
applied  
sciences

Article

Analytical Electromechanical Modeling of Nanoscale
Flexoelectric Energy Harvesting

Yaxuan Su 1, Xiaohui Lin 2, Rui Huang 3 and Zhidong Zhou 2,4,*
1 Chengyi University College, Jimei University, Xiamen 361021, China; suyaxuan@jmu.edu.cn
2 Department of Materials Science and Engineering, College of Materials, Xiamen University,

Xiamen 361005, China; lxhfjcl@163.com
3 Department of Aerospace Engineering and Engineering Mechanics, University of Texas,

Austin, TX 78712, USA; ruihuang@mail.utexas.edu
4 Fujian Provincial Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
* Correspondence: zdzhou@xmu.edu.cn

Received: 30 April 2019; Accepted: 31 May 2019; Published: 1 June 2019
����������
�������

Abstract: With the attention focused on harvesting energy from the ambient environment for
nanoscale electronic devices, electromechanical coupling effects in materials have been studied for
many potential applications. Flexoelectricity can be observed in all dielectric materials, coupling the
strain gradients and polarization, and may lead to strong size-dependent effects at the nanoscale.
This paper investigates the flexoelectric energy harvesting under the harmonic mechanical excitation,
based on a model similar to the classical Euler–Bernoulli beam theory. The electric Gibbs free energy
and the generalized Hamilton’s variational principle for a flexoelectric body are used to derive the
coupled governing equations for flexoelectric beams. The closed-form electromechanical expressions
are obtained for the steady-state response to the harmonic mechanical excitation in the flexoelectric
cantilever beams. The results show that the voltage output, power density, and mechanical vibration
response exhibit significant scale effects at the nanoscale. Especially, the output power density for
energy harvesting has an optimal value at an intrinsic length scale. This intrinsic length is proportional
to the material flexoelectric coefficient. Moreover, it is found that the optimal load resistance for peak
power density depends on the beam thickness at the small scale with a critical thickness. Our research
indicates that flexoelectric energy harvesting could be a valid alternative to piezoelectric energy
harvesting at micro- or nanoscales.

Keywords: flexoelectricity; variational principle; energy harvesting; frequency response function;
distributed-parameter model

1. Introduction

With the development of nanotechnology, harvesting ambient waste energy into usable energy
has drawn growing attention in the last decades. One of the aims in this field is to provide power
for small electronic devices by harvesting ambient energy [1]. As stated by Williams and Yates [2] in
their early work on harvesting ambient waste vibrational energy for microsystems, there are three
basic vibration-to-electric energy conversion mechanisms: electromagnetic [2,3], electrostatic [4,5],
and piezoelectric transduction [6,7]. Using piezoelectric nanomaterials as ambient energy harvesting is
considered as a promising way to supply normal microelectronic devices, such as environmental or
biomedical devices, portable multimedia, distributed sensor networks, or mobile communication [8].
In addition, some important system-level and circuit-level works about micro-scale energy harvesting
systems have been reported [9–11].
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Piezoelectricity, which generally assumes a linear relationship between electric field and strain,
exists only in non-centrosymmetric dielectric materials. Alternatively, flexoelectricity, which is the
coupling of electrical polarization and the strain gradient, exists in a wide variety of dielectric materials
and may lead to strong size-dependent properties at the nanoscale. A series of experimental [12–14]
and theoretical works [15–17] for the flexoelectric effect have been reported. Flexoelectric effects
may be exploited to enhance piezoelectric properties of materials [18,19], or to enable new classes
of electromechanically-coupled materials, such as lead-free “pseudo-piezoelectric” [16]. In addition,
one can exploit flexoelectricity to construct materials of non-uniform shapes, which exhibit large
strain gradients and can generate electricity despite being non-piezoelectric [20]. Recently, several
comprehensive reviews on flexoelectricity of solid crystals, thin films, polymers, and living membranes
have been published [21–23].

In the nano-electromechanical systems (NEMSs), such as resonators, sensors, actuators, and energy
harvesters, the electromechanical coupling of the nanobeams and nanoplates with the flexoelectric
effect has drawn a surge of interest due to the relatively large flexoelectric effect at the nanoscale.
The electromechanical coupling responses of the nanobeams and nanoplates have been analyzed by
numerical and analytical methods for static and dynamic problems [17,24–29]. Based on the linear
piezoelectricity theory developed by Toupin [30], Shen and Hu [31] have established a theoretical
framework by a variational principle for dielectrics including the electrostatic force, flexoelectricity,
and surface effects. Based on the electric Gibbs energy, Liang et al. [32] proposed the Euler–Bernoulli
beam model to investigate the effect of surface and flexoelectricity on the coupling response of
piezoelectric nanostructures. They found that the effective bending rigidity of the nanobeam enhances
dramatically in nanoscale. Yan and Jiang [33] discussed the flexoelectric effect on the mechanical
and electrical properties of piezoelectric nanobeams under static bending and different mechanical
boundary conditions based on the internal energy. Simulation results show that the flexoelectric
effect is sensitive to the mechanical boundary conditions and the direction of applied electric field.
Liang et al. [34] investigated the effect of flexoelectricity and surface on buckling and vibration behavior
of piezoelectric beams by use of the Euler–Bernoulli beam model. They found that the effects of surface
and flexoelectricity influenced the resonance frequency of piezoelectric nanowires. Based on the
Kirchhoff plate model and the extended linear piezoelectric theory, Wang et al. [35] presented a finite
difference method to solve the non-conventional governing equations of the cantilevered piezoelectric
nanoplates. Recently, Zhou et al. [36] have investigated the flexoelectric effect in piezoelectric
nanobeams with three different electrical boundary conditions. The induced electric potential due to
the flexoelectric effect has been obtained under the open circuit conditions, which may be important
for sensing or energy harvesting applications. For the flexoelectric energy harvesting applications,
Deng et al. [37] discussed the flexoelectric energy harvester in the nanoscale. Based on the internal
energy density, they obtained governing equations and solved the frequency response functions using
the assumed-modes method. Moura and Erturk [38] applied the distributed-parameter method to
discuss the flexoelectric energy harvesters in elastic dielectrics. Considering the surface effects, Yan [39]
analyzed the flexoelectric energy harvest by use of the assumed-modes method. Liang et al. [40]
developed flexoelectric-piezoelectric energy harvesters based on the Timoshenko laminated beams
model. The three-layered energy harvesters in parallel and series configurations have been discussed in
detail. However, the closed-form analytical solution for the flexoelectric-piezoelectric energy harvesting
has not been reported.

