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Abstract: The increasing importance of spatial audio technologies has demonstrated the need and
importance of correctly adapting to the individual characteristics of the human auditory system,
and illustrates the crucial need for humanoid localization systems for testing these technologies.
To this end, this paper introduces a novel feature analysis and selection approach for binaural
localization and builds a probabilistic localization mapping model, especially useful for the vertical
dimension localization. The approach uses the mutual information as a metric to evaluate the
most significant frequencies of the interaural phase difference and interaural level difference. Then,
by using the random forest algorithm and embedding the mutual information as a feature selection
criteria, the feature selection procedures are encoded with the training of the localization mapping.
The trained mapping model is capable of using interaural features more efficiently, and, because of the
multiple-tree-based model structure, the localization model shows robust performance to noise and
interference. By integrating the direct path relative transfer function estimation, we propose to devise a
novel localization approach that has improved performance in the presence of noise and reverberation.
The proposed mapping model is compared with the state-of-the-art manifold learning procedure in
different acoustical configurations, and a more accurate and robust output can be observed.

Keywords: binaural localization; HRTF; feature learning; Spatial Hearing Model; random forest

1. Introduction

Spatial audio technologies has shown its importance in various fields, such as video conferencing,
virtual reality, humanoid robot interactions and hearing aids, and there are many existing methods
reproducing a spatial sound field on different devices for human listeners. To adapt those devices for
great spatial experiences, it is necessary to find the most valuable acoustic cues for human hearing
system [1–4]. Additionally, testing and evaluating the quality of reproduced sound field and the
hearing experience of those devices is another challenging problem [5–7]. The hearing tests with real
human volunteers can be time-consuming and would be unfeasible for a huge amount of devices and
testing scenarios. One efficient solution is building binaural localization models based on the study of
human audio localization mechanism, then running tests on the model for evaluation [8].

Much behavioural and psychoacoustic evidence has confirmed that two individualized interaural
cues, Interaural Time Difference (ITD) and Interaural Level Difference (ILD), play an essential role in
localizing a sound source. Through intensive studies of the human hearing mechanism, it has become
widely understood that individualized ITD and ILD are mainly determined by the filtering of the
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head, body and pinna, where the filtering function is the so-called Head-Related Transfer Function
(HRTF). During the last two decades, many binaural localization approaches have been developed
based on interaural cues. Li and Levinson [9] adopted the Bayes rule to estimate the source position.
This method uses interaural intensity difference (IID) and spectral signals to refine the initial estimate
given by ITD. Viste et al. [10] provided an individual parametric model jointly using ILD and ITD for
azimuth localization. The model first provides a rough estimate of high standard variation based on
ILD, and then refines the estimation by selecting the closest ITD. Woodruff and Wang combined ILD
and ITD with a Gaussian Mixture Model (GMM), which also embedded the environmental condition
as a latent parameter [11].

Further, many works have attempted to investigate the relationship between interaural cues
and source position in a 3-D space. Duba summarized the relationship between interaural cues and
azimuth/elevation [12]. Keyrouz et al. proposed a maximum cross-correlation matching method
in source cancellation algorithms to pinpoint the source location in a 3-D space [13,14]. Liu et al.
introduced a Bayesian rule-based hierarchical localization system using IID time delay compensation
and an interaural matching filter to estimate azimuth and elevation in the interaural-polar coordinate
system [15,16]. Deleforge et al. proved the local linear bijective mapping between interaural cues and
source location on the binaural manifold, and derived a statistical localization model using an EM
algorithm [17,18]. Weng et al. adopted a non-parametric tree-based learning method to retrieve the
mapping between the interaural cues and source locations with fewer restrictions on its spatiotemporal
characteristics and environment structure [19].

Several studies mentioned above have demonstrated the importance of feature spectrum selection
to localization performance, especially for elevation localization, and various methods for feature
selection have been proposed. Duba et al. indicated that the IID at the frequency above 2 kHz contains
the characteristics of head shadow and pinna diffraction [12], which can be exploited for elevation
estimation. Algazi et al. retrieved the existence of elevation-dependent features at a low frequency,
which was attributed to head diffraction and torso reflections [20]. Deleforge et al. proved the elevation
ambiguities of Interaural Phase Difference (IPD) at the high-frequency range (between 2 to 8 kHz) and
used a feature space concatenated by full-spectrum ILD and low-frequency IPD [17].

Another challenge in sound source localization is localizing the source in the presence of noise
and reverberation. There have been many attempts to obtain the interaural features in a complex
environment and diminish the effects of room reverberation and background noise [21–23]. However,
prior knowledge of the room’s acoustical characteristics is required for most of those methods, and,
without this prior knowledge, the extracted interaural features may not be optimized and some
interference would be retained. Therefore, a model with high tolerance to noise and these interferences
would be expected for practical applications.

This article investigates the dependency between interaural features and sound source position,
particularly for elevation mapping. The Mutual Information (MI) is used to demonstrate the existence of
elevation-related dependency on both the ILD and IPD spectrum. Then, based on the results of the MI
analysis, a chain rule-based probabilistic model for mapping the features and source locations in a 3-D
space is proposed. The model is constructed based on probability estimation trees (PETs) and Random
Forest (RF) framework. The PETs are formed by an information gain–based data partition technique.
The features exploited by the model are further investigated, which justifies that the non-linear-dependent
features (e.g., high-frequency IPD spectrum) can also contribute to an accurate localization performance.
Then, aiming at evaluating the accuracy and robustness of the proposed method, the localization
performances are compared with the state-of-the-art probabilistic piecewise affine mapping (PPAM)
model proposed in [17] in different noise and reverberation environments without prior knowledge of
the acoustical conditions.
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2. Individualized Feature Selection Using Mutual Information

Firstly, we focus on selecting the most valuable spatial cues and their mapping relationship to the
source position. Considering a complex environment, the additive noise and reverberations would distort
the characteristics of both the phase and magnitude features, especially at higher frequencies (above
3 kHz) where the speech energy is comparatively low. This is exacerbated, as most elevation localization
cues being generated by reflections and diffraction of the human body and pinna are above 3 kHz [24].
Therefore, a feature selection mechanism that maximizes the direction-dependent information and
minimizes the effect of noise would be necessary, and a generic feature selection approach could lead to
superior performance [25]. To investigate the dependency between the features and their corresponding
source positions, the Mutual Information (MI) that exists between each spatial localization cue and the
source location for particular feature spectra could be used as criteria to evaluate both the effectiveness
and robustness of the feature vectors extracted for the localization process.

