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Featured Application: The proposed method in this paper is widely applied to the field of fault
diagnosis of rotating machinery.

Abstract: Aiming at the problem of poor robustness of the intelligent diagnostic model, a
fault diagnosis model of rolling bearing based on a multi-dimension input convolutional neural
network (MDI-CNN) is proposed. Compared with the traditional convolution neural network,
the proposed model has multiple input layers. Therefore, it can fuse the original signal and processed
signal—making full use of advantages of the convolutional neural networks to learn the original
signal characteristics automatically, and also improving recognition accuracy and anti-jamming ability.
The feasibility and validity of the proposed MDI-CNN are verified, and its advantages are proved
by comparison with the other related models. Moreover, the robustness of the model is tested by
adding the noise to the test set. Finally, the stability of the model is verified by two experiments.
The experimental results show that the proposed model improves the recognition rate, robustness and
convergence performance of the traditional convolution model and has good generalization ability.
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1. Introduction

Rotating machinery is the most critical component in mechanical equipment, and it is widely used
in industrial production equipment [1]. Since rolling bearings are one of the most common structures
in rotating machinery, the slight defects of rolling bearings may lead to the failure of the whole system
and cause severe financial losses [2]. Therefore, it is of great significance to study the fault diagnosis of
rolling bearings [3–7].

In view of bearing fault diagnosis, after a long period of exploration and research, many scholars
have proposed various model-based methods [8]. Feature extraction and recognition [9] are the two
most important processes in a diagnostic model. Generally, the main purpose of feature extraction
is to extract the representative features, including the time domain features (kurtosis [10], crest
factor [11], characteristic waveform [12], etc.), frequency domain features (Fourier transform [13], etc.),
and time-frequency domain features (wavelet packet [14], empirical mode decomposition (EMD) [15,16],
etc.). Then, the extracted features are entered into classification algorithms, such as support vector
machines (SVM) [17] and artificial neural networks (ANN) [18].

As for the fault diagnosis of bearings, Ali et al. [19] applied the EMD to extract the time-frequency
domain features, and a back propagation (BP) neural network to identify the faults. Muhammet et al. [20]
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proposed a novel model based on the Hilbert-Huang transform (HHT) and ANN, and obtained good
performance in fault diagnosis. Xie et al. [21] suggested a bearing condition monitoring method based on
EMD and SVM, which improved the accuracy of diagnosis. However, there are still some drawbacks to
the fault diagnosis methods mentioned above: (1) Statistical parameters need to be extracted manually,
and the professionalism of signal analysis and the importance of prior knowledge lead to poor model
versatility to a large extent; (2) feature extraction process can result in loss of information; and (3) the
classification model is shallow, so it is difficult to meet the requirements for diagnostic accuracy and
robustness of complex mechanical systems. Therefore, an adaptive extraction and classification of features
and reduction of the reliance on expert knowledge have gradually become a research hotspot in the
fault diagnosis field. Many fault diagnosis models based on deep learning, which made full use of
the advantages of deep network with the internal characteristics of automatic learning data, have been
proposed [22–26]. Jia et al. [24] proposed a model based on a deep neural network (DNN), which overcame
the shortcomings of the traditional diagnostic models and verified the effectiveness of DNN in the fault
diagnosis field by using the data sets of rolling bearings and planetary gearboxes.

A convolutional Neural Network (CNN), as a typical deep learning method, is widely used
in the field of pattern recognition. Wei et al. [27] suggested an intelligent diagnosis method for
transmission line based on a CNN, which improved fault classification accuracy. Compared with
other deep learning algorithms, CNNs have three advantages: Local feeling field, weight sharing,
and pooling, which greatly reduce network complexity and risk of over-fitting. The input data of
a CNN model can be divided into two categories, processed data and raw data. By processing
of the original data, Fourier transform data [28], envelope spectrum data [29], and wavelet packet
data [30,31] can be used as input data of CNN model. Although these models can achieve effective
classification results, there are still some drawbacks: (1) Signal processing can result in information
loss that can have an impact on diagnostic results, making an adaptive feature extraction function of
CNN model not fully utilized [32,33]; and (2) the choice of a signal processing method has a great
influence on diagnosis results. Therefore, the present trend is to use raw data as an input data of
a CNN model. Wen et al. [34] suggested a signal-to-image conversion method that converted raw
signals into two-dimensional (2D) images and then entered the obtained 2D images into the CNN
model. Diagnostic performance was improved compared to other CNN methods. It is worth noting
that there was no spatial relationship between the dimensions of 2D images. In [35–38], the authors
developed a one-dimensional convolutional neural network (1D-CNN) model using the original signal
as an input data of a CNN. These methods not only eliminated the signal processing process, but also
greatly reduced model complexity. However, due to the use of the original signal as an input data,
the 1D-CNN model has a great sensitivity to the noise, so it cannot be used in the case of complex and
changeable noise interference in the actual production process.

