5 performance by increasing the depth of the network structure. Despite
the Top-5 percentage of ResNet50 is only 0.8% lower than that of ResNet101, its computation time and
memory usage are almost half of those of the ResNet101.

Table 1. Pre-trained models for ImageNet classification [55].

Models Top-5 Times (GPU) Weights

AlexNet 80.3 3.1 ms 238 MB
VGG16 90.0 9.4 ms 528 MB

ResNet18 89.9 4.6 ms 44 MB
ResNet34 91.1 7.1 ms 83 MB
ResNet50 92.9 11.4 ms 87 MB
ResNet101 93.7 20.0 ms 160 MB

Considering the advantages of the ResNet50, we adopt it to be the backbone of our proposed
network. Moreover, we replace the channel of the last convolutional layer in ResNet50 with 1024.
Since the filming angles and filming distances are varied in different images, the phenotypes of the
insulators can be divided into three scales: small, middle, and large. To ensure each scale of the
insulators can be effectively detected, we refer to the work of [44,56], and then develop a three branches
structure in the proposed model to detect insulators with different scales. Figure 2 shows the whole
architecture of the proposed network. Moreover, in the work of [55], the ResNet50 is combined with the
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header layer of the YOLOv2 to design a new deep convolutional model, which is named as ResnetV2
in this paper. However, the experimental results on our insulator dataset show that it has a poor
performance (Please see experiment), which means the features only obtained by ResNet50 cannot
effectively represent the characteristics of the insulators. Thus, it is necessary to design a deeper
network structure to learn more effective insulator features from shallow layers. To address this
challenge, we develop a cascade convolutional structure in each branch to extract high-dimensional
semantic features of different scales of the insulators, as shown in Formula (1):

First kernel 3× 3× L
Second kernel 1× 1×M
Third kernel 1× 1×N

(1)

where L, M, and N indicate the channel number of the kernels. From Formula (1), the designed cascade
convolutional structure consists of three convolutional kernels. Specifically, the first convolutional
kernel (i.e., 3 × 3) is applied to extract finer insulator feature maps in the 8-neighbor region. Then,
the second convolutional kernel (i.e., 1 × 1) is adopted to change the channel number for increasing
the non-linearity without changing the receptive fields of the convolutional layers. Finally, the third
convolutional kernel (i.e., 1 × 1) is used to achieve cross-channel interaction and feature integration.

To make the proposed network as an effective one-stage model that is easy to train and can
detect insulators in real-time, it is necessary to connect each branch and share the features in different
branches. However, with the depth of the network getting deeper and deeper, the insulators could
not be effectively detected as so few features cannot indicate the characteristics of the insulators.
Therefore, it is unreasonable to only use the feature maps of a layer in the previous branch as the
input of the current branch. To accomplish this goal, we take the fact that the shallow convolution
layers can provide low-level features of the insulators (color, texture, and shape, etc.). Subsequently,
the conv4_6 of the backbone network is routed to the conv11 in ‘large’ branch to create fusion feature
maps. After that, the fusion feature maps are considered to be the input for the ‘Middle’ branch.
Similarly, the conv3_4 feature maps are combined with conv22 as the input of the ‘Small’ branch.

2.1.2. Training Preparation

To obtain the accurate locations of different scales of the insulators in an image, the k-means
cluster algorithm is applied to automatically find a good bounding box prior instead of hand-picked
prior, and the result is shown in Figure 3. Based on the observation of Figure 3, it is found that k = 12
can be treated as a compromise that has a good IoU (Intersection over Union) and moderate model
complexity. Therefore, we choose 12 clusters corresponding to IoU = 64.73, and then divide the 12
clusters into three categories for different detectors, which is given as follows:

1. First branch (Large): (322 103), (256 158), (253 289), (363 202).
2. Second branch (Middle): (45 225), (214 82), (135 132), (68 319).
3. Third branch (Small): (31 26), (66 48), (32 126), (123 58).