We assume the left and right ear received signals are modeled in time-frequency (T-F) domain as:

Xl,k, f = Hl,f(ϑ, ϕ) · Sk, f + Nl,k, f

Xr,k, f = Hr,f(ϑ, ϕ) · Sk, f + Nr,k, f
(1)

where k and f indicate the time frame index and frequency index, respectively. The S represents
the source signal, and Hl,f and Hr,f denotes the relative transfer function with spatial parameters
ΘIP = (ϑ, ϕ) in the interaural-polar coordinate system [24]. Nl,k, f and Nr,k, f denotes the additive
random background noise. The interaural cues IPD and ILD at frequency f are obtained by:

vp
f =∠

∣∣∣Xl,k, f

Xr,k, f

∣∣∣
vm

f = 20 log10

∣∣∣Xl,k, f

Xr,k, f

∣∣∣ (2)

Then, we organize the interaural phase and magnitude feature vector as:

vp , [vp
0 , ..., vp

L]

vm , [vm
0 , ..., vm

L ]
(3)

where capital letter L indicates the vector length when fmin is zero and fmax is a half of the sampling
frequency. Here, the upper and lower limit of selected frequency for the phase feature and magnitude
feature are identical, and are denoted as fmin and fmax, respectively.

We then define the original feature vector v ∈ R2L by concatenating the phase vector vp and the
magnitude vector vm as:

v , [vp, vm] = [v0, ..., vµ..., v2L−1] (4)

where vµ defines the µ th element in the feature vector v with element index µ = 0, 1, ..., 2L− 1.

2.1. Mutual Information Computation

As one of the most common measures to evaluate the dependency between variables, MI is
widely used to estimate the maximally relevant feature selection that corresponds to a particular
outcome [26,27]. The MI I of two discrete variables, x and y, is defined as:

I(x; y) = ∑
x

∑
y

P(x, y) log
P(x, y)

P(x)P(y)
, (5)
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where P(x) and P(y) represent the joint probability and marginal probabilities of variable x and y,
respectively. Similarly, the MI between an interaural feature vµ and (ϑ, ϕ) is given by:

Iϑ(vµ; ϑ) = ∑
vµ

∑
ϑ

P(vµ, ϑ) log
P(vµ, ϑ)

P(vµ)P(ϑ)

Iϕ(vµ; ϕ) = ∑
vµ

∑
ϕ

P(vµ, ϕ) log
P(vµ, ϕ)

P(vµ)P(ϕ)

(6)

We now focus on the interaural phase and magnitude spectra feature analysis for elevation localization,
since the spectra information is the major cue to determine the elevation [12]. The dependency
between spectra feature and azimuth is ommited, because the localization of azimuth relying on the
signal arriving time and level difference between two ears is comparably easier and more robust in
an interaural-polar system [24].

In the elevation dependency analysis, the training dataset is denoted as {v(n), ϕ(n)}N
n=1, where

n = 1, ..., N represents the training data index. Based on consideration of computation complexity,
the probability components P(vµ, ϕ), P(vµ) and P(ϕ) are estimated by histogram-based probability
estimation [28] as:

P(vµ, ϕ) =
1
N

N

∑
n=1

z(v(n)µ = vµ, ϕ)

P(vµ) =
1
N

N

∑
n=1

z(v(n)µ = vµ)

P(ϕ) =
1
N

N

∑
n=1

z(ϕ(n) = ϕ)

(7)

where the indicator function z(Z) with event Z is defined as:

z(Z) =

{
1 Z is true,

0 otherwise.
(8)

Therefore, the MI between each feature element vµ from the vector v can be obtained by (7). Then,
by traversing all the elements in vector v, the MI vector I(v; ϕ) is defined as:

I(v; ϕ) = [I(v1; ϕ), ..., I(vµ; ϕ)] (9)

Now in order to evaluate the dependency between elevation β and interaural cues vµ only and
omit the impact of azimuth, the mutual information is calculated on each sagittal plane separately and
the mutual information vector for each sagittal plane is denoted as Iα(v; ϕ).

2.2. Analysis of Mutual Information in Interaural Cues

Figure 1 illustrates the variations in MI that exist between the elevation angle of the source location
and the spatial cues for different azimuths and SNRs. From Figure 1a,b, it can be observed that, in high
SNR scenarios, the MI in the high-frequency range becomes dominant for elevation localization.
However, with the decreasing SNRs, the high-frequency cues no longer provide reliable localization
information, unlike the mid-frequency spatial cues. Further, the distribution (in frequency) of the
most effective cues varies with different azimuths, and illustrates both the difficulty of decoupling the
localization process into separate azimuth and elevation estimation problems, as well as the challenge
of localization in the median plane [24].

Further, comparing the behaviour of the two types of spatial cues, we can observe that the
importance of each changes with the SNR. For example, where no or low noise is present, the interaural
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magnitude cues become dominant, while, in a comparably higher noise environment, the interaural
phase cues show more robustness. Collectively, these observations imply that the selection of spatial
cues for the creation of a feature vector for localization must be more nuanced than the simple
selection of a fixed frequency range; thus, an adaptive noise-dependent feature selection and extraction
process becomes a necessity for any noise-robust binaural localization system. A spatial feature
learning algorithm that is aware of the MI contained in each spatial cue can satisfy this requirement,
and provides superior performance to the former approach, as illustrated in the following sections.
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Figure 1. Mutual Information between the spatial cues and the elevation for a range of azimuths,
frequencies and noise conditions.

2.3. Spatial Feature Learning and Selected Feature Vector

Algorithm 1 describes the MI-based spatial feature learning mechanism used in the remainder
of this work. Given an estimated noise level, such as using the method proposed in [29], the spatial
feature vector v and its corresponding MI in (9) are computed for a set of training speech signals.
Figure 2 illustrates the variation of the MI between spatial cues and elevation angle with and without
noise, and indicates the changing nature of the importance of individual spatial cues. The error bar
reflects the MI variation on different azimuth planes, and the mean MI obtained for the training speech
dataset is used thereafter to create a rearranged spatial feature vector v′.
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Figure 2. MI variation in spatial cues with respect to SNR.
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Algorithm 1: Spatial feature learning for robust localization

Step 1: Estimate the noise power 7→ σ2.
Step 2: Evaluate Iϑ(v; ϕ); Mutual Information of spatial cues.

foreach ϕ in the HRTF dataset do
foreach s(t) in the training speech dataset do

Compute Xi,k( fµ) for a simulated noise power σ2.
Calculate the corresponding vµ and v.
Estimate Iϑ(v; ϕ).

end
end
Result: Obtain the set of Iϑ(v; ϕ) for a noise power σ2.

Step 3: Learn the optimal combination of the spatial cues in v.
Calculate a mean MI ∀ ϕ from Iϑ(v; ϕ).
for l′ ← 1 to 2L do

Rearrange v in descending order of Iϑ(vµ; ϕ).
foreach v derived from the training speech dataset do

Estimate the source location ϕ from a feature vector v of length l′.
Calculate the angular localization error of ϕ.

end
end
Result: Obtain v′; the rearranged and selected spatial feature vector from v, that corresponds

to the minimum mean angular localization error.

