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Abstract: Feature extraction is a key part of the electronic tongue system. Almost all of the existing
features extraction methods are “hand-crafted”, which are difficult in features selection and poor
in stability. The lack of automatic, efficient and accurate features extraction methods has limited
the application and development of electronic tongue systems. In this work, a convolutional neural
network-based auto features extraction strategy (CNN-AFE) in an electronic tongue (e-tongue) system
for tea classification was proposed. First, the sensor response of the e-tongue was converted to
time-frequency maps by short-time Fourier transform (STFT). Second, features were extracted by
convolutional neural network (CNN) with time-frequency maps as input. Finally, the features
extraction and classification results were carried out under a general shallow CNN architecture.
To evaluate the performance of the proposed strategy, experiments were held on a tea database
containing 5100 samples for five kinds of tea. Compared with other features extraction methods
including features of raw response, peak-inflection point, discrete cosine transform (DCT), discrete
wavelet transform (DWT) and singular value decomposition (SVD), the proposed model showed
superior performance. Nearly 99.9% classification accuracy was obtained and the proposed method is
an approximate end-to-end features extraction and pattern recognition model, which reduces manual
operation and improves efficiency.
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1. Introduction

Tea is one of the most prevailing beverages across the world. The practice of drinking tea has
been a long history in China. Tea contains theine, cholestenone, inose, folic acid and other components,
which can improve humanity health. In the actual tasting process, this kind of mellow and fragrant
taste of tea stimulates people’s taste buds. There are many external conditions that affect the taste of
tea, for example, number of tea leaves added, tea making utensils, tea making time, water quality and
the way tea is stored. The synergistic effects of these factors make the unique taste of tea. Organic
compounds with different chemical structures and concentrations play a significant role in the quality
of tea. The ingredients in tea are very complicated, the most important of which are tea polyphenols,
amino acids, alkaloids and other aromatic substances.

Tea classification has a wide range of application scenarios. It plays an important role in tea
quality estimation, for example, new or old, true or fake judgment of tea. Moreover, the classification
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and identification of tea provide a reference for healthy tea drinking. What’s more, the classification
and recognition of tea are more likely to provide the basis for the design of smart teapot in the future.

Traditional tea quality assessment methods are based on different analytical instruments, such as
high performance liquid chromatography [1], gas chromatography [2] and plasma atomic emission
spectrometry [3]. However, these methods require a lot of technical personnel, material and financial
support, which lead to low efficiency and larger overhead [4]. With the development of sensor
technology, the advantages of methods based on sensor technology are more distinguished. The typical
advantages are high accuracy, simple operation and fast detection, which improve the efficiency
of tea quality inspection obviously. At the same time, the electronic nose for gas analysis has also
made technological breakthroughs [5,6]. The arrays of electrochemical sensors and devices have been
designed for the analysis of complex liquid samples, such as taste sensor and electronic tongues [7,8].
As a modern intelligent sensory instrument, electronic tongue is skillful in monitoring the production
cycle of beverage, and has the advantages of simple, fast and low cost, which shows huge potential in
beverage quality evaluation [9].