The proposed method adopts the loss function that is proposed in [44], which is given in Formula (2).

Loss = λcoord
S2∑
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k∑
j=1

1obj
i j (xi − x̂i)
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2

+λcoord
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i j
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√
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Figure 2. The architecture of the proposed network.
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Figure 3. Clustering box dimensions on ‘InST_detection’ Dataset. The horizontal axis indicates the
number of clusters, and the vertical axis shows the corresponding average IoU.

In Formula (2), xi is the x coordinate of the prediction while the x with symbol ‘∧’ is the coordinate
of the ground-truth. The definitions of the other parts in Formula (2) are similar to the above definition.
Moreover, the first line and the second line of Formula (2) indicates the coordinates loss and distance
loss between the prediction and the ground-truth. The third line represents the confidence loss of the
predicted bounding box containing the insulators, while the fourth line gives the confidence loss of the
predicted bounding box does not contain the insulators. The fifth line denotes the category prediction
loss. Unlike the work of [44], the k is set to be 4 in the proposed network.

2.2. Insulator Faults Detection

As previously mentioned, most of the existing methods can only give good results when detecting
one fault in the insulator string, and they cannot detect an insulator multi-fault. To address these
challenges, we refer to the work of [11,20], which are considered to be the state-of-the-art insulator one
fault detection methods. Then, a novel solution with a systematic analysis is proposed for insulator
multi-fault in this section. Figure 4 exhibits the flowchart of the proposed method, and detailed
explanations are given as follows.

First of all, based on the observations of large numbers of insulator aerial images, three important
features of insulators were found, which are listed as follows.

First, although the color of the insulators is similar to that of the background, the color between
them is still different.

Second, the positions of insulator faults are usually random, and these positions are not fixed.
Last but not least, the contour sizes of different insulator faults are very similar in an image.
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Subsequently, the proposed insulator faults detection method can be divided into the following
three steps:

# Step 1: Grab-cut algorithm [57] is adopted to manually segment the insulators region from 300
insulator aerial images in the training set of the InST_detection Dataset. After that, a more proper color
distribution of the insulators in RGB color space can be concluded as following.

56 ≤ R ≤ 178
110 ≤ G ≤ 200

30 ≤ G−R ≤ 60
(3)

Then, the insulators detected by the proposed network is marked by a rectangle bounding box.
This bounding box is set to be a RoI. Finally, the color model listed in Formula (3) is applied to segment
the insulators from the RoI.

# Step 2: The adaptive morphology [20] is exploited to fill the gaps between the adjacent insulator
pieces, and the insulator string becomes a connected component. Then, the coordinates of the connected
component’s minimum bounding rectangle are calculated, and the minimum bounding rectangle
perform the ‘XOR’ operation with the connected component. Finally, the contours of the insulator fault
candidates are highlighted. It is worth noting that these candidates consist of not only the contours of
real insulator faults but also the interference contours. Based on the observation of the contours of the
candidates, it is found that some of the interference contours are elongated rectangles. Therefore, parts
of the interference contours can be removed by the following rule:

Candidate =

1 if height/width ≥
1
5

0 else
(4)

In this work, if the aspect ratio of a contour is greater than 1:5, it should be retained in the
candidate’s sequence; otherwise, it will be regarded as an interference.

# Step 3: In response to the actual situation, there are two aspects should be considered: (1) The
number of the fault candidates is larger than the max number of the real-fault in aerial images of the
‘InST_detection’ dataset; and (2) the number of the fault candidates is just equal to the max number
of the real-fault in the aerial image of ‘InST_detection’ dataset. In most cases, the number of fault
candidates is larger than the real-fault in an image. Moreover, the area of the insulator fault contour
is usually much larger than the area of the interference contour. Therefore, on the one hand, if the
candidate number is larger than the max number of the real-fault in aerial images of ‘InST_detection’,
the K-means algorithm is applied to cluster the candidate areas into two categories: real fault contours
and interference contours. Subsequently, one of the two categories with a larger average area is
considered as the real-fault. On the other hand, if the candidate number is smaller than the max
number of the real-fault, the bubble sort algorithm is adopted to sort the candidate areas in descending
order. Then, we loop and check the array from the smallest contour. If one contour area is larger than
0.6 times the maximum contour area, this contour is considered to be a real insulator fault. Compared
with the state-of-the-art methods, the proposed fault detection method is more effective and can detect
not only insulator one fault but also insulator multi-fault. More details can be seen in Section 4.