In this paper, a novel intelligent fault diagnosis model, named the multi-dimension input
convolutional neural network (MDI-CNN), is developed. The proposed MDI-CNN has multiple input
layers so that the raw data can be entered into the model, together with the processed data to extract
and identify fault features. Besides, by comparing with the other CNN models, it is proved that the
proposed model has higher validity and robustness.

The main contributions of this paper can be summarized as follows.
(1) Comparing to the traditional CNN, a fusion model is proposed to achieve an effective fusion

of different data types; the proposed model has multiple input layers which allows combining the
benefits of each signal processing and improving the model generalization ability.

(2) The input dataset can contain both raw data and data obtained after the signal processing,
which not only can improve the characteristics of the original signal, but also make full use of the
advantages of the processed data in terms of clustering and anti-jamming ability; thus, the robustness
and the convergence speed of the model are improved.

(3) A verification scheme is proposed to verify the validity of the proposed model, which makes
the robustness and generalization performance also be validated.
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This paper is organized as follows: Section 2 briefly introduces the basic theoretical basis of
CNNs. Section 3 proposes the MDI-CNN model and introduces its principle. Section 4 introduces the
evaluation index and the verification scheme of the proposed model. Section 5 presents the performance
of the proposed model is verified by two sets of comparison experiments and analyzes and discusses
the experimental results in detail. Section 6 provides our conclusions, and future work guidelines.

2. Basic Theory of the CNN

A CNN is a typical feedforward neural network, which is mainly composed of convolution layer,
pooling layer, and fully connected layer. The essence is to extract the characteristics of input data
by establishing multiple filters that are used to extract the topological features from the input data
through the convolution and pooling operations. In recent years, the CNNs have performed well in
image recognition and target detection tasks, and also have been able to deal with the fitting problems
well; thus, the deep learning has been developing rapidly.

In a convolutional layer, the feature map of the previous layer is a convolution with the
convolutional kernels, and the nonlinear activation function constructs the output feature map.
The calculation process can be expressed as:

Xl
j = f

∑
i∈M j

Xl−1
i ∗wl

i j + bl
j

 (1)

where M j is a set of input feature map, l denotes the lth layer, Xl−1
i denotes the ith input feature map of

the (l− 1)th layer, wl
i j denotes the convolutional kernel which connects the ith input feature map with

jth feature map, b denotes the bias, Xl
j denotes the jth input feature map at lth layer, f (·) is a nonlinear

activation function, and lastly, ∗ stands for the convolution operation.
The nonlinear activation function used in a neural network can be a rectified linear units (ReLU),

a sigmoid function, and a hyperbolic tangent function. By considering the factors, such as gradient
disappearance and calculation cost, this paper selects the ReLU activation function, which is defined as:

f (x) = max(0, x) (2)

The pooling layer is used to reduce the dimension of the input feature map, which can reduce the
parameters of the whole network, effectively reducing the over-fitting and the amount of calculation.
The calculation process of the pooling layer is given by:

Xl
j = f

(
βl

j · down
(
Xl−1

j

)
+ bl

j

)
(3)

where β and b are the multiplicative bias and additive bias, respectively, down(·) denotes a subsampling
function, and down(·) mainly includes average pooling function, max-pooling function. After pooling
operation, the number of feature maps has not changed, but the scale of feature maps shrinks a certain
multiple which is determined by the pool factor size.