In this paper, we focus on the flexoelectric energy harvesting system, which is a traditional
cantilever piezoelectric beam model with a tip mass, by the coupled distributed-parameter model.
Based on the electric Gibbs free energy [36] and generalized Hamilton’s variational principle,
the electromechanically-coupled dynamic and electrical circuit equations with the flexoelectric effect are
derived. The closed-form analytical solution is presented for the flexoelectric energy harvesting under
base excitations. The electromechanical frequency response functions (FRFs) that relate the voltage
output, power density, and mechanical vibration response are derived for harmonic excitations in
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closed-form. Based on the multi-mode solutions, the performance of the flexoelectric energy harvesting
is analyzed in detail.

2. Electromechanical System and Mathematical Formation

The present study focuses on the vibration responses of a flexoelectric cantilever beam with
length L, width B, thickness h, and a tip mass Mt as shown in Figure 1, in which the beam is coated by
conductive electrodes on both upper and lower surfaces. We assumed the electrode layers were thin so
that the effect of their stiffness on mechanical responses of the system was negligible. The coordinate
system (x1, x2, x3) is shown in Figure 1. The motion of the base for the flexoelectric beam was in the
x3 direction. With a transverse base excitation wb (t), the cantilever beam vibrates in the bending
mode. As a result of the dynamic strain gradient caused by vibration responses, the flexoelectric
beam produces an alternating potential difference across the surface electrodes. These electrodes were
connected to an external resistance (R) to quantify the electric potential and power output. Here,
the internal electrical resistance of the flexoelectric beam was not taken into consideration since it can
be regarded as a resistance connected in parallel to the external electrical load [37,41].
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The generalized Hamilton’s variational principle for flexoelectric materials can be written as [32]

δ

∫ T

0
[K −G + W]dt = 0, (1)

where K, G, and W are the total kinetic energy, total electric Gibbs free energy, and external work,
respectively. In this study, the tip mass was regarded as a particle and the rotary inertia of the tip mass
was not considered, which has less influence. Assuming no external body forces and electric field,
for the flexoelectric cantilever beam showing in Figure 1, Equation (1) could be rewritten as

δ

∫ T

0
dt

∫
V

[1
2
ρ
∣∣∣ .
wm∣∣∣2 − g1

]
dV + δ

∫ T

0

1
2

Mt
∣∣∣ .
wm∣∣∣2dt

∣∣∣∣∣∣x1=L −

∫ T

0
dt

∮
s
$δψdA = 0, (2)

where ρ is density of this flexoelectric material, wm(x1, t) = wb(t)+w(x1, t) is the absolute displacement
in the x3 direction, w = w(x1, t) is the transverse displacement (relative to the base) of the neutral
surface at point x1, and g1 is the general electric Gibbs free energy density. $(t) and ψ(t) are the electric
charge density and electric potential on the surface electrodes, which form the virtual work due to
the moving charges on or out of the electrodes. It should be noted that the external work done by the
surface hyper-stress tractions was ignored in this case.

For the flexoelectric material, the general electric Gibbs free energy density function g1 can be
expressed as [25,36]

g1 =
1
2
σi jεkl +

1
2
σi jkεi j,k −

1
2

DiEi, (3)
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where σi j is the classical Cauchy stress tensor, εi j is the strain tensor, σi jk is the higher-order stress tensor,
Di is the electric displacement vector, and Ei is the electric field vector. In this paper, the kinematics
of the classical Euler–Bernoulli beam model was adopted to analyze the bending vibration of the
flexoelectric beam for energy harvesting. The relative displacement field u in the Euler–Bernoulli
model is

u =

{
−x3

∂w
∂x1

, 0, w
}

, (4)

where the displacement in the x2 direction is set to be zero as in the plane strain elasticity. With Equation (4)
for infinitesimal deformation, the only non-zero strain component and its gradients are

ε11 = −x3
∂2w
∂x2

1

, ε11,3 = −
∂2w
∂x2

1

, ε11,1 = −x3
∂3w
∂x3

1

, (5)

where the stain gradient ε11,3 is essentially the bending curvature of the beam and ε11,1 is proportional
to the gradient of curvature. The latter is typically small compared to the former in the Euler–Bernoulli
beam model and may be neglected for a slender beam. For the same reason, only one component of
the electric field, E3, was considered due to the relatively small electric field E1 in the length direction.

According to the constitutive equations of the flexoelectric beams, the non-zero stress, higher-order
stress, and electric displacement are [25,32,36]

σ11 = c1111ε11 − e311E3

σ113 = −µ3113E3

D3 = κ33E3 + e311ε11 + µ3113ε11,3

, (6)

where σ113 is defined as the higher order stress or the moment stress [25,36], which is induced by the
electric field due to the flexoelectric effect, c1111 is an elastic modulus, e311 is a piezoelectric coefficient,
µ3113 is a flexoelectric coefficient, and κ33 is a dielectric coefficient.

In the absence of free body charges, Gauss’s law of electrostatics leads to

∂2Φ

∂x2
3

=
e311

κ33
ε11,3, (7)

where Φ = Φ (x1, x3, t) is the electric potential of the beam and is related to the electric field by
E3 = − ∂Φ∂x3

. Considering the surface electrical boundary conditions Φ
(
x1, x3 = h

2 , t
)
= ψ1(x1, t) and

Φ
(
x1, x3 = − h

2 , t
)
= ψ2(x1, t), the dynamic electric potential Φ and dynamic electric field E3 can be

obtained from Equation (7) as

Φ(x1, x3, t) =
e311

2κ33

∂2w
∂x2

1

(
h2

4
− x2

3

)
+

(1
2
+

x3

h

)
ψ(x1, t) +ψ2(x1, t), (8)

E3 = −
e311

κ33
ε11 −

ψ(x1, t)
h

, (9)

where ψ(x1, t) = ψ1(x1, t) −ψ2(x1, t) is the potential difference or voltage between the both surface
electrodes. Substituting Equation (9) into Equation (6), the electric displacement, stress, and higher
order stress could be expressed as

D3 = µ3113ε11,3 − κ33
ψ
h

σ11 =
(
c1111 +

e2
311
κ33

)
ε11 + e311

ψ
h

σ113 =
µ3113e311
κ33

ε11 + µ3113
ψ
h

. (10)
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Then, by Equation (3), the electric Gibbs free energy density is obtained as follows [36]:

g1 =
1
2

c1111 +
e2

311

κ33

ε2
11 +

e311µ3113

κ33
ε11ε11,3 + µ3113ε11,3

ψ

h
−

1
2
κ33

ψ2

h2 . (11)

Using Equations (5) and (6), the variational expression of general electric Gibbs free energy can be
written as [36]

δ
∫ T

0 dt
∫

V g1dV =
∫ T

0

∫ L
0

{[
Gp

∂4w
∂x4

1
− µ3113B∂2ψ

∂x2
1

]
δw−

[
µ3113B∂2w

∂x2
1
+ κ33

ψB
h

]
δψ

}
dx1dt+∫ T

0

{
Gp

∂2w
∂x2

1
− µ3113Bψ

}
δ
(
∂w
∂x1

)∣∣∣∣∣x1=Ldt−
∫ T

0

{
Gp

∂3w
∂x3

1

}
δw

∣∣∣∣∣x1=Ldt,
(12)

where Gp = Bh3

12

(
c1111 +

e2
311
κ33

)
is the effective bending rigidity of the piezoelectric beam. It should be

noted that the present effective bending rigidity is quite different from the previous result in [37], where
the effective bending rigidity was derived from an internal energy density function. The effective
bending rigidity in [37] depends on the flexoelectricity of the material and becomes negative when the
beam thickness is small (~several nanometers). In contrast, the effective bending rigidity Gp in the
present model remains positive, independent of the flexoelectric coefficients.