2.3. Data Collection

Since there has been no publicly available dataset for insulator detection in UAV aerial images,
the ‘InST_detection’ dataset is constructed to validate the performances of the proposed network,
as shown in Table 2. The ‘InST_detection’ dataset consists of 4031 images that contain different
surroundings, and the filming distances and angles are varied in every image. These aerial images
are collected from the power company’s database and captured by an on-UAV camera. In this work,
first, all the images in ‘InST_detection’ dataset are normalized to the same size of 416 pixel × 416 pixel.
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Then, we label the ground-truth for each insulator string using LabelImg tool [58]. Finally, we get 9609
insulator string with their ground-truth in total.

Table 2. The InST_detection dataset.

Image Number Training Set Testing Set Image Size Insulator String Number

4031 2675 1356 416 px × 416 px 9609

To verify the proposed insulator faults detection method, it is necessary to construct an insulator
faults dataset. However, although insulator faults detection is an important task in high-voltage
transmission line inspection, it is well known that the main factor for limiting the development of
insulator fault detection methods is that there are few insulator faults aerial images which can be
collected, and we share a common limitation with the previous works in that we only obtained
42 images with one fault or multi-fault at the beginning. To address this problem, a novel data
augmentation method is proposed in this work. First, based on the analysis of insulator fault aerial
images, it is found that although the backgrounds of different regions in an image are different, the
background patches in a local region still have similar features. Second, it is conceivable that the
background behind the normal insulator should be similar to the pixels around it. Third, we learn that
if there are four insulator faults in an insulator string, it should be repaired within 24 h. Otherwise,
the electrical performance of the insulator string will be greatly reduced, which will further affect the
stability of the power grid operation. Based on the above facts, Photoshop software [59] is used to erase
the normal insulator regions and replace them with their nearby pixels. Finally, a dataset containing
120 insulator fault images was created, and there were a total of 228 insulator faults (detail is shown in
Table 3). Specifically, 60 images contain insulator multi-fault while the other 60 images only contain
insulator one fault. The number of insulator faults in each insulator string is at most four in our dataset.
Our data augmentation method is simple but effective: it reduces the time and the cost of insulator
fault images collection, which is meaningful for future deep-learning-based methods that need plenty
of insulator fault aerial images to train.

Table 3. The insulator faults dataset.

Image Number One-Fault Multi-Fault Image Size Fault Number

120 60 60 800 px × 530 px 228

3. Experimental Results and Discussion

We adopt the ResNet50 model pre-trained on the ImageNet dataset [46] to be the backbone of
the proposed network. The weights of the remaining layers in the proposed network are randomly
initialized. In the process of training, the maximum numbers of the iterations of both the proposed
network and the four compared networks are set to be 35,000, and the learning rates of the five
networks are initialized as 0.001. After 20,000 and 28,000 iterations, both the learning rates of the five
networks are reduced to 0.0001 and 0.00001 to achieve finer convergences. Inspired by the work of [43],
we apply random hue, saturation, and exposure shifts to realize data augmentation during the training
process of the five networks. Specifically, hue = 0.1, saturation = 1.5, and exposure = 1.5. Hue = 0.1
means a 10% random shift will be made in the hue space of the images that participate in the training.
The saturation and the exposure shift are similar to that of the hue shift.