The fully connected layer converts the feature map into a one-dimensional feature vector that is
entered into the classifier. In addition, the loss function includes mean-squared error, cross-entropy,
logarithmic is significant to the CNN performance. In this paper, the cross-entropy cost function is
used, which is defined as:

E = −
1
m

m∑
k=1

(
yn

k ln lnk +
(
1− yn

k

)
ln

(
1− lnk

))2
(4)

where m denotes the number of samples, l and y denote the predicted value and real value of a
sample, respectively.
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The network parameters are updated using the BP algorithm by calculating the gradient of the
weight loss function of all the CNN layers. The objective is to minimize the loss function value by
reducing the contributions of network parameters [36].

3. The Proposed Method

Due to the CNN powerful adaptive feature extraction ability for a raw signal, the combination
of raw data and CNN has been employed in machinery fault diagnosis. However, the operation
process of mechanical equipment is complex, and signal acquisition is often disturbed by the noise,
so, the model may not perform well. Therefore, it is necessary to process a raw signal to reduce the
sensitivity to the noise. It is worth considering that some information can be lost after the signal is
processed; thus, the choice of signal processing algorithm is very important.

To solve the problems listed above, Guo et al. [37] proposed a multiscale convolutional neural
network (MSCNN) architecture to learn the high-level robust and useful fault features at different time
scales automatically directly from the complex raw vibration signals in a parallel way through the
hierarchical learning. To a certain extent, the influence of high-frequency vibration and random noise
on the model was reduced. However, there were some drawbacks, a raw signal was processed through
low-pass filtering, the number of layers had the opposite effect on the training time and precision,
and data distribution was imbalanced in the fault diagnosis field.

In order to give full play to the ability of CNN model to extract signal features, we combine
the advantages of raw data and processed data and improve the anti-jamming ability, proposing a
variant of the 1D-CNN called the MDI-CNN for fault diagnosis based on the intelligent fusion of
multi-input layer. The structure of the developed fault diagnosis network is shown in Figure 1, wherein
it can be seen that at the front end, multiple input layers are constructed to fuse different data types.
The input dataset can contain both raw data and processed data, which provides rich fault features at
different scales.

Figure 1. The structure of the Multi-Dimension Input convolutional neural network. C1 and C2
represent the convolutional layer 1 and convolutional layer 2, respectively, and P1 and P2 represent the
pooling layer 1 and pooling layer 2, respectively.

In the MDI-CNN network model, the ReLU function is applied as an activation function,
the maximum pooling function is used to realize the reduction of a feature map, and the Softmax
classifier is used to output the target category. In addition, cross entropy is used as a loss function to
optimize network parameters.

Generally, the proposed model consists of three stages: A multiple data fusion stage, a feature
extraction stage, and a classification stage. In the multiple data fusion stage, multiple data types
are entered into the model through multiple input layers, and data fusion is performed at the first
convolutional layer. In the feature extraction stage, the fused data is processed into a feature map
through continuous convolutional and pooling operations, which can be regarded as signal fault
characteristics. Finally, the feature maps are classified by classifier functions in the classification
stage. The data fusion stage, which is an innovation point of the proposed model, is introduced in
the following.
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3.1. Data Fusion in MDI-CNN

Due to the impact of the environment noise, a raw signal needs to be processed before it can
be entered into the traditional diagnostic model. However, diagnostic results are dependent on the
selection of spectrum analysis method. In view of that, the MDI-CNN model extracts and fuses fault
information of different dimensions through multiple input layers. The MDI-CNN is mainly composed
of multidimensional matrix construction, initial feature extraction, and fusion model import.

In the first stage, a series of samples from different input layers are fed into the network model
and then combined into a multidimensional sample matrix. After the convolution operations are
performed in each dimension of the sample matrix, the multidimensional feature map matrix is fed to
the next stage. Finally, the feature values at the same position in each dimension are fused through the
fusion model. There are many types of data fusion methods, such as the algebraic method, principal
component transformation (PCT), Bayes estimation method, and others. In this paper, the weighted
fusion model based on the algebraic method is used for data fusion. The fusion model is defined as:

F = q1F1 + q2F2 + · · ·+ qnFn (5)

where Fn denotes the nth feature value, and qn denotes the nth weight coefficient.
The fusion model has three advantages. First, the original signal can be processed by a variety

of signal processing methods, and then all the results can be entered into the model together, which
enhances model generalization ability. Second, instead of a single input layer, the MDI-CNN has
multiple input layers, which not only enhances the ability to extract features, but also reduces the
computation burden. Third, the model convergence speed is accelerated, due to the use of processed
data that has a strong clustering compared to raw data. The general steps of the fusion model are
described as follows.