Substituting Equation (12) into Equation (2), the generalized Hamilton’s variational equation of
the flexoelectric beam can be rewritten as∫ T

0 dt
{
Bh

∫ L
0 ρ

( ..
w +

..
wb

)
δwdx1 + Mt

..
wbδ(x1 − L)δw

}
+

∫ T
0 dt

∫ L
0

{[
Gp

∂4w
∂x4

1
−

µ3113B∂2ψ

∂x2
1

]
δw−

[
µ3113B∂2w

∂x2
1
+ κ33Bψ

h

]
δψ

}
dx1dt+

∫ T
0

{
Gp

∂2w
∂x2

1
−

µ3113Bψ
}
δ
(
∂w
∂x1

)∣∣∣∣∣x1=Ldt−
∫ T

0

{
Gp

∂3w
∂x3

1
−Mt

∂2w
∂t2

}
δw

∣∣∣∣∣x1=Ldt−
∫ T

0 dt
∫ L

0 B$δψdx1dt =

0,

(13)

where δ(x1) is the Dirac delta function. In deducing Equation (13), the following result has been used

δ

∫ T

0

1
2

Mt
∣∣∣ .
wm∣∣∣2dt

∣∣∣∣∣∣x1=L = −

∫ T

0
Mt

..
wbδ(x1 − L)δwdt−

∫ T

0
Mt

..
w

∣∣∣∣∣∣x1=Lδwdt. (14)

Due to the arbitrariness of δw in Equation (13), the electromechanically-coupled dynamic governing
equation of the flexoelectric beam can be obtained as

Gp
∂4w
∂x4

1

− µ3113B
∂2ψ

∂x2
1

+ [m + Mtδ(x1 − L)]
∂2wb

∂t2 + m
∂2w
∂t2 = 0, (15)

where m = ρBh is the mass of per unit length of beam.
Similarly, due to the arbitrariness of δψ in Equation (13), we obtain∫ L

0
(µ3113

d2w
dx2

1

+ κ33
ψ

h
+$)dx1 = 0. (16)

When the external loading resistor R is connected into the surface electrodes, the electric current
ψ
R must be equal to the time rate of change of the average output positive charges, i.e., − 1

h

∫
V

.
$dV.

Using Equation (16), from Gauss’s law [37,41,42], the electromechanically-coupled electrical circuit
equation with flexoelectric effect can be written as
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κ33BL

.
ψ

h
+
ψ

R
= −µ3113B

∂2w
∂x1∂t

∣∣∣∣∣∣
x1=L

, (17)

where ψ is assumed to be independent of x1. In addition, the boundary conditions are obtained from
Equation (13) as 

Gp
∂2w
∂x2

1

∣∣∣∣∣
x1=L

= µ3113Bψ

Gp
∂3w
∂x3

1

∣∣∣∣∣
x1=L

= Mt
∂2w
∂t2

∣∣∣∣
x1=L

. (18)

Apparently, the flexoelectric effect induces an effective bending moment at the end of the beam,
whereas the inertia of the tip mass induces a shear force at the end.

3. Closed-Form Expressions of Electromechanical Frequency Response Functions

3.1. Electromechanical Governing Equations in Modal Coordinates

In the real vibration structures, damping is an important part of the system and also a very
complicated problem. Here we take two types of damping mechanisms into account in order
to emphasize the flexoelectric effect. These two types of damping are called viscous air (or
external) damping and Kelvin–Voigt (or strain-rate) damping [37,42]. With the damping effects,
the electromechanical dynamic Equation (15) becomes

Gp
∂4w
∂x4

1

− µ3113B
∂2ψ

∂x2
1

+ cs
∂5w
∂x4

1∂t
+ ca

∂w
∂t

+ [m + Mtδ(x1 − L)]
∂2wb

∂t2 + m
∂2w
∂t2 = 0, (19)

where ca is the viscous air damping coefficient and cs is the strain-rate damping coefficient [42].
Viscous air damping is a simple way of modeling the force acting on the beam due to the air particles
displaced during vibration, while strain-rate damping accounts for the structural damping due to
energy dissipation of the beam material. Both of them satisfy the proportional damping criterion and
they are mathematically convenient for the modal analysis [42].

Based on the proportional damping assumption, the vibration response of the flexoelectric
cantilever beam can be represented as an absolutely and uniformly convergent series of eigenfunctions as

w(x1, t) =
∞∑

r=1

∅r(x1)ηr(t), (20)

where ∅r(x) is the mass normalized eigenfunction of the rth vibrational mode, which satisfies the
mechanical and the short circuit electrical conditions, and ηr(t) is the modal mechanical response
coefficient in the modal coordinates. For the piezoelectric or flexoelectric Euler–Bernoulli cantilever
beams, the eigenfunctions ∅r(x) can be obtained from the corresponding undamped free vibration
problem [41]

∅r(x1) = Cr

[
cos

βr

L
x1 − cos h

βr

L
x1 + ζr

(
sin

βr

L
x1 − sin h

βr

L
x1

)]
, (21)

where ζr is

ζr =
sin βr − sin hβr + βr

Mt
mL (cos βr − sin hβr)

cos βr + cos hβr − βr
Mt
mL (sin βr − sin hβr)

, (22)

and βr is the rth root of the transcendental characteristic equation

1 + cos βrcos hβr + βr
Mt

mL
(cos βrsin hβr − sin βrcos hβr) = 0. (23)
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In Equation (21), the constant Cr is the modal amplitude constant, which could be solved by
normalizing the eigenfunctions using the following orthogonality condition [33]∫ L

0
∅r(x1)m∅s(x1)dx1 +∅r(L)Mt∅s(L) = δrs, (24)

where δrs is Kronecker delta, defined as being equal to unity for s = r and equal to zero for s , r.
It should be noted that the undamped natural frequency of the rth vibration mode in the short circuit
condition is

ωr = β2
r

√
Gp

mL4
. (25)

It is important to mention that the electric potential difference between the two surface electrodes
due to the flexoelectric effect is a function of time t and as a result, the spatial derivative of ψ would
vanish in Equation (19). To include the flexoelectric effect in the governing Equation (19), Erturk and
Inman [41] assumed that ψ = ψ(x1, t) = V(t)[H(x1) −H(x1 − L)], where V(t) is the output voltage and
H(x) is the Heaviside function.