3.1. Analysis of the Proposed Network

The experiments are conducted on a PC with an Intel quad-core i7-7700, 3.6 GHz CPU, 32 G
of RAM, and a NVIDIA GeForce TITAN XP (12 GB). The proposed network is trained on Dark-net
framework [55] and it takes 28 h to obtain its final model. After that, the final model and the source
code of the proposed insulator faults detection method are evaluated on the Visual studio framework.
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To evaluate the effectiveness of the proposed network, the ‘InST_detection’ dataset is divided
into the training set and the testing set. The training set consists of 2675 images and the testing set is
composed of 1356 images, approximately 2:1. We compare the proposed network with four existing
networks: YOLOv3, YOLOv2, YOLOv3-tiny, and ResnetV2. Specifically, YOLOv3 and YOLOv2 are
considered to be the state-of-the-art one-stage object detectors that can achieve good performances
and run in real-time. YOLOv3-tiny is the abbreviated version of YOLOv3, which runs faster than
YOLOv3. ResnetV2 takes the Resnet50 as the backbone and adopts the header layer of YOLOv2 as the
detection layer.

For a fair comparison, both the compared networks and the proposed network are trained and
tested on the ‘InST_detection’ dataset. Moreover, three measurements: AP, running time, and Memory
usage, are introduced to validate the effectiveness of the proposed network quantitatively.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(5)

Specifically, AP indicates the area under each Precision-Recall curve (i.e., PR-curve); the better the
network, the higher the AP value. The definitions of Precision and Recall are given in Formula (5).
Specifically, True Positive (TP) indicates the number of insulators that have been correctly detected.
False Positive (FP) and False negative (FN) indicates the number of background regions that are
marked as insulators and the insulators that are incorrectly identified, respectively. We calculate the
AP values for different networks after conducting on the testing set of the ‘InST_detection’ dataset, as
shown in Figure 5, where the horizontal axis shows different recall values, and the vertical axis gives
the corresponding precision values. Moreover, the running times and memory usages of different
networks are also exhibited in Table 4. Based on the observation of Figure 5, it is found that the AP
value of the proposed network (89.96%) is higher than that of the YOLOv2 (89.83%), the ResnetV2
(85.92%), and the YOLOv3-tiny (52.78%), while is only a little smaller than that of the YOLOv3 (90.05%),
which means that the performance of the proposed network is almost consistent with that of the
state-of-the-art object detection networks (i.e., YOLOv3 and YOLOv2) and is superior to the ResnetV2
and YOLOv3-tiny. When considering the running times and the memory usages, both the proposed
networks, YOLOv3 and YOLOv2, can run in real-time, while the memory usage of the proposed
network is 14.5% and 21.5% less than that of the YOLOv3 and the YOLOv2, respectively. Therefore,
the proposed network is more advantageous when been deployed on embedded devices.
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Table 4. The running times and the memory usages of the five networks.

Networks Running Times (s) Memory Usages (MB)