To arrive at v′, an optimal number of spatial cues to be used in the localization process l′ is
computed. The average angular localization error, obtained from the estimated source location
(ϑ, ϕ) and its estimate (ϑ̂, ϕ̂), is used as a metric to determine the optimal l′. This results in a set of
spatial feature vectors, v′(ϑ, ϕ), applicable to the specified noise level (in the case of some practical
applications, it is also possible to pre-train the system for a set of known, approximate noise conditions).
The spatial cues extracted from the received signals are rearranged similarly, and the resultant feature
vector v̂′ and the v′(ϑ, ϕ) reference features are used to calculate vector distance for localization [25].
The localization performance will be presented in Section 6.

3. Probabilistic Localization Model and System Design

In the previous section, a feature selection approach based on averaged MI was introduced.
The average MI approach provides a selection of the most dependent spectra characteristics, while
the actual feature value and most related directions are not considered. In this chapter, those two feature
properties are investigated and integrated with the localization mapping progress. With the proposed
mapping operation, not only are the features exploited in advance, but the localization robustness will
also be further improved.

Aiming at localizing the sound source in a real-world environment with presence of noise and
interference, the localization problem is considered probabilistic mapping between the feature vector
and source location ΘIP = (ϑ, ϕ), which can be expressed as:

Θ̂IP = arg max
ΘIP

P(ΘIP|v̂) (10)

where P(ΘIP|v̂p) represents the probability of the sound source located at ΘIP with a given feature
vector v̂p. In the interaural-polar coordinate system, the generic ITDs are the same when the sources are
placed on the same sagittal plane; thus, it is more applicable to estimate the azimuth ϑ first, and then
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estimate the elevation ϕ with a given ϑ. Therefore, the probability P(ϑ|v̂p) can be represented based
on the conditional chain rule by a multiplication of two posteriors as:

P(ΘIP|v̂p) = P(ϑ|v̂)P(ϕ|ϑ, v̂) (11)

where P(ϕ|v̂p) represents the probability of the source located at the sagittal plane, labelled by ϑ,
and P(ϕ|ϑ, v̂p) represents the probability of β with given α and v̂p. Then, by substituting (11) into (10),
the estimated source location Θ̂IP = f̂ΘIP(v̂p) can be obtained. There are two obvious advantages of
adopting such localization architecture. First, in the training process, the feature characteristics caused
by ϑ and ϕ are separated, so the localization model can be more explainable and a more accurate
localization result can be achieved [21]. Second, in the testing process, the ϑ and ϕ can be estimated in
parallel, and then high computation efficiency in contemporary parallel hardware can be achieved.

To estimate the P(α|v̂p) and P(β|α, v̂p) for the real-world source localization, the estimation
approaches should be able to tackle the amount of noise in the input feature vector. In the next section,
the RF method is introduced to select the most important features and provide a robust estimation.

4. Feature Dependency Analysis and Assembled Data Partition Model

This section presents a posterior estimation method with adaptive feature selection approach.
First, the dependency between the spatial parameters and feature characteristics is analysed, and
then an assembled data partition model based on the feature dependency is adopted for the posterior
estimations. During the model training process, the following notations are used in the later content:
let {v(n), y(n)}N

n=1 denote the dataset of all training data pairs, where v ∈ V ⊂ R2K represents the
interaural feature vectors in vector space V , and y(n) ∈ {y1, y2, ...yD} represents the discrete spatial
label. In the training dataset, either α or β is discretised and labelled. Here, both labels of θ or ϕ are
represented by the common symbol y for simplicity. The subscripts n ∈ {1...N}, µ ∈ {1...2K} and
d ∈ {1...D}, respectively, represent the training observations index, the feature vector components and
the discrete label index.

4.1. Data Partition and Tree-Structured Model

The dependency analysis described in Section 2 justifies the existence of elevation-related
features at full-band ILD and high-frequency IPD. To use these results and further exploit the feature
characteristics, the mapping model should satisfy two essential requirements. First, the model should
be able to handle both linear and non-linear associations. Second, an adaptive feature selection should
be embedded in the model training progress. Therefore, to fulfil these two requirements, a recursive
tree-structured data partition technique—the so-called decision tree method—is introduced. A tree
is a hierarchical structure in which each internal node contains a specific feature condition. At each
node, the training data are split into two sub-spaces by the splitting feature that maximizes the MI
between the selected feature and the spatial labels from sub-spaces. Notably, the MI here is also known
as information gain in machine learning, which is still denoted by IG in latter content. Finally, each
node at the terminal of the tree is defined as a leaf node, which represents a subclass of spatial labels y.

Formally, let m ∈ {1...M} denote the splitting node index, and the subset of training data at mth
node are defined as {v(n)

m , y(n)
m }Nm

n=1, where the subset of the feature vectors and the target labels are

respectively represented by Vm ⊂ R2K and y(n)
dm
∈ {y1, y2, ...yDm

}. Defining Vm,µ = {v(n)m,µ}Nm
n=1 as µth

feature subset, the information gain with the binary splitting operation using the splitting value vm,µ

can be obtained by:

IG(y, vm,µ) =
D

∑
d=1

Pm(vm,µ, yd) log
Pm(vm,µ, yd)

Pm(vm,µ)Pm(yd)

+
D

∑
d=1

(1− Pm(vm,µ), yd) log
1− Pm(vm,µ, yd)(

1− Pm(vm,µ)
)

Pm(yd)

(12)



Appl. Sci. 2019, 9, 2682 8 of 23

which can also be interpreted as subtraction of entropies by:

IG(y, vm,k) = H(y)− H(y|vm,k). (13)

It is more directly perceived through (13) that the IG is evaluating the decreasing uncertainty of y after
splitting by vm,µ.