Step 1: For an input layer {i, Li}(i = 1, 2, · · ·, n), a multidimensional data matrix is defined as
L = {L1, L2, · · ·, Ln}, where Li denotes the ith layer of input data, and n denotes the number of model
input layers.

Step 2: Enter the ith data matrix Li into the initial convolution layer of the CNN model. After the
convolution operation, the feature map Fi is obtained.

Step 3: Add a weight coefficient to each feature map. In the output position of the convolution
layer, the final input of the feature map is defined as F = q1F1 + q2F2 + · · ·+ qnFn.

3.2. General Procedure of the Propose Method

In this article, an intelligent diagnostic model called the MDI-CNN is proposed, and the entire
process of the proposed method is described as below:

Input: Sample Set, Network parameters
Initialize network structure

While
Termination condition is not valid
1. Perform feature extraction and fusion in the convolutional layer
2. Perform dimension reduction of a feature map in the pooling layer
3. Input the feature map into the last fully connected layer, and use a Softmax activation function

to obtain classification probability value
4. Calculate the loss function value and update parameters using the BP algorithm

End while
Input test set into the trained model to determine model accuracy
Output: Predictive results for samples from test set
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4. Evaluation Metrics and Validation Scheme

4.1. Evaluation Metrics

In order to evaluate the effectiveness of the proposed model, different evaluation indicators were
used, including the accuracy, confusion matrix, and feature visualization. For a fault diagnosis problem
of multiclass classification, the accuracy score [39,40] was used, which is a common, comprehensive
metric for measuring the performance of classification methods, and it is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

The specific meaning of TP, FP, TN, and FN is given in the following:

• TP indicates that a true positive is correctly classified as a positive sample.
• FP indicates that a false positive is misclassified as a positive sample.
• TN indicates that a true negative is correctly classified as a negative sample.
• FN indicates that a false negative is misclassified as a negative sample.

Accuracy is one of the important indexes that reflect model performance. The evaluation metrics
regarding TP, FP, TN, and FN are components for creating the confusion matrix, as shown in Table 1.
The feature extraction performance of the proposed model was evaluated by the visualization method
of the t-distributed stochastic neighbor embedding (t-SNE).

Table 1. The model of the confusion matrix.

Actual Value
Predicted Value

Label 1 Label 2

Label 1 TP FP
Label 2 FN TN

4.2. Validation Scheme

In this work, we built a CNN model with three input layers in which the raw data was used as
the input data of the first layer. Spectrum data and envelope data were selected and used as input
data of the second and third layers, respectively. We chose two types of rolling bearing datasets
for our experiment to test the validity of the proposed MDI-CNN model. In addition, in order to
verify model robustness, we employed a method that mixed the original signal with the Gaussian
noise. The flowchart of the validation method is presented in Figure 2. The general process can be
summarized as follows.

1. The original signal and the noisy signal that was obtained by mixing the original signal with
Gaussian white noise, were processed by the fast Fourier transformation (FFT) and envelope
spectrum analysis (ESA) to form the dataset A and dataset B, respectively. 87.5% of a sample in a
randomly selected dataset consists of a training set, and the remaining samples are composed of
a test set.

2. The network parameters, including w, b, number of iterations numepochs, number of batch
processing batchsize, learning rate alpha, and weight coefficient q, were initialized.

3. The training set A was entered into the CNN model in batches for adaptive extraction of signal
characteristics. The error between the predicted and actual values after the forward propagation
was calculated. The error was then propagated in reverse direction by the BP algorithm in order
to update the network parameters A and B layer by layer until the end of the iteration.

4. Test datasets A and B were entered into the trained MDI-CNN model to verify the validity and
robustness of the model.
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5. The training set B was fed into the trained MDI-CNN model for incremental training. Finally,
generalization performance was validated by entering test dataset B again into the model.

Figure 2. The flowchart of the validation method for the MDI-CNN model. Accuracy 1 and Accuracy 2
represent the classification accuracy obtained by entering normal test samples and test sample containing
the noise into the trained MDI-CNN, respectively, and Accuracy 3 indicates the classification accuracy
of the model after the incremental training on the noisy test samples. MDI-CNN, Multi-Dimension
Input convolutional neural network; FFT, Fourier transformation; ESA, envelope spectrum analysis.