Figure 1 shows the basic flow of the electronic tongue system for beverage detection and quality
evaluation. First, the response signals from the e-tongue hardware system are collected. Then, features
of sampling raw data are extracted for pattern recognition.
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Pattern recognition and features extraction are the two most important parts of the electronic
tongue system for liquid classification. Many scholars have contributed to tea pattern recognition.
For instance, principal component analysis (PCA) [10], artificial neural network (ANN) [11], support
vector machine (SVM) [9,12], k-nearest neighbor algorithm (k-NN) [13], random forest (RF) [14] and
autoregressive (AR) model [4] have been put forward for classification analysis in the e-tongue system.
Features extraction is another critical step of the e-tongue as the quality of features selection will
directly affect the quality of pattern recognition. Generally speaking, feature extraction is advantageous
for three main purposes, namely: (1) Reduction of random noise, (2) reduction of unwanted systematic
variations which are often due to experimental conditions, (3) data compression in order to capture the
most relevant information from signals. There are differences in the implementation details of feature
extraction methods in different types of electronic tongue systems. However, as far as we know, these
methods are similar in principle, which can be divided into the following three categories: Features with
physical meaning, features acquired by mathematical transformation, features in frequency domain.
In terms of voltammetry e-tongue, in the early stage, the features extraction methods of samples were
relatively simple, for example, raw data which were collected at a fix frequency from samples were
treated as features [15]. Then, peak value and inflection point (the maximum value, the minimum value,
and two inflection values in a circle from samples) were extracted as features [10,16]. Unfortunately,
these methods were low accuracy and features redundancy. Therefore, to extract features more
effectively, many professional researchers tried to compress sampling data by various mathematical
transformation methods. For instance, Pradip Saha et al. used discrete wavelet transform (DWT) with
sliding windows to extract energy in different frequency bands as features [17]. Andrea Scozzari et al.
used discrete cosine transform (DCT) to extract features, and selected some coefficients as eigenvalues
for tea classification [18]. In addition, Santanu Ghoraiand et al. transformed the sampling data into
matrices, decomposed the matrices into singular values (SVD), and selected several singular values
as features for tea classification [19]. In addition, SVD and DCT are fused for feature extraction and
then applied in the prediction of theaflavin and thearubigin in Tea [20]. Although these mathematical
transformation methods made some improvements in features selection, they still need to be set
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manually in the selection of features data. Specifically, for DWT, both the number of selected layers in
wavelet transform and the strategy of characteristic coefficients (mean, variance, etc.) are determined
according to experience. Moreover, the process of manually setting parameters in DCT is similar to
DWT. In terms of SVD, diagonal values are selected based on experience. The way of features selection
determines the limitations of these mathematical transformation methods. In addition, scholars have
tried to fuse the electronic tongue with the electronic nose sensor data to enhance the tea quality
prediction accuracies. For example, Nur Zawatil Isqi Zakaria et al. adopted PCA to compress electronic
tongue and electronic nose samples to assess a bio-inspired herbal tea flavor [21]. Wavelet energy
feature (WEF) has been extracted from the responses of e-nose and e-tongue for the classification of
different grades of Indian black tea [22]. Furthermore, Ruicong Zhi et al. proposed a framework for
a multi-level fusion strategy of electronic nose and electronic tongue. The time-domain based feature
(mean value and max value of sensor response) and frequency-domain based feature (the energy of
DWT) were fused for classification [23]. Runu Banerjee et al. combined electronic tongue data with
electronic nose data and then fused DWT with Bayesian statistical analysis to evaluate the artificial
flavor of black tea [24]. Mahuya Bhattacharyya Banerjee et al. proposed a cross-perception model
(fused of electronic nose and electronic tongue samples by PCA and multiple linear regression) for
the detection of aroma and taste of black tea [25]. In general, the manual features-based methods
are difficult to adapt to changing scenes and have poor stability. The reason is that the methods
adopt empirical parameters and the empirical value is usually no longer effective when the external
environment changes.

Recently, the impressive achievement of deep architectures on computer vision tasks such as
object recognition [26,27], object detection [28] and action recognition [29] have shown the significance
of convolution neural network (CNN) in the image domain. Most methods utilize the deep networks
as features extraction strategy and then train the pattern recognition model. Inspired by the successful
application of CNN in image processing, we proposed an auto features extraction strategy based
on CNN (CNN-AFE). The key idea behind our method is to transform the time series into pictures
so as to make full use of the advantages of CNN. The significant contribution of the paper is to
put forward a deep learning-based auto features extraction strategy in the e-tongue system for tea
classification. Furthermore, the proposed model is an approximate end-to-end features extraction and
pattern recognition method, which reduces manual operation and improves efficiency.

Figure 2 shows the implementation process of this work. First, sensors response of the e-tongue
was converted to time-frequency maps by STFT. Second, the CNN extracted features automatically
with time-frequency maps as input. Finally, the features extraction and classification results were
carried out under a general shallow CNN architecture. Compared with other methods, the proposed
method avoided manual features selection with training of network parameters. The proposed method
has advantages in two aspects. On the one hand, the remaining features extraction steps are completed
in network training automatically after transforming the sampling signal into time-frequency images
with STFT. On the other hand, the CNN-AFE combines features extraction and pattern recognition into
a whole. In terms of traditional algorithms, features extraction and pattern recognition are two separate
parts. First, they apply experience-based features extraction method to obtain features, and then they
choose different classifiers, such as SVM, k-NN and RF to complete pattern recognition. However, the
CNN-AFE is an approximate end-to-end features extraction and pattern recognition method, which
is conducive to improve the efficiency and accuracy of pattern recognition. Comprehensively, the
proposed method not only has high accuracy, but also omits the inconvenience of manual data selection,
which is applicable to most data scenarios.