The probability components Pm(vm,µ, yd), Pm(vm,µ) and Pm(yd) are estimated by histogram-based
probability estimation [28] as:

Pm(vm,µ, yd) =
1

Nm

Nm

∑
n=1

z(v(n)m,µ ≤ vm,µ, y = yd)

Pm(vm,µ) =
1

Nm

Nm

∑
n=1

z(v(n)m,µ ≤ vm,µ)

Pm(yd) =
1

Nm

Nm

∑
n=1

z(y(n)
m,d = yd)

(14)

where the indicator function z(·) is defined as same as (9).
Depending on (12) and (14), one may split the dataset by selecting the feature index µ and its

splitting value vm,µ, which maximizes the value of information gain as:

ṽm,µ = arg max
vm,µ∈Vm

IG(y, vm,k) (15)

where ṽm,µ indicates the optimized splitting value with its feature index µ at node m.
By repeating this splitting operation until some certain criteria is reached (e.g., the maximum

number of nodes M), the original dataset {v(n), y(n)}N
n=1 is partitioned into multiple subsets denoted as

{v(n)
λ , y(n)

λ }
Nλ
n=1 with subset index λ. The whole training progress can also be understood as a recursive

clustering process, whereby the training data with common feature characteristics described by vm
k are

clustered into the same subset λ, while the uncertainty of spatial label α is minimized, so that, in such
a subset, the training data only share a few α. Further, in this recursive approach, the splitting feature
index k and its corresponding value vm

k are adaptively re-selected via (15) at each node, so the most
spatial dependent feature characteristics are exploited to the maximum.

Then, with a test feature vector v̂, the model will first categorise it into a subset with the splitting
criteria obtained during training, and then the estimated posterior P̂γ(yd|v̂) from a single tree γ is
given by:

P̂γ(yd|v̂) =
1

Nλ

Nλ

∑
n=1

z(y(n) = yd|y
(n) ∈ yλ)

∣∣∣∣
λ̂=Cγ(v̂)

(16)

where Cλ(·) indicates the classification approach in the tree γ based on the splitting features, and λ̂

represents the estimated subset index. To avoid over-fitting and increase the robustness of the model,
a committee of multiple single trees is constructed in the next section.

4.2. Random Forest Bagging and Unbiased Probability Estimation

A more robust posterior estimation can be obtained by an ensemble model, and the approach to
assembling multiple decision trees is known as the tree bagging technique. The idea is to attain the
final posterior probability estimation by averaging the probabilities from a committee of i.d.d. trees.
Formally, in a forest with Γ trees, the assembled posterior estimate is given by [28,30]:

P̂(yd|v̂) =
1
Γ

Γ

∑
γ=1

P̂γ(yd|v̂) (17)
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where γ ∈ {1, 2, ..., Γ} is the index of i.d.d. trees, and the i.d.d. trees are obtained by introducing
randomness into their training process. Many approaches have been proposed to randomise those
training processes, and the most famous one, adopted by the RF algorithm [30], has shown its
effectiveness in many applications. The independence between decision trees is achieved by introducing
randomness into both the training subset and feature selection. The training datasets for each tree are
obtained via bootstrap sampling, in which roughly two-thirds of the data are selected for each subset.

The averaging operation in (17) softly selects those more confident trees from the forest, and such
selection is undertaken on the leaves of the trees. In a RF, each i.d.d. tree can be understood as a union
of hyper-rectangles defined by the subsets on each leaf, and the boundaries of each hyper-rectangle are
determined by the splitting features vm

k . Although those hyper-rectangles vary with different trees,
they overlap because of the similarity of feature characteristics and spatial label clustering. Thus,
the operation in (17) selects the area with the maximum amount of overlaps of hyper-rectangles.

Finally, the source position estimation is given by:

< α̂, β̂ >= arg max
<α,β>

P̂(α|v̂p)P̂(β|α, v̂) (18)

The following content presents a detailed description of model training and parameter selection, and
demonstrates an interpretation of this model.

5. Model Training and Interpretation

5.1. Model Training and Parameter Selection

A dataset of synthetic received signals is used for training purposes, and is generated by convolving
the source signal and Head-Related Impulse Response (HRIR) in the time domain. The Gaussian noise
with about 0.5 s duration is adopted as the source signal and convolved with ‘003’ subject HRIR from
the CIPIC database [24], in which the HRIR were recorded at 25 sagittal azimuths and 50 elevations
on each sagittal plane. The interaural features are extracted as described in Section 2.3, and we use 16
ms length Hamming window for Short-Time Fourier Transform (STFT) with 8 ms shift, so there are
256 samples with a 16 kHz sampling rate. The selection of window length is based on the assumption
of application scenario as a speech source in an indoor environment, so 16 ms is corresponding to 5 m
direct path, and the speech signal can be considered as stationary in such short-term. The interaural
feature extracted from each frame is treated as a training sample, and 10 samples for each position are
randomly selected from the dataset. Moreover, three training conditions with different SNR additive
white noise are applied on the training dataset, with the aim of investigating the influence of training
data quality.

In the proposed model, three parameters need to be settled during the training: the candidate
feature number at each node, the splitting iteration number M and the tree number Γ. The initial value
of K′ can be set as the square root of the total feature numbers in v, according to [30], and the other
two parameters for the azimuth and elevation model are determined by multiple out-of-bag (OOB)
data tests on different parameters combinations. Fortunately, the sampling scheme of RF provides
a convenient measurement to evaluate the model using OOB error. Recall that around two-thirds of
training data were selected as training data after the bootstrap sampling for each tree, so that those
un-selected data could be used as testing data. The estimation error of the OOB data is defined as OOB
error. Figure 3 shows the OOB errors versus Γ of the azimuth model and elevation model with different
selection of M, where the splitting iteration number of the azimuth and elevation model are defined as
Mθ and Mφ, and the tree numbers are defined as Γθ and Γφ, respectively. Intuitively, M should relate to
the class label number and correspond to the accuracy of the model. It can be observed from Figure 3
that small OOB error differences are obtained after a certain number of iterations—that is, Mθ = 32 and
Mφ = 64—which means the forests are fully developed for the classifications. As for the tree numbers,
the OOB error tends to converge at Γθ = 30 for the azimuth model and Γφ = 80 for the elevation model.
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However, since a larger tree number can increase the robustness of the model, 20 extra trees are added
on both models, and the final tree numbers are settled as Γθ = 50 and Γφ = 100.
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(b) Elevation OOB error

Figure 3. OOB errors

5.2. Trained Model Interpretation

Figure 4 shows the changes in feature selection because of different training conditions, by comparing
the feature usage account. Given that the features with higher information gain are more likely to be selected
as splitting features at each node, the usage account of a feature in the forest describes its dependency
on the position estimation. It can be observed that, in the azimuth model trained with noise-free data,
the more frequently used features are clustered at frequencies under 1 kHz, which correspond to the phase
delays caused by the head width. However, in the model trained by a noisy dataset, the feature usage is
more evenly distributed, which indicates that the model tends to use group delays between the ears for the
estimation, which is because more features are necessary to a robust estimation with noisy training data.
However, an opposite phenomenon is observed in the elevation model. With the decreasing of training
data SNR, the more frequently used features are clustered to the frequency range around 3 to 5 kHz.
This can be ascribed to the fact that more elevation information is generally drowned by the increasing
noise, which cannot provide valid localization information. Such an adaptive selection process can only
benefit the model performance when the noise is relatively low, which will diversify the feature usage
and tree structures. However, when the noise is too strong and the most valuable features are degraded,
the tree structures are homogenised and the robustness of the model will rapidly decrease.