5. Experimental Results and Discussion

The MDI-CNN was implemented by using MATLAB 2018a programming program, and it was
run on a personal computer with a 2.6GHz CPU, inter-core i5-3230m and 8GB RAM. The computer’s
system is Win10 64-bit.

5.1. Experiment 1

This section validates the effectiveness of the proposed method. In this experiment, the dataset
was provided by the bearing data center of the Case Western Reserve University (CWRU). In addition,
the robustness experiment was carried out by adding the noise artificially.

5.1.1. Description of Experimental Data

The CWRU dataset [41] represents a standard dataset for bearing fault diagnosis. The bearing test
rig which, was used as an experimental device, mainly consisted of a 2hp motor, a power meter, a
torque sensor, and an electronic control device, as shown in Figure 3. The bearing model was SKF6205,
the roller diameter was 7.5 mm, the diameter of the section was 39 mm, the number of rollers was
9, and the contact angle was 0 degrees. The bearing had been machined by the Electric Discharge
Machining (EDM) with three kinds of defect positions, namely rolling element damage, outer race
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damage, and inner race damage. The size of the damage diameter was 0.007 inches, 0.014 inches,
and 0.021 inches, and three were a total of nine damage states.

Figure 3. Image of the bearing test rig.

In Experiment 1, the data of the bearing at the driving end was selected as the test data when the
load was 1 hp, and the sampling frequency of the system was 12 kHz. In order to optimize the network
training process, each signal was normalized. As shown in Figure 4, the data augment algorithm was
used to carry out the overlapping sampling of samples to increase training samples, and, thus, enhance
the generalization ability of the deep neural network.

Figure 4. The method of data augment.

Table 2 shows the composition of the test dataset, which had a total of 10 different fault types, 2000
samples for each fault type, and a total of 20,000 samples. A training set of 1750 samples was randomly
selected from each fault type sample set, and the remaining 250 samples constituted the test set.

Table 2. The experimental data.

Damage Position None Scroll Body Inner Ring Outer Ring

Label 0 1 2 3 4 5 6 7 8 9
Damage diameter/inch 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021

Training set 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750
Test set 250 250 250 250 250 250 250 250 250 250

The determination of proper CNN structure and network parameters depends to a large extent on
experience. According to the previous research results, the fault diagnosis model of rolling bearing
based on the MDI-CNN had a three-input-layer structure, and the input data of the three layers was
respectively the original signal data, the fast Fourier transform data, and the envelope spectrum
analysis data. The number of network layers in the model was equal to two, and the number of neurons
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per layer was six and twelve, respectively. Each layer contained a convolution layer and a pooling
layer. The final model parameters after many comparison tests are shown in Table 3.

Table 3. The MDI-CNN parameters; numepochs denotes the number of iterations of the model,
batchsize denotes the number of samples processed per batch by the model during the batch training,
and alpha denotes the learning rate.

Parameter Name C1 Layer P1 Layer C2 Layer P2 Layer Spacing

Parameter value 25× 1 8× 1 20× 1 4× 1 59
Parameter name numepochs batchsize alpha q1, q2, q3 Number of neurons
Parameter value 5 50 0.05 (1, 1, 1) (6, 12)

5.1.2. Performance Comparison and Discussion

The effectiveness of the MDI-CNN was validated by comparing the proposed model with other
models, including the ordinary CNN (2D-CNN) model and 1D-CNN model. In the comparison process,
the input data of the 1D-CNN model was an original one-dimensional signal, which was mapped to
the two-dimensional matrix as the input of the ordinary CNN model. In the 2D-CNN, the number
of neurons was not changed, the convolution kernel was 5 × 5, and the scale of the pool was 2 × 2.
The 1D-CNN model parameters were the same as of the MDI-CNN.

The test results of the methods after twenty iterations are shown in Figure 5, where it can be seen
that the training error of the MDI-CNN model was reduced to almost zero when the model reached the
convergence condition after a 1000-step training, while the other two models still had the fluctuating
training errors after completing 20 iterations. Thus, the MDI-CNN model improved the convergence
speed of the CNN model, reducing the training time.

Figure 5. The training errors.