To investigate the dynamic response of the system, the mode-superposition method was adopted
to solve the damped flexoelectric cantilever beam with the tip mass. Substituting the modified electric
potential expression and Equation (20) into Equation (19) and using the orthogonality condition (24),
the electromechanical coupling dynamic governing equation of the damped flexoelectric beams in
modal coordinates can be written as

d2ηr(t)
dt2 +ω2

rηr(t) +
dηr(t)

dt 2ξrωr =
∫ L

0 µ3113BV(t)∅r(x1)
[

dδ(x1)
dx1
−

dδ(x1−L)
dx1

]
dx1−

m
[

d2wb(t)
dt2

∫ L
0 ∅r(x1)dx1

]
−Mt∅r(L)

d2wb(t)
dt2 ,

(26)

where ξr is defined as the modal damping ratio of rth which include the viscous air damping part
ca and the strain-rate damping part cs [37,43]. Commonly, in experimental modal analysis practice,
one can identify the modal damping ratio ξr directly from the frequency response or time-domain
measurements, which avoids the requirement of defining and obtaining the physical damping terms cs

and ca [41]. Here, the nth derivative of the Dirac delta function satisfies the condition as follows∫ +∞

−∞

dnδ(x− x0)

dxn γ(x)dx = (−1)n dnγ(x)
dxn

∣∣∣∣∣∣x=x0 . (27)

With Equation (27), the modal equation can be written as

d2ηr(t)
dt2 +ω2

rηr(t) +
dηr(t)

dt
2ξrωr − µ3113BV(t)

d∅r(x1)

dx1

∣∣∣∣∣∣x1=L = fr(t), (28)

where fr(t) is the modal mechanical force function corresponding to the base excitation

fr(t) = −m
[

d2wb(t)
dt2

∫ L

0
∅r(x1)dx1

]
−Mt∅r(L)

d2wb(t)
dt2 . (29)

Similarly, substituting Equation (20) into Equation (17), the modal circuit equation can be
obtained as

κ33BL
h

dV(t)
dt

+
V(t)

R
= −

∞∑
r=1

Kr
dηr(t)

dt
, (30)

where Kr = µ3113B d∅r(x)
dx

∣∣∣∣
x1=L

.
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3.2. Closed-Form Frequency Response Functions

The motion of the base for the cantilever is typically represented by the translational displacement in
the transverse direction with superimposed small rotational displacement. Here, only the translational
displacement was considered. Assume the vibration of the base to be a harmonic excitation with a
frequency ω, i.e., wb(t) = W0ejωt, where W0 is the amplitude of the base vibration and j =

√
−1 is the

imaginary unit. Then, the modal mechanical force can be written as fr(t) = Frejωt, where the amplitude
of the modal mechanical force function could be expressed as

Fr = W0ω
2
[
m

∫ L

0
∅r(x1)dx1 + Mt∅r(L)

]
. (31)

With the small deformation and linear system assumption, the modal mechanical and electrical
responses were in steady state and also harmonic with the same frequency as the base excitation. Thus,
the modal mechanical response and voltage response can be written as ηr(t) = Hrejωt and V(t) = vejωt,
respectively, in which both Hr and v are generally complex valued. Then, Equations (28) and (30)
lead to 

[(
ω2

r −ω
2
)
+ 2ξrωrjω

]
Hr − vKr = Fr,(

κ33BL
h jω+ 1

R

)
v + jω

∞∑
r=1

KrHr = 0.
(32)

Solving Equation (32), Hr and v are obtained explicitly. The analytical modal expressions of
voltage V and mechanical response ηr(t) can be obtained as follows

V(t) = −
jω

∑
∞

r=1
KrFr

(ω2
r−ω

2)+2jωξrωr(
1
R + κ33BL

h jω
)
+

∑
∞

r=1
jωK2

r

(ω2
r−ω

2)+2jωξrωr

ejωt, (33)

ηr(t) =

 Fr(
ω2

r −ω2
)
+ 2jωξrωr

+ V(t)
Kr(

ω2
r −ω2

)
+ 2jωξrωr

ejωt. (34)

We can then substitute ηr(t) into Equation (20) to obtain the deflection response w(x1, t).

4. Numerical Results and Discussion

In this section, polyvinylidene difluoride (PVDF) is taken as an example material to demonstrate
the effects of size and the electric resistance on flexoelectric energy harvesting. The PVDF is a
flexible piezoelectric polymer material, which has the following properties: mass density ρ = 1.78×
103 kg/m3, elastic modulus c1111 = 3.7 GPa [37], piezoelectric coefficient e311 = −0.01 N/V·m, dielectric
permittivity κ33 = 8.15× 10−11 C2/

(
N·m2

)
, and flexoelectric coefficient µ3113 = 2.3× 10−2 µC/m [44].

In all analyses, the length/width/thickness aspect ratio of the beam, 100 : 10 : 1, was maintained
constant over the entire frequency range. For the tip mass, Mt = 0.2×m× L was chosen in the following
simulations. The damping ratios were given by ξ1 = ξ2 = 0.0285, with which the two damping
coefficients (cs and ca) can be obtained [42]. For convenience, all the simulation results are given in
form of FRFs, which were normalized by the base excitation acceleration

..
wb = −ω2W0ejωt.

4.1. Voltage FRFs

The voltage FRFs in Equation (33) can be re-written as

V(t)
−ω2W0ejωt

= −

∑3
r=1

jωKrλr

(ω2
r−ω

2)+2jωξrωr(
1
R + κ33BL

h jω
)
+

∑3
r=1

jωK2
r

(ω2
r−ω

2)+2jωξrωr

, (35)
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where λr = −m
∫ L

0 Φr(x1)dx −MtΦr(L). In subsequent simulations, the first three modes were
calculated and discussed.