Figure 5 demonstrates the feature characteristics captured by the splitting values from the direction
[30◦, 45◦] and [30◦, 135◦]. In each sub-plot, each column shows the additive noise SNR for a training
dataset and each row shows the type of features. Each blue circle represents a ‘left’ condition in a node
from a single tree, which is also defined as the upper limit of vm,k in (14). Similarly, each red cross
represents a ‘right’ condition in a node or the lower limit value of vm,k. The ground truth features are
plotted in black solid curves, which are obtained from pure HRTF data. Each marker, either a circle
or cross, is considered a classifier to evaluate whether an extracted feature vector fits the conditions
for a specific direction. By observing the distribution of markers, it again justifies that the features
in frequency above 2 kHz are more valuable. The ground curves almost overlap with the dividing
line between circles and crosses, which indicates that the major features have been captured by those
upper and lower limits. In each row, the influence of the training condition can be compared. In the
case where SNR = ∞, though the curve fits best, the markers are distributed closer, which means that
the independence between trees is comparably low, which may lead to over-fitting on some features.
Meanwhile, in SNR = 10 dB, the markers are more dispersed and the dividing lines are blurred because
of the high noise level, which will cause loss of some details of the feature characteristics, and lead to
decreasing localization accuracy.
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Figure 4. Feature Usage Accounts for training condition (a) SNR = ∞; (b) SNR = 20 dB and
(c) SNR = 10 dB. The first two columns shows the feature usage for azimuth model and the last
two columns shows the average feature usage for elevation model.
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Figure 5. (a) Split feature learning for θ = 30◦ and φ = 45◦; (b) Split feature learning for θ = 30◦ and
φ = 135◦. Split feature value comparison between (a) θ = 30◦, φ = 45◦ and (b) θ = 30◦, φ = 135◦.

6. Experiments With Simulated Data

6.1. 3-D Space Localization with Mutual Information–Based Feature Selection

This section presents the simulation results of 3-D space localization with MI-based feature selection.
The localization performance of the proposed method is compared with the generic composite feature-based
localization approach [25] and a simple correlation-based method [31].
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6.1.1. Simulation Configuration

The proposed approach is used to evaluate 950 source locations, ranging from azimuth α = −45◦

to 45◦ in 5◦ intervals and elevation β = −45◦ to 230.625◦ in 5.625◦ increments, for the first 10 subjects’
HRTF measurements in the CIPIC database [24]. The speech samples from the PASCAL ‘CHiME’
Speech Separation and Recognition Challenge [32] (34 males and females, each with 500 utterances
sampled at 16 kHz) are used as inputs; 340 randomly selected utterances are used for the learning
process, and a separate 200 utterances are used to evaluate the localization performance. The binaural
signals are simulated by convolving the HRTFs of different locations with the uncorrupted speech,
and introducing the independent additive white Gaussian noise with three different SNRs of 10, 20
and 30 dB.

The frequency range for the generic composite feature-based approach is selected empirically,
where [0,4] kHz and [3,5] kHz are the phase and magnitude feature regions for the feature-based
method, while the full-band signal is used for the correlation approach. During the comparison,
the mean angular error is employed as a metric to assess the localization performance. The angular error
denotes the angular distance between the estimated and actual source directions in the interaural-polar
coordinate system; therefore, the estimation errors of both the azimuth and elevation (α and β) are
implicitly included in the performance assessment.

6.1.2. Performance Impact of the Feature Vector Length

From Figures 1 and 2, it becomes apparent that the length of the feature vector ṽ can directly
influence the localization performance. For example, a length smaller than the optimum will result
in insufficient spatial information (especially in the case of the median plane), while a greater length
could result in increased ambiguity because of the effects of noise. In both cases, the mean angular
localization error will be affected; thus, an optimum length for ṽ that minimizes this error must be
computed at the noise power level observed in a particular localization scenario. Hence, the training
process described in Algorithm 1 is applied to a range of simulated speech inputs, and the optimum
feature vector length and spatial cue combination is obtained dynamically based on their MI content.

Figure 6 illustrates the relationship between the mean angular errors and the length of the composite
feature vector at different noise levels. The results are presented for three different SNRs, where the
selected number of spatial cues varies from 10 to 200 in intervals of 10. The result for the 10 dB SNR
case clearly illustrates the general behaviour discussed above (similar behaviour is observed at other
noise levels as well), indicating an optimum feature vector length of approximately 90 elements. Note
that the angular localization error for the 30 dB scenario is larger than that for the 20 dB scenario when
the feature vector length is less than 60. This suggests that a short feature vector may lead to unstable
localization performance; thus, a minimum length of the feature vector should be guaranteed.
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Figure 6. Localization error with respect to feature vector length.
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6.1.3. Localization Performance

The performance of the proposed method is presented and compared with two other approaches
in Table 1. Here, the received binaural inputs are obtained from 90 uniformly sampled source locations
of the 950 locations in the HRTF dataset, and the resulting localization error is averaged across multiple
untrained speech inputs and source locations. The results indicate a significant improvement in
performance over the generic composite feature-based localization approach in [25], especially in
the low SNR configurations. It was notable that the improvement predominantly stemmed from
a reduction in front-to-back confusion. This suggests that the approach overcomes the lack of spectral
cues located beyond the mid- to high-frequency ranges [33] that are less robust to the effects of noise.
In general, the results suggest that the MI-based feature learning and rearrangement of the spatial cues
in the feature vector can both improve the localization performance and overcome the negative effect
of the dynamic truncation of the feature vector to achieve greater robustness to noise.

Table 1. 3-D space localization performance comparison.

Localization Approach Mean Angular Localization Error
10 dB 20 dB 30 dB

Proposed learning 5.63◦ 0.89◦ 0.14◦

Composite feature [25] 24.30◦ 5.11◦ 0.85◦

Cross-Correlation [31] 67.65◦ 58.55◦ 51.58◦

6.2. 3-D Space Localization with Probabilistic Model

To evaluate the accuracy and robustness of the proposed method, localization tests proceed with
multiple testing conditions, and the localization results are compared with the state-of-the-art PPAM
method [17]. In the last part of this section, performance in different reverberant environments is also
compared and presented.

6.2.1. Performance Measurements and Simulation Configuration

The received signals are generated by convolving the simulated Binaural Room Impulse Response
(BRIR) and speech utterances. The speech utterances are obtained from the PASCAL ‘CHiME’ Speech
Separation and Recognition Challenge database [32], which includes 34 speakers and every speaker
has 500 utterances. Each testing speech utterance has around 1 s duration.