In this study, we adopt tea database for classification, tea samples are collected by an e-tongue
system we designed. The proposed method was compared with other state-of-art approaches, and
showed superior performance, which is nearly 99.9% classification accuracy. We infer that the CNN-AFE
is suitable for liquid classification.
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In the rest of this paper, we arrange the content as follows: Section 2 provides a brief description
about the e-tongue system, introduces experiment settings and details of the proposed method.
In Section 3, we demonstrate the experimental results for evaluations upon our own database. Finally,
we summarize this study in Section 4.

2. Materials and Methods

2.1. Electronic Tongue System

Electronic tongue systems can be divided into several types according to data measurement
technology, such as potentiometry [30], voltammetry [31] and so on. In addition, spectrophotometric [32]
is another very popular means of measurement. Each type of electronic tongue can utilize different
types of working electrodes, such as bare electrodes, modified electrodes and biosensors [33]. Typically,
bare electrodes are gold, silver, and palladium; the modified electrodes are carbon paste processed
by double phthalocyanine compounds or conductive polymers; biosensors are carbon biocomposite
or graphene electrode containing enzyme and different metal catalysts. Although different types of
electronic tongue systems collect sensors response in a different way, their features extraction and
pattern recognition methods are similar. In this paper, to verify the validity of features extraction and
classification methods, the widely used voltammetry electronic tongue system is adopted to collect
sensors response.

As the structure shown in Figure 3, we designed a voltammetry electronic tongue hardware
system composed of controller, multi-frequency pulse voltage occurrence circuit, constant potential
circuit, three-electrode module, micro-current detection circuit and low-pass filter. Three-electrode
module consists of working electrodes (WE), reference electrodes (RE) and counter electrodes (CE),
which is the core part of the electronic tongue hardware system. Different electrode materials have
different response characteristics, the details of the electrode sensor array used in the proposed model
are described in Table 1. Figure 4 shows the physical diagram of the electronic tongue hardware system
we designed.

Table 1. The details of the electrode sensor array.

No. Electrode Material Role

1 WE gold, silver, palladium Produce a chemical reaction on the electrode surface.
2 CE platinum Make measurement results more stable and reliable.
3 RE silver/silver chloride Provides a reference for the working electrode potential.
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Figure 4. The designed voltammetry electronic tongue hardware system.

The micro-control unit of the electronic tongue hardware system is the STM32 controller, whose
functions include generating scan signals, micro current detection, noise filtering, signal sampling and
signal storage. Specifically, the controller drives the external circuit through the DA conversion to
generate different voltage waveforms in the first and analog voltage waveforms are equivalent added to
RE through the constant potential circuit under the feedback of CE. Then, driven by potential of RE, the
Faraday current is generated between WE and CE, the micro current detecting circuit connected to the
WE converts the Faraday current into a voltage signal. Next, the filter circuit is designed to eliminate
clutter in the converted signal. Finally, the amplified voltage signal is converted to a digital voltage
signal by AD module conversion and the response signals from different WE are stored. Two images in
Figure 5 represent the typical sensor data of different kind of tea and electrodes, respectively. Figure 5a
shows five kinds of tea sampling from silver WE and Figure 5b displays the response of Tieguanyin tea
from three different WE (Gold, Silver, Palladium). It should be noted that for the same concentration
of tea from the same brew, the three different WE work sequentially. In detail, the gold electrode is
applied to collect samples first, and the silver electrode is replaced to get samples subsequently, and
the palladium electrode is replaced for data sampling finally. All the sampling signals are stored in the
SD card.
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Figure 5. (a) The response of five kinds of tea upon silver working electrodes (WE); (b) the response of
Tieguanyin tea upon different WE (Gold, Silver, Palladium).

2.2. Experiment Settings

2.2.1. Electronic Tongue Settings

As mentioned above, the e-tongue system consists of three working electrodes, one reference
electrode and one counter electrode was adopted for experiment. Electrodes have been polished with
cloth and ground powder before first measurement. In the middle of any two measurement processes,
the working electrode is placed in distilled water and cleaned with an electrochemical cleaning method
for 1 min and dried with cloth. The counter electrode and the reference electrode are washed with
distilled water and dried with filter paper.