YOLOv3 0.02 235
YOLOv3-tiny 0.01 33

YOLOv2 0.01 256
ResnetV2 0.01 87

Our network 0.02 201

To validate the accuracy and robustness of the proposed network in complex aerial scenes, we
select some images with complex background interference. Moreover, it is worth noting that these
images are also taken on different filming angles and filming distances. After that, we compare the
proposed network with two state-of-the-art insulator fault detection methods as their first steps are also
to locate the insulator positions in aerial images, some results are shown in Figure 6. The first column
to the third column of the Figure 6 depicts the performances of the proposed method, method [20] and
method [11], respectively. Based on the observation of Figure 6, it is found that all of the three methods
achieve good results when dealing with a pure background (i.e., clean sky, the first row of Figure 6),
while method [11] and method [20] are extremely sensitive to different types of background interference.
In contrast, due to the suitable training on a large number of insulator samples, the proposed network
can detect the insulator positions more accurately. To further measure the performances of the proposed
network in the aerial videos, two UAV-based insulator aerial videos filmed in China are selected to test
the proposed network, as shown in Figure 7. Based on the observations of Figure 7, it is found that
the proposed network can obtain accurate positions of insulators continuously, which makes a good
foundation for subsequent insulator faults detection.
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Figure 6. Experiments in different aerial scenes. First row: sky. Second row: mountain. Third row:
building and road. Fourth row: forest. Fifth row: farmland. First column shows the performances
of our proposed method, while the second column and the third column exhibit the performances of
method [20] and method [11], respectively. The labels in results of the proposed method are marked
with the word ‘Insulator’, please zoom in for a better view. Based on the observation of Figure 6, it can
be seen the proposed method can accurately detect the insulators in different aerial scenes.
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Figure 7. Experiments on two UAV-based insulator aerial videos. In (a,b), the performances of the
proposed method in consecutive 9 frames are shown in order from left to right and top to bottom.

3.2. Analysis of the Proposed Insulator Multi-Fault Detection Method

To verify the importance of the step 2 in the proposed insulator faults detection method
(i.e., Section 2.2), an ablation experiment is developed and the results are shown in Figure 8. The average
precision rate and the average recall rate are used to exhibit all the experimental results in Section 3.2,
and we follow the rounding principle to keep only one digit after the decimal point.

Precision =
1
n

n∑
i=1

Precision (i)

Recall =
1
n

n∑
i=1

Recall (i)

i = 1, 2, 3 . . . , n

(6)

In formula (6), n indicates the total image number in a testing set. Precision (i) and Recall (i) show
the precision rate and the recall rate when detecting the ith image, respectively. Precision and Recall
indicate the average precision rate and the average recall rate in a testing set, respectively. Based on the
observation of Figure 8, it is found that by setting the threshold of the aspect ratio of the contour for
interference contour filtering, the precision rate can be increased by 14% and the recall rate by 10.8%.
To verify the rationality of the choice of 1:5, different ratios are selected to perform experiments on
our dataset. The results are shown in Table 5. It can be seen that the 1:5 is the most appropriate ratio,
which achieves precision rate 96.3%, and recall rate 93.3%.
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Table 5. Different height/width threshold settings. The maximum values are marked in bold.

Height/Width 1:2 1:3 1:4 1:5 1:6 1:7 1:8

Precision 65% 81.3% 89.6% 96.3% 94.2% 93.8% 93.8%
Recall 57% 76.5% 85.9% 93.3% 91.9% 91.7% 92.1%
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To verify the performances of the proposed insulator fault detection method, we compare it
with methods [11,20], which are considered to be the state-of-the-art methods. Moreover, for a fair
comparison, all the insulator fault images are normalized to the same size of 800 × 530 as the way
used in the work of [11,20]. For the insulator one fault detection, some typical images are selected
and tested as shown in Figure 9. The first column to the third column depicts the performance of the
proposed method, method [20], and method [11], respectively. The detected insulator fault positions
are marked with red bounding boxes. It can be observed that the bounding boxes detected by the
proposed method are much closer to the real insulator faults, which means that the proposed method
yields more accurate results. On the contrary, the methods [11,20] are quite sensitive to the background
interference and result in error detections. In the second row of Figure 8, method [20] does not detect
the insulator fault, which leads to a wrong judgment that the working state of the insulators is normal.
In the third row of Figure 9, the performance of method [11] is affected by the complex background
interferences and part of the power tower is regarded as an insulator fault. To verify the accuracy of
the proposed method in the case of insulator multi-fault detection, we choose some typical insulator
multi-fault images from our dataset, some examples are shown in Figure 10. Based on the observation
of Figure 10, the methods [11,20] can only detect one insulator fault, while the proposed method can
detect not only one insulator fault but also insulator multi-fault.
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To further quantitatively evaluate the performances of the above methods, we test them on two
sub-datasets in which the one contains only insulator one fault images while another one contains only
insulator multi-fault images. Specifically, each sub-dataset contains 60 samples, and the experimental
results are shown in Figure 11a,b. Based on the observation of Figure 11a, the proposed method
achieves an precision rate of 94.2%, which is much higher than those of method [11] (precision rate:
65%) and method [20] (precision rate: 50%). When considering the multi-fault detection results,
the proposed method, method [11], and method [20] achieve precision rates of 98.3%, 88.3%, and
80.8%, respectively. In addition, the average running times of the three methods are also analyzed
through the detection of all the 120 aerial insulator faults images, as shown in Table 6. The proposed
method takes less running time than the two compared methods. In general, it can be concluded that
whether in the insulator one fault detection or the insulator multi-fault detection, the proposed method
achieved higher precision rates and lower running time compared with method [11] and method [20].
Most importantly, the proposed method not only achieves high precision rates, but also maintains
satisfactory recall rates.
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precision rates, but also maintains satisfactory recall rates.
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Table 6. The running times of the different methods.