The BRIRs used in the testing are generated with CIPIC HRTF subject ‘003’ and the Roomsim
MATLAB program [34] based on the image method in four empty ‘shoebox’ rooms. A rectangular room
with room sizes 5 m× 5 m× 3 m is created in the simulation. The subject head is fixed at (2.5, 2.5, 1.2) m
and the sound source is positioned around the subject with the same position scheme as used in the
CIPIC database, so there are 1250 source positions (25 azimuths × 50 elevations) in total during the tests.
The distance between the sound source and the center of the head is fixed as 1.5 m so that the acoustical
environment can be considered a far-field environment. The strengths of reflections are manipulated by
the absorption coefficients β on the walls. In the additive noise test, four sets of data are generated and
tested with different SNRs. The absorption coefficients are set as β = 1, so no reflections present and
the interference is entirely caused by noise. As for the reverberation test, the absorption coefficients are
tuned from 0.8 to 0.2, and the corresponding T60 varies from 100 to 500 ms approximately.

The localization accuracy is evaluated by the correct rate of localization. An estimation is considered
correct if the difference between the estimated sound direction and ground truth source position is
below a certain tolerance threshold. To objectively demonstrate the 3-D position differences between
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the ground truth source position and the estimated direction, the angular error defined by the absolute
angular difference between two directional vectors in a Cartesian coordinate system is calculated as:

ε = arccos
d<α,β> · d̂<α̂,β̂>

|d<α,β>||d̂<α̂,β̂>|
(19)

where d<α,β> and d̂<α̂,β̂> are the ground truth source direction vector and the estimation direction
vector in Cartesian coordinate system, respectively. The azimuth and elevation correct rate in the
interaural-polar system are also presented.

6.2.2. Localization Performance with Different Training Environment

As discussed in Section 5.2, different training conditions also affect the quality of the model,
which leads to different localization performance. In this section, the localization performances with
different training conditions are presented and compared in Figure 7.
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Figure 7. Comparing the localization accuracy with different training conditions. The angular error
tolerance is 2.5◦.

In general, the localization accuracy for all models decreases with increasing noise level. As predicted
in Section 5.2, the model trained with moderate noise conditions performs best, and slightly outperforms
the one trained with no noise data. This is because the additive zero-mean Gaussian noise increases the
variance of the training data, which introduces diversity in the splitting values for all features and forces
trees to select the features that can still provide valuable information under interference. However, the
localization result of the model trained in a strong noise environment entirely degrades because the model
cannot capture the details of feature characteristics from noisy data, as demonstrated in the third column
of Figure 5. According to this comparison result, in the following simulations, moderate noise data are
used as training data for both the proposed and reference method for comparison.

6.2.3. Localization Performance with Additive Noise

A localization accuracy comparison with the presence of additive noise is shown in Figure 8.
In general, the proposed method outperforms the state-of-the-art method with both feature vector types.
It can be concluded that the RF algorithm in the proposed method is capable of constructing a finer
mapping between the feature characteristics and source locations, and this mapping shows robustness
to additive noise. Further, through comparing the performance with different feature vectors yet the
same localization method, it can be observed that better performance is obtained by using a full ILD
and IPD spectrum in the proposed method, while a more accurate result is achieved by using the
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full-spectrum ILD and low-frequency IPD (ILPD) vector in PPAM. This different feature preference
proves that the proposed method successfully exploits the non-linear cues in the high-frequency IPD
spectrum, and such cues will contribute to a more accurate result.

A more detailed comparison between the azimuth and elevation estimation is provided in Table 2.
Again, better estimation results can be obtained from the proposed method in general. In Table 2a,
the proposed method using full ILD/IPD spectrum vectors achieves the best result and maintains
a high estimation accuracy in a severe condition. Meanwhile, the result from the proposed method
using ILPD features has comparably good performance in a noise-free environment, yet degrades
rapidly with decreased SNR. There are two causes of this phenomenon. First, a longer feature vector
increases the diversity of available feature candidates at each splitting node; hence, the independence
between decision trees increases and the forest becomes more robust. Second, the RF algorithm extracts
the spatial cues at high-frequency IPD spectrum (e.g., the group delay) and those cues contribute to
the estimation even in a noisy environment. In Table 2b, although the elevation estimation accuracy
from all methods decreases obviously with increased noise level, the proposed method can provide
a precise estimation in the high SNR scenario, compared with the results from PPAM, which indicates
that elevation-related feature characteristics extracted by the RF algorithm are non-linear and more
sensitive to interference.
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Figure 8. Comparing the localization accuracy between proposed and PPAM methods using different
feature vector types. The angular error tolerance is 2.5◦.

Table 2. Azimuth and elevation estimation accuracy comparison in noisy environment.

(a) Azimuth Accuracy Comparison

SNR No Noise 30 dB 20 dB 10 dB

Tolerance ≤2.5◦ ≤5◦ ≤2.5◦ ≤5◦ ≤2.5◦ ≤5◦ ≤2.5◦ ≤5◦

Proposed - FULL 99.44% 100.0% 98.88% 100.0% 97.20% 99.60% 94.40% 97.92%
PPAM - FULL 79.92% 91.12% 79.52% 90.72% 75.36% 87.6% 61.36% 73.84%

Proposed - ILPD 95.68% 97.12% 87.68% 90.56% 78.96% 86.00% 68.64% 79.44%
PPAM - ILPD 89.28% 96.96% 86.64% 95.68% 73.84% 89.44% 55.04% 73.84%

(b) Elevation Accuracy Comparison

SNR No Noise 30 dB 20 dB 10 dB

Tolerance ≤2.5◦ ≤6◦ ≤2.5◦ ≤6◦ ≤2.5◦ ≤6◦ ≤2.5◦ ≤6◦

Proposed - FULL 96.08% 99.52% 89.60% 96.72% 72.64% 83.84% 37.04% 51.20%
PPAM - FULL 28.08% 47.12% 24.48% 44.80% 19.52% 34.64% 9.20% 17.20%

Proposed - ILPD 94.40% 97.12% 76.96% 84.00% 48.72% 58.88% 17.76% 27.04%
PPAM - ILPD 44.72% 71.92% 40.72% 63.28% 24.26% 41.44% 9.84% 18.24%
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6.2.4. Localization Performance with Reverberations

To localize the sound source in a reverberant environment, the proposed method introduces the
Direct Path Relative Transfer Function (DP-RTF) estimation method as a pre-processing front-end
in the system. In the DP-RTF extraction, because the reverberation condition is assumed unknown,
the CTF length Qk is settled as 0.25 s and remains unchanged in all simulations. Figure 9 shows the
compared localization performances with multiple reverberation configurations. Although all methods
are degraded in more severe environments, the proposed methods have more accurate localization results
for both feature vector types, and the best performance is achieved by using full length vectors. It can be
concluded that the high-IPD features still contain source direction information and, with an appropriate
application, can contribute to the source position estimation in a reverberant environment.
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Figure 9. Comparing the localization accuracy between proposed method and PPAM with different
T60. The angular error tolerance is 2.5◦.