Figure 2 shows the multi-mode voltage FRFs of the flexoelectric beam with a thickness of 3 µm for
arbitrary frequency excitations. By increasing the loading resistance from a small value (R = 1 MΩ)
to open circuit (R = 1 GΩ, as an approximation for the open circuit condition) conditions, the
voltage output increases monotonically at all frequencies. From the response around the first mode
in Figure 2b, we found the resonance frequency (~5770 Hz) was almost identical for all loading
resistances. This indicates that the resonance frequencies were insensitive to the variation of the
loading resistances in the flexoelectric beam. It should be noted that, based on the present linear model,
the electromechanical responses would perform well only in the narrow frequency zone close to the
natural frequency. In practice, methods for performance enhancement have been developed by the use
of nonlinearity [45–48] and multimodal techniques [49–52].
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Figure 2. Voltage frequency response functions (FRFs) of the flexoelectric beam with 3 µm thickness
over the frequency range of (a) the first three modes; (b) around the first mode.
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When the flexoelectric beam was shrunk proportionally to 0.3 µm in thickness, the voltage FRFs
are plotted in Figure 3. It is clear to observe that the resonance frequency increases about 10 times
compared to Figure 2 for the beam with thickness 3 µm, as expected by Equation (25). The enlarged
view of the voltage FRFs near the first mode is shown in Figure 3b. It is interesting to see that the
resonance frequency corresponding to the peak voltage FRFs shifts from the short circuit resonance
frequency ( f sc

1 = 57, 703 Hz) to the open circuit resonance frequency ( f oc
1 = 61, 809 Hz) as the loading

resistance increases. The short circuit resonance frequencies can be obtained by solving Equations (23)
and (25), and the open circuit resonance frequencies can be predicted using the previous result [53].
This result indicates that the resonance frequency of a small-scale flexoelectric energy harvesting device
is dependent on the external loading resistance. Indeed, a resonance frequency shift was observed
previously in piezoelectric and flexoelectric energy harvesting devices [37,41,42,54].
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Figure 3. Voltage FRFs of the flexoelectric beam with 0.3 µm thickness over the frequency range of
(a) the first three modes; (b) around the first mode.

Figure 4 gives the variation of the voltage FRFs for the external excitations at the short circuit
resonance frequency and the open circuit resonance frequency, respectively. In log-log scale, both voltage
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outputs increase with increasing loading resistance, and trend to constant values at large loading
resistance. The two curves intersect at a point where the loading resistance is about 97 MΩ. If the
loading resistance was greater than 97 MΩ, the voltage output at the open circuit resonance frequency
was larger because the system was closer to the open circuit condition. On the other hand, for lower
loading resistance, the voltage output at the short circuit resonance frequency was larger. Therefore,
when the loading resistance was larger than this special value, choosing the open circuit resonance
frequency as the external excitation frequency would be optimal for the voltage FRFs since the system
was closer to the open circuit condition and vice versa.
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Figure 4. Variation of the voltage output with load resistance under excitations at the short and open
circuit resonance frequencies of the first vibration mode (h = 0.3 µm).

4.2. Tip Displacement FRFs

The multi-modes expression for the tip displacement FRFs can be obtained as

w(L, t)
−ω2W0ejωt

=
3∑

r=1


λr −

∑3
r=1

jωKrλr

(ω2
r−ω

2)+2jωξrωr(
1
R + κ33BL

h jω
)
+

∑3
r=1

jωK2
r

(ω2
r−ω

2)+2jωξrωr

Kr

 ∅r(L)(
ω2

r −ω2
)
+ 2jωξrωr

. (36)

The tip displacement FRFs of the beam with the excitation frequency for the 3 µm thickness beam
with the tip mass Mt are plotted in Figure 5. For the different load resistances, the values of the tip
displacement FRFs were almost equal. In other words, the tip displacement FRFs were independent
of the loading resistance. It is interesting to see that in Figure 5, there are two small anti-resonance
frequencies between mode 2 and mode 3, which is different from the result of piezoelectric energy
harvesting devices [42]. In the piezoelectric case without the tip mass, there was just one intense
mechanical anti-resonance frequency between mode 2 and mode 3.

Figure 6 plots the tip displacement FRFs of the 0.3 µm thickness beam with the tip mass Mt

near the first mode. Comparing Figures 5 and 6, it is clear to observe that the tip displacement
FRFs depend on the external loading resistance for the small scale flexoelectric energy harvesting.
The significant resonance frequency shift from f sc

1 to f oc
1 could be observed with increasing load

resistance. Apparently, at a small scale, the electromechanical coupling of the flexoelectric energy
harvesting is enhanced, which was not the case for the piezoelectric energy harvesting. It is interesting
to see that the peak amplitude of the tip displacement FRFs first decreases and then increases with
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increasing load resistance. This was due to the power dissipation as a result of Joule heating in the
electrical domain with the finite values of load resistance [42]. This phenomenon can also be found in
the case of piezoelectric energy harvesting systems.
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Figure 5. Tip displacement FRFs of the 3 µm thickness beam for the first three modes.
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Figure 6. Tip displacement FRFs of the 0.3 µm thickness beam with the tip mass Mt for the first mode.

4.3. Power Density FRFs

For energy harvesting, the power density is an important measure of performance. In the case of
the flexoelectric beam, the power density FRFs could be expressed as follows

Pd(t)
−ω2W0ejωt

=


∑3
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−jωKrλr

(ω2
r−ω
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1
R + κ33BL

h jω
)
+
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r

(ω2
r−ω

2)+2jωξrωr
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2

1
R

1
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where Vol = B × L × h is the volume of the beam. Figure 7 shows the power density FRFs of the
flexoelectric beams for the first mode. The frequency of peak power density is almost unchanged
in Figure 7a for the 3 µm thickness beam. The optimum power density was achieved with a finite
load resistance of ∼ 100 MΩ. For the 0.3 µm thickness beam, Figure 7b shows the variation of the
power density FRFs with the various load resistances for the external excitations. Due to enhanced
electromechanical coupling in the small scale, the resonance frequency of the power density shifts
from f sc

1 to f oc
1 with increasing load resistance, which is consistent with the result of Figure 3b.