Methods Running Times (s/per Image)

Method [11] 0.677
Method [20] 0.525

The proposed method 0.127

To validate the robustness of the proposed method in different aerial scenes, 90 images are selected
and then divided into three sub-datasets: (A) Different backgrounds, (B) different filming angles, and
(C) different filming distances. Specifically, each category contains 30 images, half of which contain
the insulator one fault, and the other half of which contain the insulator multi-fault. Then, both the
proposed method and the two compared methods are tested on each sub-dataset. The results are
shown in Table 7. Based on the observation of Table 7, it is observed that the proposed method achieves
better results on the three sub-datasets than the Method [11,20].

Table 7. Test on three different situations.

Method [11] Method [20] The Proposed Method

Precision Recall Precision Recall Precision Recall

(A) 83.3% 54.3% 60% 36.7% 96.7% 92.7%
(B) 86.7% 57% 68.3% 44% 93.3% 89.7%
(C) 63.3% 45% 73.3% 48.3% 96.7% 92.7%

Based on the observations of the above experimental results, it can be concluded that the proposed
method is more effective and efficient than the two compared methods. The possible reasons for this
good performance are given as follows. First, a large number of insulator aerial images are collected
to create an unprecedented dataset ‘InST_detection’ for the proposed network training. Second, the
proposed network detected the accurate insulator positions and then removed the complex background
interference, which potentially improved the accuracy of the subsequent insulator faults detection.
Finally, we systematically analyzed the features of the insulator faults and then propose an effective
method to filter the interference contours, which further increased the accuracy of insulator faults
detection. Figure 12 shows more detection results of the proposed method in different aerial scenes.
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4. Conclusions and Future Works

In this paper, an accurate and robust method is proposed for insulator faults detection in UAV-based
aerial images. The proposed method consists of two steps: (1) A novel neural network is developed to
obtain accurate insulator positions; (2) An RoI-based method is designed to highlight the insulator fault
locations. Experimental results on various insulator aerial images validate the proposed method had
higher average precision rates and lower running times compared with two state-of-the-art methods.
Most importantly, whether it is in the insulator one fault detection or multi-fault detection, the proposed
method can obtain not only high average precision rates, but also high average recall rates. Since the
insulator fault is a common accident that damages the operation of the power grid, the proposed method
has high prospects for implementation in high-voltage transmission lines inspection applications for
unmanned aerial vehicles.

Although the proposed method indeed promotes the quality of insulator faults detection in most
of the aerial images, it is still not a real-time solution. Considering the actual problem that current
insulator faults images are not sufficient to directly train a deep network for insulator faults detection,
more insulator fault simulated images should be created by our proposed data augmentation method,
and the future work can be developed a deep learning framework to detect insulators positions and
faults positions simultaneously. In addition, with the development of UAV flight control technology,
there is an important and meaningful need for work in the future to explore the insulator faults
detection in bad weather conditions, such as foggy days.
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