Similar to the previous subsection, the azimuth and elevation estimations are compared separately in
Table 3. In the azimuth comparison, the state-of-the-art method has better performance when using the
ILPD feature vector, which indicates that the high-IPD features are crucial to the proposed method to tackle
the interference caused by reverberation. As for the elevation localization, a considerably better elevation
performance can be obtained by using the proposed methods with both vector types, which proves that
mapping of elevation exploited by the RF algorithm can work well against the reverberate interference.

Table 3. Azimuth and elevation estimation accuracy comparison in reverberate environment.

(a) Azimuth Accuracy Comparison

T60 200 ms 300 ms 400 ms 500 ms

Tolerance ≤2.5◦ ≤5◦ ≤2.5◦ ≤5◦ ≤2.5◦ ≤5◦ ≤2.5◦ ≤5◦

Proposed - FULL 94.32% 97.92% 91.44% 96.72% 89.44% 95.76% 78.88% 89.12%
PPAM - FULL 81.04% 90.64% 79.84% 90.32% 77.84% 88.88% 66.35% 85.76%

Proposed - ILPD 74.24% 84.96% 72.08% 83.28% 66.32% 80.4% 53.04% 74.88%
PPAM - ILPD 86.72% 96.88% 96.40% 77.20% 77.2% 94.96% 58.00% 83.92%

(b) Elevation Accuracy Comparison

T60 200 ms 300 ms 400 ms 500 ms

Tolerance ≤2.5◦ ≤6◦ ≤2.5◦ ≤6◦ ≤2.5◦ ≤6◦ ≤2.5◦ ≤6◦

Proposed - FULL 75.84% 89.04% 68.48% 82.72% 55.52% 72.56% 42.64% 62.80%
PPAM - FULL 26.16% 96.88% 23.92% 40.00% 21.12% 35.52% 14.12% 24.80%

Proposed - ILPD 61.92% 42.64% 53.76% 70.32% 42.08% 61.04% 22.48% 40.24%
PPAM - ILPD 37.36% 61.60% 34.08% 55.44% 28.96% 46.80% 15.68% 28.00%
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7. Experiment in Laboratory Environment

The proposed methods can localize a sound source accurately and robustly based on the
simulation result. However, testing the proposed methods in practical environments remains necessary
because the simulated data are generated based on a mathematical model with several assumptions,
which might be difficult to achieve in a practical environment. Therefore, in this section, the proposed
localization methods are tested with data recorded in a real indoor environment with the existence of
reverberation and background noise.

The experimental evaluation of the localization performance is conducted in an enclosed
laboratory at the Australian National University. A GRAS KEMAR manikin Type 45BA human-like
simulator is used to collect the binaural testing data, which is performed by playing a source signal via
loudspeakers fixed at different directional positions. Two Type 40AG polarized pressure microphones
are placed at the entrance of the ear canal of the dummy head. To test the robustness and practicality
of the proposed method, the testing dataset is collected in a real laboratory environment, while
the training data are synthesized as described in the previous chapters based on the open HRTF
database (i.e., CIPIC database) [24]. Hence, the testing environment is completely unfamiliar to the
localization model, and no prior knowledge about the room acoustical characteristic is learned during
the training process.

7.1. Experiment Facility and Room Configurations

The experiment system can be generally separated into two independent subsystems: the audio
playback system and the binaural signal recording system. The general structure and connection
relationship of the systems is shown in Figure 10, and the setup of the experiment is shown in Figure 11a.
In this system, the source signal is played by the audio playback system via spatially placed loudspeakers.
Then, the emitted signal then propagates through the space and is captured by the recording system.
Notably, The recorded signals are pre-processed and delivered to another computer for the localization.
The later content includes the more detailed configurations of the two systems.

 

Audio Playback System:  

Binaural Recording System:  

Computer A Amplifier  Loudspeaker 

Room 
Filtering 

Dummy Head 
Microphones 

Amplifier  Computer B 
A/D 

Converter  
  

D/A 
Converter  

Figure 10. The experiment outline: The audio playback system and binaural recording system

In the audio playback system, 30 loudspeakers are placed on a regular dodecahedron. The loudspeakers
are fixed on the middle of the edges and face to the center of the dodecahedron, as shown in Figure 11a.
Figure 11b demonstrates the ground truth loudspeaker array placement positions and their corresponding
labels in the Cartesian coordinate system. All loudspeakers are driven by the Dante audio network system,
as shown in Figure 12a, which is controlled by a computer. As for the recording system, the signals are
captured by two Type 40AG polarized pressure microphones planted in the ear canals of the dummy head.
The captured signals are then converted via the U-PHORIA UMC202HD audio interface and transferred to
another computer via a USB connection.
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In the experiment, we first switch on the recording system, and then play the source signal with
one of 30 loudspeakers with selected positions. The signals captured by the recording system are
converted and delivered to the localization systems, and the estimated source location can be obtained.
In such a system setup, the generation of directional audio signal and the process of localization are
physically isolated, so the performance of the localization entirely relies on the recorded signals, and
no prior knowledge about the source signal and environmental acoustic configurations can be obtained
by the localization system. Therefore, the robustness and flexibility of the proposed methods can
be examined.
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Figure 11. The hardware setup and the loudspeaker positions. (a) The loudspeakers are positioned on
the middle of edges of a dodecahedron frame, and the dummy head simulator with two microphones
are placed in the center of the speaker arrays; (b) The ground truth position of sound sources and their
corresponding labels
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Figure 12. System hardware. (a) Dante audio network system; (b) U-PHORIA UMC202HD audio interface.

7.2. Testing Positions and Microphone Data Pre-Processing

As aforementioned, the source signal is played by an array of 30 loudspeakers, so the ground truth
source positions are identical to the locations of the loudspeakers. Figure 11b and Table 4 illustrate the
ground truth positions of loudspeakers represented in the interaural-polar coordinate system with
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the label indices. The testing loudspeaker positions are not presented in the training positions. Thus,
a correct estimation should be the nearest location label to the ground truth. Notably, there are six
loudspeakers placed beyond the training region, which are marked by ∗ in Table 4. Those loudspeakers
are muted during the following tests, since the localization of these speakers is meaningless.