A multi-frequency large pulse voltammetry (MLAPV) [34] method was utilized to generate multi
frequency and multi-scale scanning signals. Specifically, we make use of three frequency scanning
signals, namely 1, 2 and 2.5 Hz. For each frequency, ten pulses are generated at the voltage of 1.0,
0.8, 0.6, 0.4, 0.2, −0,2, −0.4, −0.6, −0.8, −1.0 V. To avoid the interference between signals of different
frequencies in the reaction process, we stop the scanning signal for five s after the signal scanning of
each frequency is finished. In the sampling step, we set the sampling rate at 1 KHz to get more detail
information. Thus, we collect 10,000 points during 1 Hz scanning frequency, 5000 points during 2 Hz
scanning frequency and 4000 points during 2.5 Hz scanning frequency.

Figure 6 illustrates the scanning voltage and the corresponding typical response. Figure 6a displays
the scanning voltage of different frequency, and Figure 6b shows the typical response. In Figure 6a,
the red, green and blue histograms represent the scanning signals of 1, 2 and 2.5 Hz, respectively. The
response of different scanning signals is depicted by lines of the same color as the scanning signals in
Figure 6b. The black horizontal line in Figure 6 represent the stop of scanning signal for five seconds.
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2.2.2. Sample Preparation

Five kinds of tea picked from different provinces were applied in the study. They are Yuzhu tea
(Chongqing), Show bud tea (Chongqing), Tieguanyin tea (Quanzhou), Biluochun tea (Suzhou) and
Westlake tea (Hangzhou), respectively. It is worth mentioning that Biluochun tea, Westlake tea and
Show bud are all green tea. These five teas all contain nutrients such as tea polyphenols, catechins,
chlorophyll, caffeine, amino acids and vitamins. In comparison, Yuzhu tea contains more vitamins,
and Tieguanyin tea has higher levels of tea polyphenols, catechins, and various amino acids. In terms
of flavors, these teas are fragrant, refreshing and a little bitter. For each kind of tea leaf, we selected 1 g
with high precision electronic scale and brewed it with 100 mL boiling water for 10 min. Then, the tea
leaves were filtered through a sieve to obtain the original tea liquid. What’s more, we brewed 34 times
for the same type of tea, and each type of tea was sampled 10 times. Since electrode sampling is related
to many factors, there are still slight differences among the ten groups, which can be understood as the
diversity of samples. It should be emphasized that the time span of these 34 brews has reached nearly
three months. During the three months, we did not seal and refrigerated tea deliberately, that is to say,
changes have occurred in tea during these months (such as oxidation), which guarantees the diversity
of the samples.

In the experiment, we obtained three kinds of tea liquid (including 100%, 50% and 25%
concentrations) by mixing the original tea liquid with water. In order to ensure the reliability
of the experiment, we collected 340 samples for each concentration of tea liquid and the sum of samples
for each working electrode is 5100 (five kinds of tea leaves × three concentrations per tea × 340 samples
per concentration). As mentioned above, we used three kinds of working electrodes (gold, silver
and palladium). In other words, we got 5100 × three samples totally. To speed up the convergence
of the classifier, a normalization between (0, 1) was implemented for each sample under the same
working electrode.

2.2.3. Software Platform

The features extraction and classification experiments of CNN-AFE are carried out on the same
server with 32 G RAM, NVIDIA GeForce GTX Titan GPU (NVIDIA, Santa Clara, CA, USA.) and Linux
64-bit operating system (Canonical, Isle of Man, UK). The model is built with the Pytorch framework
(Facebook, Menlo Park, CA, USA), and the programming language is Python.

2.3. Features Extraction and Classification Methods

In the electronic tongue system, since each sensor response consists of a large number of voltage
measurements, features extraction for each response is particularly challenging. In addition, the
validity of extracted features would further affect the accuracy of pattern recognition. It is generally
believed that the features hidden in the time series include the characteristics of time domain and
transformation domain. Time domain features are relatively intuitive, such as the size of the response
signal and the location of the mathematical features points. Features in the transform domain are
relatively complex, such as the features from frequency domain or matrix decomposition. It should be
noted that most of the traditional methods adopted manual features extraction which function similar
to the filter. Manual extraction methods make them difficult to adapt to various scenarios and lack
of stability.