The corresponding peak power density increases to a certain value (at frequency ~61,084 Hz and the
load resistance ~200 MΩ) and then decreases with increasing load resistance. Comparing the results of
Figure 7a,b, it should be noted that the maximum power density for the 0.3 µm thickness beam was
around 2 times that of the 3 µm thickness beam. This suggests that the flexoelectric energy harvesting
was enhanced in the smaller scale. Compared to piezoelectric energy harvesting, the peak power
density of the flexoelectric energy harvesting was dependent on the structure size. Hence, we could
find the optimal structure parameters to obtain the maximum power density.
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Figure 7. Power density FRFs of the beam for the first order mode for (a) h = 3 µm thickness;
(b) h = 0.3 µm thickness beams.
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The behaviors of power density FRFs with various load resistances for the external excitations at
the short and open circuit resonance frequencies are shown in Figure 8a. In log-log scale, the power
density increases linearly with increasing load resistance for low values of load resistance, and then
decreases for high values of load resistance. For low load resistances, the power density at the short
circuit resonance frequency was larger than that at the open circuit resonance frequency. For high
values of load resistance, there was the opposite phenomenon. There was an intersect point at the
load resistance of about 100 MΩ. The solid symbols in Figure 8a indicate the peak power density with
various resonance frequencies corresponding to the load resistances as shown in Figure 7b. For low
values of load resistance, the peak values were almost equal to those at the short circuit resonance
frequency. For high values of load resistance, the peak power density values were almost equal to
those at the open circuit resonance frequency. However, in the transition region of about 100 MΩ,
the optimal power density at the resonance frequency was larger than those at both the short and open
circuit resonance frequencies. Figure 8b plots the variation of the optimum external frequencies with
the load resistances. When the load resistances locate between 10 MΩ and 1000 MΩ, the optimum
external frequencies should be greater than the short circuit resonance frequency and smaller than the
open circuit resonance frequency.
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Figure 9a gives the variation of the peak power density FRFs with beam thickness for the different
flexoelectric coefficients. With decreasing thickness, the peak power density FRFs increases first and
then decreases. When the thickness was small, the relatively large induced potential due to the large
strain gradient opposes the mechanical bending of the beam, which would reduce the beam bending.
When the thickness was large, the induced potential could not increase sufficiently to overcome the
increasing volume due to small strain gradient in elastic deformation. For a particular flexoelectric
coefficient, there was an optimal size for the flexoelectric energy harvesting, which could achieve
the maximum power density. This optimal size increases with increasing flexoelectric coefficient.
Our previous work [33] obtained the thickness h0 for the maximum induced electric potential in the
flexoelectric sensors:

h0 =

√√
12µ2

3113

c1111κ33 + e2
311

. (38)
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When flexoelectric coefficients were 1.15× 10−2, 2.3× 10−2, and 4.6× 10−2 µC/m, the thicknesses
h0 were about 0.07, 0.14, and 0.28 µm, respectively. Figure 9a shows that the optimal thickness for the
maximum power density in the flexoelectric energy harvesting was about four times as long as h0

for the induced electric potential in the flexoelectric sensor. Figure 9b shows the optimal resistance
for the peak power density as a function of the beam thickness for different flexoelectric coefficients.
When the thickness was large, the optimal resistance of the flexoelectric energy harvesting was
nearly independent of the thickness. It is interesting that the optimal resistance (about 110 MΩ)
corresponding to the large thickness was almost independent on the flexoelectric coefficient. For a
particular flexoelectric coefficient, there was a critical thickness, below which the optimal resistance
increases with decreasing thickness. The critical thickness decreases with decreasing flexoelectric
coefficient. Therefore, Figure 9 could provide optimal design parameters in terms of beam thickness and
load resistance for flexoelectric energy harvesting. It should be noted that, although the small structure
considered in the present study may not be applicable for the ambient vibration energy harvesting
because of its super high frequency, it is possible to design large size PVDF energy harvesting with
giant flexoelectricity [55] for the ambient vibration frequency because the optimal thickness for the
maximum power density is proportional to the flexoelectric coefficient.

5. Conclusions

The flexoelectric energy harvesting based on the Euler–Bernoulli beam model has been investigated
in this paper. Using the electric Gibbs free energy and the generalized Hamilton’s principle for the
flexoelectric body, the electromechanically-coupled dynamics and electrical circuit equations of the
flexoelectric cantilever beams have been developed. The mode-superposition method was used to
obtain the closed-form analytical expressions of the electrical and mechanical responses in the modal
space. The numerical results indicate that the frequency of the peak vibration response exhibits a shift
from low frequency to high frequency with increasing load resistance in the small scale. The peak
voltage and power density with finite values of the loading resistance depend on the external excitations.
Interestingly, there is an intrinsic length scale for the optimal power density, which depends on the
material properties. Different from piezoelectricity, flexoelectric energy harvesting has an enhancement
of the electromechanical coupling with decreasing size and thus could be more effective in micro- or
nanoscale electromechanical systems.

Author Contributions: Conceptualization, R.H. and Z.Z.; Methodology, Y.S., X.L., and Z.Z.; Investigation and
data analysis, Y.S., X.L., and Z.Z.; Writing—original-draft, Y.S. and X.L.; Writing—review and editing, Y.S., R.H.,
and Z.Z.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No. 11572271),
Young Teachers Education and Research Projects of Fujian Province (Grant No. JAT170918), Youth Foundation
of Chengyi University College, Jimei University (No. CK17002), and Scientific and Technological Innovation
Platform of Fujian Province (2006L2003).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hudak, N.S.; Amatucci, G.G. Small-scale energy harvesting through thermoelectric, vibration, and
radiofrequency power conversion. J. Appl. Phys. 2008, 103, 101301. [CrossRef]

2. Williams, C.B.; Yates, R.B. Analysis of a micro-electric generator for microsystems. Sens. Actuat. A Phys.
1996, 52, 8–11. [CrossRef]

3. Glynne-Jones, P.; Tudor, M.J.; Beeby, S.P.; White, N.M. An electromagnetic, vibration-powered generator for
intelligent sensor systems. Sens. Actuat. A Phys. 2004, 110, 344–349. [CrossRef]

4. Mathúna, C.O.; O’Donnell, T.; Martinez-Catala, R.V.; Rohan, J.; O’Flynn, B. Energy scavenging for long-term
deployable wireless sensor networks. Talanta 2008, 75, 613–623. [CrossRef] [PubMed]

5. Mitcheson, P.D.; Miao, P.; Stark, B.H.; Yeatman, E.M.; Holmes, A.S.; Green, T.C. MEMS electrostatic
micropower generator for low frequency operation. Sens. Actuat. A Phys. 2004, 115, 523–529. [CrossRef]

http://dx.doi.org/10.1063/1.2918987
http://dx.doi.org/10.1016/0924-4247(96)80118-X
http://dx.doi.org/10.1016/j.sna.2003.09.045
http://dx.doi.org/10.1016/j.talanta.2007.12.021
http://www.ncbi.nlm.nih.gov/pubmed/18585122
http://dx.doi.org/10.1016/j.sna.2004.04.026


Appl. Sci. 2019, 9, 2273 17 of 18

6. Roundy, S.; Wright, P.K.; Rabaey, J. A study of low level vibrations as a power source for wireless sensor
nodes. Comput. Commun. 2003, 26, 1131–1144. [CrossRef]

7. Jeon, Y.B.; Sood, R.; Jeong, J.H.; Kim, S.G. MEMS power generator with transverse mode thin film PZT.
Sens. Actuat. A Phys. 2005, 122, 16–22. [CrossRef]

8. Anton, S.R.; Sodano, H.A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater.
Struct. 2007, 16, R1–R21. [CrossRef]

9. Lu, C.; Tsui, C.Y.; Ki, W.H. A batteryless vibration-based energy harvesting system for ultra low power
ubiquitous applications. IEEE Int. Sym. Circuit Syst. 2007, 1349–1352.