One issue that must be noted is that the impulses of the two microphone channels cannot be
identical in the real world, and small differences lead to inaccuracy in localization. Therefore, in the
binaural recording system, the raw signals captured by the binaural microphones are equalized before
passing to the localization model, which aims at minimizing the amplitude difference between channels.
The equalization is performed by multiplying a generic compen coefficient ζl on the left-ear channel,
and this coefficient is pre-measured in two steps. First, one 2 s white noise signal is played as the source
signal by each loudspeaker, and the captured signals are notated as x1,l,k(t, Θ) and x1,r,k(t, Θ). Second,
the connection of two channels is switched and the same source signals are played by each speaker
again. The signals captured by the switched channel are notated as x2,l,k(t, Θ) and x2,r,k(t, Θ). Ideally,
if the two channels are identical, we would have x1,l,k(t, Θ) = x2,r,k(t, Θ) and x1,r,k(t, Θ) = x2,l,k(t, Θ).
Therefore, the estimated left-ear compensation coefficient ζ̂l can be estimated by averaging all frames
and positions as:

ζ̂l = ∑
k,Θ

[ x2,r,k(t, Θ)

x1,l,k(t, Θ)
+

x1,r,k(t, Θ)

x2,l,k(t, Θ)

]
(20)

and hence, the binaural signals for To are calibrated by,

xl(t, Θ) = ζ̂l · x1,l,k(t, Θ)

xl(r, Θ) = x1,r,k(t, Θ)
(21)

Given that the calibration is applied on the left channel for all source positions in the time domain, it is
spatial and frequency independent, and does not introduce external information to estimate the sound
source position.

7.3. Experiment Result

The localization performance of the probabilistic model is demonstrated in Table 4. The localization
tests are repeated 10 times, and, in each test, the random selected speech utterances (around 1 to 2 s
per utterance) are played as the source signal through the first 22 speakers. The results justify that the
model can effectively localize the source positions. The azimuth localization is very accurate, since the
model returns the nearest azimuth class to the ground truth position. Although the accuracy of elevation
localization is degraded compared with the simulation results in the previous chapters, the absolute
angular error remains around 10 degrees, which corresponds to around 17 cm differences with a 1 m
source distance. Several factors may cause the decreasing of localization accuracy. One obvious cause is
the difference of HRTF between the CIPIC database and the used dummy head. Those differences could
result from assembling the dummy head in practice, which would affect the features in a high-frequency
region. This issue could be resolved by replacing the training data with measured HRTFs of the subject
being used. In addition, the reflections from objects in the laboratory may interfere with the localization,
since there are no de-reverberation operations during testing. Notably, the localization error of those
out-of-range speakers that marked by ∗ is comparably larger to the other positions, because the labels
of those out-of-range positions are not exist in the training dataset. However, if we carefully look into
those localization results, the estimated azimuths of their sagittal planes are correct, and the results are
suffer from the up-down confusion not front-back confusion. The up-down confusion indicates that
the proposed model pinpoints the positions who share the most similar features with those unknown
out-of range positions. Furthermore, these results also justify that the proposed model can use the other
positions’ features to help distinguish the front and back for the unfamiliar positions, like the blocking
effect of the external ears.



Appl. Sci. 2019, 9, 2682 21 of 23

Table 4. To performance of the passive model. The ground truth loudspeaker locations are represented
in ΘIP.

Loudspeaker No. True Azimuth True Elevation Estimated Azimuth Estimated Elevation Estimated Error

1 −18.00◦ 63.44◦ −22.00◦ 81.68◦ 35.25◦

2 18.00◦ 63.44◦ 20.00◦ 67.50◦ 4.33◦

3 30.00◦ 100.82◦ 30.00◦ 71.43◦ 31.53◦

4 0.00◦ 121.72◦ −5.00◦ 123.75◦ 2.03◦

5 −30.00◦ 100.82◦ −30.00◦ 84.38◦ 14.04◦

6 0.00◦ 31.72◦ 0.00◦ 33.75◦ 2.03◦

7 54.00◦ 63.44◦ 55.00◦ 60.19◦ 3.56◦

8 30.00◦ 142.62◦ 30.00◦ 140.63◦ 1.73◦

9 −30.00◦ 142.62◦ −30.00◦ 135.56◦ 6.11◦

10 −54.00◦ 63.44◦ −55.00◦ 59.06◦ 2.82◦

11 −18.00◦ 0.00◦ −20.00◦ 0.00◦ 2.00◦

12 18.00◦ 0.00◦ 19.50◦ 10.69◦ 11.88◦

13 54.00◦ 0.00◦ 55.00◦ 0.00◦ 1.48◦

14 90.00◦ 0.00◦ 80.00◦ −39.94◦ 10.00◦

15 54.00◦ 180.00◦ 55.00◦ 194.06◦ 9.61◦

16 18.00◦ 180.00◦ 20.00◦ 177.75◦ 3.47◦

17 −18.00◦ 180.00◦ −18.00◦ 157.50◦ 24.36◦

18 −54.00◦ 180.00◦ −55.00◦ 182.81◦ 2.21◦

19 −90.00◦ 0.00◦ −80.00◦ −39.94◦ 10.00◦

20 −54.00◦ 0.00◦ −55.00◦ 1.69◦ 2.69◦

21 −30.00◦ −37.38◦ −30.00◦ −38.81◦ 1.87◦

22 30.00◦ −37.38◦ 30.00◦ −33.75◦ 3.14◦
23 ∗ 54.00◦ 243.43◦ 55.00◦ 168.75◦ 41.26◦
24 0.00◦ 211.74◦ −5.00◦ 219.38◦ 9.14◦

25 ∗ −54.00◦ 243.43◦ −55.00◦ 101.25◦ 66.65◦
26 ∗ 0.00◦ −58.29◦ 0.00◦ −33.75◦ 24.54◦
27 ∗ 30.00◦ −79.19◦ 30.00◦ 73.13◦ 114.47◦
28 ∗ 18.00◦ 243.43◦ 20.00◦ 196.88◦ 43.93◦
29 ∗ −18.00◦ 243.43◦ −20.00◦ 157.50◦ 80.27◦
30 ∗ −30.00◦ −79.19◦ −30.00◦ −33.75◦ 39.08◦

∗ indicates the indexes of out-of-range speakers.

8. Conclusions

We have proposed a novel elevation localization model for binaural localization based on the RF
algorithm. The algorithm operates on the interaural features—such as ILD and IPD—in the spectral domain.
During the training process, the RF algorithm successfully selected the most reliable feature of a spectrum
by using information gain, and constructed the elevation-dependent mappings simultaneously based on
its selections for each sagittal plane. In the testing, the multi-tree structure showed robustness to additive
noise and flexibility to an unfamiliar acoustical environment. Further, a hierarchical localization system
was also proposed for 3-D space localization, which achieved outstanding localization performance in the
simulation. The proposed method is also tested in a real laboratory environment, and the result justifies
the effectness of the model.
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