To put up with this bottleneck in the field of e-tongue, we proposed a novel features extraction
method, which learns features through deep learning models automatically. The key idea behind
our method is to transform the time series into time-frequency map by appropriate strategy so as
to make full use of the advantages of CNN in images features extraction and pattern recognition.
The structure of the proposed features extraction method is shown in Figure 7 and the algorithm
consists of two steps. The first key step is to represent complex time series with features images
by the appropriate strategy. The commonly used time-frequency representations of non-stationary
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signals are Wigner-Ville Distribution (WVD) [35], short-time Fourier transform (STFT) [36], and Gabor
transform [37]. However, considering the characteristics of the transient abruptness of the response
signal of the e-tongue system, STFT was adopted to extract the time-frequency characteristics. The
second step is to adopt CNN to extract features for learning the details hidden in the time-frequency
map and pattern recognition automatically. We innovatively combine STFT with CNN for features
extraction to build an automatic features extraction architecture. In other words, the proposed method
based on CNN can be considered as a combination of a variety of representative or unknown but
effective features extraction methods. Another point we want to emphasize is that the model unifies
features extraction and classification steps under a single architecture, which purpose is to improve
classification accuracy and the robustness of algorithms.
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2.3.1. Short-Time Fourier Transform (STFT)

STFT was proposed based on Fourier transform, which has been widely adopted to the analysis
signals jointly in time and frequency [36]. As shown in Figure 7, in order to compromise the
computational complexity and consistency between adjacent window signals, we choose partial
overlap between consecutive windows. The sliding window length is Ws while the movement distance
of each window is L, and L is equal to Ws/2 typically.

In detail, given sample s, s is multiplied by a window function which is non-zero only for a short
time. When the window slides along the time axis, Fourier Transform of the sample is obtained,
resulting in a two-dimensional representation of the signal. In mathematics, this is written as:

STFT(m, n) = X(m, n) =
∞∑

n=−∞
s(n)w(n−m)e− jwn (1)

where, s(n) is the sample and w(n) is the window function. Thus, the one-dimensional sample s is
transformed into a two-dimensional signal X containing the time and frequency characteristics. Since
X is a two-dimensional complex number, we convert X into a two-dimensional features image using
the square of the magnitude.

spectrogram
{
X(m, n)

}
=

∣∣∣X(m, n)
∣∣∣2 (2)

In this study, different kinds of window function and window sizes have been applied to extract
time-frequency features. Detailed parameter settings and corresponding experimental results are
presented in Section 3.

2.3.2. Convolutional Neural Network (CNN)

CNN is a type of deep feedforward artificial neural network widely used to analyze visual
images. Compared with the traditional artificial neural network, the neurons of the CNN and the
neurons of the next layer are not fully connected, but locally connected. Furthermore, the parameters
of the convolution kernel are weight shared. In general, CNN has the following advantages in
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image processing: (1) Shared convolution kernel, fast speed when dealing with high-dimensional
data; (2) Model training replaces manual features extraction and improves stability; (3) Excellent
classification effect.

The structure of CNN is various with different application scenarios, but several modules are
similar in these models. For example, when dealing with classification problems, the typical models are
AlexNet [27], GoogLeNet [38], ResNet [39], and the three models all include features extraction layer
and features mapping classification layer. Features extraction layer includes a plurality of convolution
layers, activation layers, and pooling layers. The purpose of convolution operation is to extract
features, and activation layers enhance the nonlinearity of both the decision function and the whole
neural network, while the pooling layer reduce the size of data space continuously, which can control
over-fitting. In the features mapping classification layer, the loss function is applied to punish the
difference between predicted and actual results. In addition, in order to improve the generalization
ability of the network and prevent over-fitting, we apply the dropout layer in the structure and add
regularization constraints to the loss function.

As illustrated in Figure 7, a multi-layer filter structure is utilized in the proposed method. The
parameters of each filter are determined in the training process for features extraction. To summarize,
three convolutional layers of different sizes, Rectified Linear Units (ReLU) activation function, and
maximizing pooling layer are applied in the proposed model. Moreover, the fully connected layer is
utilized for features mapping and classification. Detailed parameter settings of CNN and corresponding
experimental results are discussed in Section 3.

3. Results and Discussion

To evaluate the effect and robustness of the proposed model, in Section 3.1, we discuss three
parts: Time-frequency features extraction, network structure, and network parameter optimization.
In Section 3.2, we compare the proposed method with the best methods we know so far. Specifically,
in Section 3.1, we discuss window functions of different types and sizes when applying STFT to
convert samples to time-frequency features. In addition, we discuss the structure of CNN. Then,
we optimize the network parameters containing regularization, batch size, and loss function types
in the network. All experiment results in the section are based on a tea database collected by
an e-tongue system we designed. The code of proposed model is posted in the following link.
https://github.com/Shunzhange/auto-feature-extraction-method-for-e-tongue.