10. Lu, C.; Tsui, C.Y.; Ki, W.H. Vibration energy scavenging system with maximum power tracking for micropower
applications. IEEE Trans. VLSI Syst. 2011, 19, 2109–2119. [CrossRef]

11. Lu, C.; Raghunathan, V.; Roy, K. Efficient design of micro-scale energy harvesting systems. IEEE J. Emerg.
Sel. Top. Circuit Syst. 2011, 1, 254–266. [CrossRef]

12. Ma, W.; Cross, L.E. Large flexoelectric polarization in ceramic lead magnesium niobate. Appl. Phys. Lett.
2001, 79, 4420–4422. [CrossRef]

13. Ma, W.; Cross, L.E. Strain-gradient-induced electric polarization in lead zirconate titanate ceramics.
Appl. Phys. Lett. 2003, 82, 3293–3295. [CrossRef]

14. Zubko, P.; Catalan, G.; Buckley, A.; Welche, P.R.L.; Scott, J.F. Strain-gradient-induced polarization in SrTiO3

single crystals. Phys. Rev. Lett. 2007, 99, 167601. [CrossRef]
15. Sharma, N.D.; Maranganti, R.; Sharma, P. On the possibility of piezoelectric nanocomposites without using

piezoelectric materials. J. Mech. Phys. Solids 2007, 55, 2328–2350. [CrossRef]
16. Sharma, N.D.; Landis, C.M.; Sharma, P. Piezoelectric thin-film superlattices without using piezoelectric

materials. J. Appl. Phys. 2010, 108, 024304. [CrossRef]
17. Majdoub, M.S.; Sharma, P.; Cagin, T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures

due to the flexoelectric effect. Phys. Rev. B 2008, 77, 125424. [CrossRef]
18. Qi, Y.; Kim, J.; Nguyen, T.D.; Lisko, B.; Purohit, P.K.; McAlpine, M.C. Enhanced piezoelectricity and

stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 2011, 11, 1331.
[CrossRef]

19. Zhu, W.; Fu, J.Y.; Li, N.; Cross, L. Piezoelectric composite based on the enhanced flexoelectric effects.
Appl. Phys. Lett. 2006, 89, 192904. [CrossRef]

20. Chu, B.; Zhu, W.; Li, N.; Cross, L.E. Flexure mode flexoelectric piezoelectric composites. J. Appl. Phys. 2009,
106, 104109. [CrossRef]

21. Zubko, P.; Catalan, G.; Tagantsev, A.K. Flexoelectric effect in solids. Ann. Rev. Mater. Res. 2013, 43, 387–421.
[CrossRef]

22. Lee, D.; Noh, T.W. Giant flexoelectric effect through interfacial strain relaxation. Philos. Trans. R. Soc. A Math.
Phys. Eng. Sci. 2012, 370, 4944–4957. [CrossRef]

23. Petrov, A.G. Electricity and mechanics of biomembrane systems: Flexoelectricity in living membranes.
Anal. Chim. Acta 2006, 568, 70–83. [CrossRef]

24. Abdollahi, A.; Peco, C.; Millan, D.; Arroyo, M.; Arias, I. Computational evaluation of the flexoelectric effect
in dielectric solids. J. Appl. Phys. 2014, 116, 093502. [CrossRef]

25. Hu, S.L.; Sheng, S.P. Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Conit.
2009, 13, 63–87.

26. Zhang, Z.; Yan, Z.; Jiang, L. Flexoelectric effect on the electroelastic responses and vibrational behaviors of a
piezoelectric nanoplate. J. Appl. Phys. 2014, 116, 014307. [CrossRef]

27. He, L.; Lou, J.; Zhang, A.; Wu, H.; Du, J.; Wang, J. On the coupling effects of piezoelectricity and flexoelectricity
in piezoelectric nanostructures. AIP Adv. 2017, 7, 105106. [CrossRef]

28. Xiang, S.; Li, X.F. Elasticity solution of the bending of beams with the flexoelectric and piezoelectric effect.
Smart Mater. Struct. 2018, 27, 105023. [CrossRef]

29. Su, Y.X.; Zhou, Z.D.; Yang, F.P. Electromechanical analysis of bilayer piezoelectric sensors due to flexoelectricity
and strain gradient elasticity. AIP Adv. 2019, 9, 015207. [CrossRef]

30. Toupin, R.A. The elastic dielectric. Arch. Ration. Mech. Anal. 1956, 5, 849–915. [CrossRef]
31. Shen, S.P.; Hu, S.L. A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids

2010, 58, 655–677. [CrossRef]

http://dx.doi.org/10.1016/S0140-3664(02)00248-7
http://dx.doi.org/10.1016/j.sna.2004.12.032
http://dx.doi.org/10.1088/0964-1726/16/3/R01
http://dx.doi.org/10.1109/TVLSI.2010.2069574
http://dx.doi.org/10.1109/JETCAS.2011.2162161
http://dx.doi.org/10.1063/1.1426690
http://dx.doi.org/10.1063/1.1570517
http://dx.doi.org/10.1103/PhysRevLett.99.167601
http://dx.doi.org/10.1016/j.jmps.2007.03.016
http://dx.doi.org/10.1063/1.3443404
http://dx.doi.org/10.1103/PhysRevB.77.125424
http://dx.doi.org/10.1021/nl104412b
http://dx.doi.org/10.1063/1.2382740
http://dx.doi.org/10.1063/1.3262495
http://dx.doi.org/10.1146/annurev-matsci-071312-121634
http://dx.doi.org/10.1098/rsta.2012.0200
http://dx.doi.org/10.1016/j.aca.2006.01.108
http://dx.doi.org/10.1063/1.4893974
http://dx.doi.org/10.1063/1.4886315
http://dx.doi.org/10.1063/1.4994021
http://dx.doi.org/10.1088/1361-665X/aadd5b
http://dx.doi.org/10.1063/1.5081072
http://dx.doi.org/10.1512/iumj.1956.5.55033
http://dx.doi.org/10.1016/j.jmps.2010.03.001


Appl. Sci. 2019, 9, 2273 18 of 18

32. Liang, X.; Hu, S.; Shen, S. Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct.
2014, 23, 035020. [CrossRef]

33. Yan, Z.; Jiang, L.Y. Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams.
J. Appl. Phys. 2013, 113, 194102. [CrossRef]