3.1. Classification Performance of the Proposed Model

3.1.1. Time-Frequency Features Extraction

To define the appropriate window function and window size, CNN network parameters should
be set to default. Specifically, dropout is 0.5; regularization function is L2; batch size is 64; loss function
is Cross entropy loss [40]. In the validation part of time-frequency features extraction, different types
(Hann window, Hamming window and Gaussian window) [41] and sizes (64, 128, 256, 512) of window
functions were adopted. The reason why we choose the four window functions is that they are the
most widely used, and the choice of window function size is based on the relationship between the
scan signal period and the sampling frequency.

Figure 8 shows the average classification accuracy of four window sizes in three window functions
respectively in the condition that experiments iterations generations are 100 and the evaluation
approach is five-fold cross-validation. In Figure 8a, the best average classification accuracy achieved
nearly 99.5% when window function is Hann and window size is 256. In terms of the Hamming
window, the best average classification accuracy 99.8% is acquired in Figure 8b when the window size
is 128. As for the Gaussian window in Figure 8c, the best average classification accuracy is 98% when
the window size is set to 256. From the three figures, the blue and green lines are always in the lower
position. It can be seen that the optimal window size should not be too large or too small. For the blue

https://github.com/Shunzhange/auto-feature-extraction-method-for-e-tongue
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lines, we conclude that the window size is too small to cover even half of the response of the scanning
pulse, which lead to invalid features extraction. On the contrary, when the window size is 512, we
infer that large amounts of redundant features were collected and the effective features are difficult to
exploit. In addition, large windows may affect the performance of the short-time Fourier transform.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 15 
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Figure 8. (a) Classification accuracy for Hann window with different window size; (b) classification
accuracy for Hamming window with different window size; (c) classification accuracy for Gaussian
window with different window size.

3.1.2. Network Structure

In general, in order to extract features comprehensively, the depth of network structure needs
to be sufficient. However, take actual application scenario into account, we hold the view that the
complex structure of the network is unnecessary. The reason is that samples are two-dimensional which
indicates that features in the time-frequency map are not as rich as the real pictures. The experimental
results confirm our conjecture, that applying deep network structure does not improve performance,
but brings more time overhead. Based on the above considerations and experimental verification,
we choose a network structure containing three convolutional layers. In detail, for convolutional
layer 1, we adopt the kernel size 3 × 3 with 3 channels inputs and 32 channels outputs; in terms
of convolutional layer 2, we adopt the kernel size 3 × 3 with 32 channels inputs and 64 channels
outputs; as for convolutional layer 3, we adopt the kernel size 3 × 3 with 64 channels inputs and 64
channels outputs; moreover, the activation function and pooling layer function are Rectified Linear
Units (ReLU) [42] and maximizing function respectively; what’s more, the fully connected layer is N ×
64 (N is determined by the window size) to 64 for features mapping.

3.1.3. Network Parameter Optimization

In order to optimize the network parameters, we have conducted comparative experiments to
compare and optimize the parameters of batch size, regularization options and loss function. Based on
the experimental results of the time-frequency features extraction section, the window function is fixed
to Hann, and the window size is fixed to 256. In this part, iterations generations are also 100 and the
evaluation approach is still five-fold cross-validation.

As shown in Table 2, batch sizes are 16, 32, 64, respectively, loss functions are Cross entropy loss
(abbreviated as C) [40] and multi-class Hinge loss (abbreviated as H) [43]. In the column where L2
Regularization is located, ‘Yes’ means ‘with regularizations’ and ‘No’ means ‘without regularizations’.
The experimental results show that the test accuracy rate of method with regularization term is over
99.5% regardless of the size of the batch size and the loss function. It is worth mentioning that the
accuracy is 99.92% when the batch size is 32 and the loss function is Cross entropy loss. Therefore,
we believe that the regularization item is necessary. In terms of Loss function, the cross entropy loss
performs better than the multi-class Hinge loss as a whole.

After the parameter optimization, the trained model parameters can be saved. When the model is
later applied to a new set of data, the model can predict the tea classification with original tea sample
as input.
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Table 2. Testing accuracy of different parameters selections in CNN.

Batch Size Loss Function L2 Regularization Testing Accuracy

16
C

Yes 99.91%
No 97.15%

H
Yes 99.83%
No 97.05%

32
C

Yes 99.92%
No 96.90%

H
Yes 99.70%
No 96.50%

64
C

Yes 99.80%
No 97.82%

H
Yes 99.90%
No 98.35%

3.2. Comparison with Other Techniques

In this part, we compared the proposed method with other state-of-art techniques. In traditional
methods, features extraction and classification recognition are usually divided into two separate parts,
however, CNN-AFE is an approximate end-to-end model which integrates features extraction and
classification recognition into a same architecture. We introduce the comparison methods as follows.

As for features extraction, techniques such as features of raw response [15], peak-inflection
point [10,16], Discrete wavelet transform (DWT) [17], Discrete cosine transform (DCT) [18], singular
value decomposition (SVD) [19] and DCT fused with SVD (DCT + SVD) [20] were utilized as comparison
methods. In terms of pattern recognition, several classifiers such as support vector machine (SVM) [9,12],
the k-nearest neighbor (k-NN) [13], and random forest (RF) [14] were adopted to compare with the
method we proposed. After parameter optimization, we show the best classification accuracy of the
comparison algorithm in Table 3, the experimental results (average accuracy ± standard deviation) are
based on the five-fold cross-validation. The SVD features extraction method performs better (about
98.8%) and the raw response features extraction performs worse (about 80%) relatively.

Table 3. Classification accuracy of other techniques.

Classifier
Methods

Raw Response Peak-Inflection Point DWT SVD DCT DCT + SVD

SVM 80.87%
±0.0028

95.57%
±0.0034

97.80%
±0.0265

98.83%
±0.0004

94.66%
±0.0340

98.96%
±0.0127

KNN 80.00%
±0.0320

95.65%
±0.0072

97.37%
±0.0040

98.82%
±0.0012

94.82%
±0.0085

98.85%
±0.0047

RF 81.16%
±0.0376

95.87%
±0.0056

94.77%
±0.0056

98.81%
±0.0008

94.77%
±0.0192

98.87%
±0.0002

It is noteworthy that the test accuracy rate of CNN-AFE with L2 regularization term is over 99.5%
regardless of the size of the batch and the loss function, and the highest average recognition rate
achieved 99.9%, which demonstrates that CNN-AFE provides a more effective solution to the tea
classification problem. Further, we believe that the proposed method would make more prominent
contributions in the field of liquid classification and identification.

Considering all the features obtained are high-dimensional whether the proposed method or
traditional methods. Therefore, we applied principal component analysis to compress the features
and observe the features distribution image. In detail, as shown in Figure 9, red diamonds, blue
tones, blue-green squares, black circles and green plus represent Yuzhu tea, Show bud tea, Biluochun
tea, Westlake tea, and Tieguanyin tea, respectively. Figure 9a–f show the two-dimensional features
distribution for features of raw response, peak-inflection point, Discrete wavelet transform (DWT),
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Discrete cosine transform (DCT), singular value decomposition (SVD) and CNN-AFE, respectively.
Compared with other methods in terms of visual effects, in the PCA diagram of the proposed method,
different types of tea are more dispersed and the same type of tea is more compactly polymerized.
Thus, brings the improvement of classification accuracy.
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Figure 9. Features show for proposed method and compared methods. (a) Two-dimensional (2D)
principal component analysis (PCA) features for raw response; (b) 2D PCA features for peak-inflection
point; (c) 2D PCA features for discrete wavelet transform (DWT); (d) 2D PCA features for singular value
decomposition (SVD); (e) 2D PCA features for discrete cosine transform (DCT); (f) 2D PCA features for
proposed convolutional neural network-based auto features extraction (CNN-AFE) method.

4. Conclusions

In this study, a CNN-based auto features extraction strategy in the e-tongue system for tea
classification was proposed. The proposed CNN structure integrates automatic features extraction
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and classification into a unified, which makes the classification effect more robust. 99.9% classification
accuracy was obtained based on tea database collected by an e-tongue system we designed.
In conclusion, compared to these reference techniques, the proposed model in the paper has several
advantages: (1) 99.9% classification accuracy; (2) easy features extraction method instead of manual
features selection; (3) approximate end-to-end features extraction and classification structure makes the
system more robust and accurate, which will make contributions to the e-tongue for more extensive
applications in the future.
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