34. Liang, X.; Hu, S.; Shen, S. Size-dependent buckling and vibration behaviors of piezoelectric nanostructures
due to flexoelectricity. Smart Mater. Struct. 2015, 24, 105012. [CrossRef]

35. Wang, X.; Zhang, R.; Jiang, L. A study of the flexoelectric effect on the electroelastic fields of a cantilevered
piezoelectric nanoplate. Int. J. Appl. Mech. 2017, 9, 1750056. [CrossRef]

36. Zhou, Z.D.; Yang, C.P.; Su, Y.X.; Huang, R.; Lin, X.H. Electromechanical coupling in piezoelectric nanobeams
due to flexoelectric effect. Smart Mater. Struct. 2017, 26, 095025. [CrossRef]

37. Deng, Q.; Kammoun, M.; Erturk, A.; Sharma, P. Nanoscale flexoelectric energy harvesting. Int. J. Solids Struct.
2014, 51, 3218–3225. [CrossRef]

38. Moura, A.G.; Erturk, A. Electroelastodynamics of flexoelectric energy conversion and harvesting in elastic
dielectrics. J. Appl. Phys. 2017, 121, 064110. [CrossRef]

39. Yan, Z. Modeling of a nanoscale flexoelectric energy harvester with surface effects. Physical E 2017, 88,
125–132. [CrossRef]

40. Liang, X.; Zhang, R.; Hu, S.; Shen, S. Flexoelectric energy harvesters based on Timoshenko laminated beam
theory. J. Intell. Mater. Syst. Strust. 2017, 28, 2064–2073. [CrossRef]

41. Erturk, A.; Inman, D.J. An experimentally validated bimorph cantilever model for piezoelectric energy
harvesting from base excitations. Smart Mater. Struct. 2009, 18, 025009. [CrossRef]

42. Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting; Wiley: Hoboken, NJ, USA, 2011.
43. Tang, L.; Wang, J. Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a

dynamic magnifier. Acta Mech. 2017, 228, 3997–4015. [CrossRef]
44. Chu, B.; Salem, D.R. Flexoelectricity in several thermoplastic and thermosetting polymers. Appl. Phys. Lett.

2012, 101, 103905. [CrossRef]
45. Daqaq, M.F.; Stabler, C.; Qaroush, Y.; Seuaciuc-Osorio, T. Investigation of power harvesting via parametric

excitations. J. Intell. Mater. Syst. Struct. 2009, 20, 545–557. [CrossRef]
46. Ferrari, M.; Ferrari, V.; Guizzetti, M.; Ando, B.; Baglio, S.; Trigona, C. Improved energy harvesting from wideband

vibrations by nonlinear piezoelectric converters. Sens. Actuat. A Phys. 2010, 162, 425–431. [CrossRef]
47. Mahmoudi, S.; Kacem, N.; Bouhaddi, N. Enhancement of the performance of a hybrid nonlinear vibration

energy harvester based on piezoelectric and electromagnetic transductions. Smart Mater. Struct. 2014,
23, 075024. [CrossRef]

48. Drezet, C.; Kacem, N.; Bouhaddi, N. Design of a nonlinear energy harvester based on high static low dynamic
stiffness for low frequency random vibrations. Sens. Actuat. A Phys. 2018, 283, 54–64. [CrossRef]

49. Yang, B.; Lee, C.; Xiang, W.; Xie, J.; He, J.H.; Kotlanka, R.K.; Low, S.P.; Feng, H. Electromagnetic energy
harvesting from vibrations of multiple frequencies. J. Micromech. Microeng. 2009, 19, 035001. [CrossRef]

50. Sari, I.; Balkan, T.; Kulah, H. An electromagnetic micro power generator for wideband environmental
vibrations. Sens. Actuat. A Phys. 2008, 145–146, 405–413. [CrossRef]

51. Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M.L. Multi-modal vibration energy harvesting approach based
on nonlinear oscillator arrays under magnetic levitation. Smart Mater. Struct. 2016, 25, 025018. [CrossRef]

52. Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M.L. Nonlinear dynamics of magnetically coupled beams for
multi-modal vibration energy harvesting. In Proceedings of the 2016 SPIE Smart Structures and Materials +

Nondestructive Evaluation and Health Monitoring, Las Vegas, NV, USA, 15 April 2016; p. 97992C.
53. Lin, X.H.; Su, Y.X.; Zhou, Z.D.; Yang, J.P. Analysis of the natural frequency for flexoelectric cantilever beams

under the open-circuit condition. Chin. Q. Mech. 2018, 39, 383–394. (In Chinese)
54. Dutoit, N.E.; Wardle, B.L. Experimental verification of models for microfabricated piezoelectric vibration

energy harvesters. AIAA J. 2007, 45, 1126–1137. [CrossRef]
55. Baskaran, S.; Ramachandran, N.; He, X.; Thiruvannamalai, S.; Lee, H.J.; Heo, H.; Chen, Q.; Fu, J.Y.

Giant flexoelectricity in polyvinylidene fluoride films. Phys. Lett. A 2011, 375, 2082–2084. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0964-1726/23/3/035020
http://dx.doi.org/10.1063/1.4804949
http://dx.doi.org/10.1088/0964-1726/24/10/105012
http://dx.doi.org/10.1142/S1758825117500569
http://dx.doi.org/10.1088/1361-665X/aa7936
http://dx.doi.org/10.1016/j.ijsolstr.2014.05.018
http://dx.doi.org/10.1063/1.4976069
http://dx.doi.org/10.1016/j.physe.2017.01.001
http://dx.doi.org/10.1177/1045389X16685438
http://dx.doi.org/10.1088/0964-1726/18/2/025009
http://dx.doi.org/10.1007/s00707-017-1910-8
http://dx.doi.org/10.1063/1.4750064
http://dx.doi.org/10.1177/1045389X08100978
http://dx.doi.org/10.1016/j.sna.2010.05.022
http://dx.doi.org/10.1088/0964-1726/23/7/075024
http://dx.doi.org/10.1016/j.sna.2018.09.046
http://dx.doi.org/10.1088/0960-1317/19/3/035001
http://dx.doi.org/10.1016/j.sna.2007.11.021
http://dx.doi.org/10.1088/0964-1726/25/2/025018
http://dx.doi.org/10.2514/1.25047
http://dx.doi.org/10.1016/j.physleta.2011.04.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Electromechanical System and Mathematical Formation 
	Closed-Form Expressions of Electromechanical Frequency Response Functions 
	Electromechanical Governing Equations in Modal Coordinates 
	Closed-Form Frequency Response Functions 

	Numerical Results and Discussion 
	Voltage FRFs 
	Tip Displacement FRFs 
	Power Density FRFs 

	Conclusions 
	References