The accuracy of the three different models on the test set is shown in Figure 6. The results show
that the fault recognition rate of the MDI-CNN model reached 99.96% after training, which proved
that the proposed model was feasible and effective, and had high accuracy.
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Figure 6. The accuracy of different models.

In order to present more clearly the recognition results of the MDI-CNN in each category of the test
set, the confusion matrix was introduced to analyze the experimental results in detail. The results are
shown in Figure 7, where the correct classification and error classification for each label are presented.
In Figure 7, the horizontal coordinate represents the predicted label, and the vertical coordinate
represents the actual label. Only 0.4% of samples of the label 3 in the test set was incorrectly identified
as label 2, the rest of the samples were correctly classified, and eventually, the overall accuracy was
99.96%.

Figure 7. Confusion matrix results with MDI-CNN.

In order to further verify the learning ability of the MDI-CNN model for different feature categories,
the dimension reduction algorithm of the t-SNE was used for feature visualization. The result of
feature visualization of the raw samples and fully connected layer samples are presented in Figure 8.
In Figure 8, it can be seen that the original signal was so redundant that it was difficult to distinguish
between the categories. After the adaptive feature extraction of the MDI-CNN model, ten categories of
samples were completely distinguished without intersecting the heterogeneous samples, which was
consistent with the classification results of the proposed model.
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Figure 8. Feature visualization of different samples. (a) The raw samples. (b) Fully connected
layer sample.

Furthermore, the MDI-CNN model was compared with the models presented in the related
literature which use the CWRU bearing database. Table 4 shows the classification accuracy of different
models. The comparison results show that the recognition rate of the traditional diagnostic model
varied significantly, which was because of the need to extract the fault characteristics artificially. Due
to the CNN advantages in adaptive extraction of raw signal features, the classification accuracy of the
CNN-based intelligent diagnostic model was generally high. In the literature [18], it can be seen that
the fault characteristics of the data after spectral analysis were more prominent, so that the CNN model
based on time-frequency analysis achieved a significant improvement in the recognition rate. In [31],
it could be seen that the fault characteristics of the data after spectral analysis were more obvious; thus,
the CNN model based on time-frequency analysis had a significant improvement in the recognition
rate. The STFT-CNN model [7] achieved an accuracy rate of 99.87%. However, the two-dimensional
spectral analysis data would cause some unsatisfactory results, such as the structural redundancy of
the network, slow convergence speed, and long training time. In addition, an appropriate selection
of a transformation method would result in the loss of information. The 1D-CNN model has been
proven to be a good solution to these problems. In [23], the authors used the original signal as the
input data of the 1D-CNN model, and a good classification effect was obtained, while the number
of iterations was reduced. However, the original signal had a great sensitivity to the noise, which
made it difficult for the 1D-CNN model to adapt to the complex and changeable noise interference
in the actual production process. The model proposed in this paper represents a good combination
of the advantages of the above two models, the original signal as the first layer of input data, while
adding a number of spectral analysis data input layer, so in the case of short training time, it has a high
recognition accuracy and robustness.

Table 4. Classification accuracy of different models.

Algorithm Model Number of Epochs Accuracy (%)

FFT-SVM - 84.20
Wavelet-ANN - 88.54

EMD-ANN - 96.24
DWT-CNN [39] 60 99.80
PSO-CNN [31] 20 92.84

WP-PSO-CNN [31] 20 99.71
STFT-CNN [7] 16 99.87
ACNN-FD [42] 12 99.40

MDI-CNN 5 99.96
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Next, the robustness of the proposed model was validated. The test set B was mixed with different
SNR noise and then fed into the MDI-CNN model trained with the training set A, and the obtained
classification results are shown in Figure 9. In Figure 9, it can be seen that with the increase in the noise
signal strength, the recognition accuracy of all the models decreased, among which the classification
accuracy of the 1D-CNN and 2D-CNN models significantly decreased when the fault signals mixed
with noise were identified. The recognition rate of the proposed model was better than that of the
other two models.

Figure 9. Testing diagnosis results of different models under different noise intensity.

The incremental training was carried out by entering the training set B containing the noise into
the MDI-CNN trained by the training set A to extract the fault characteristics that were not sensitive to
the noise. After ten tests, the identification results of the three models are shown in Figure 10.

Figure 10. Testing the accuracy of MDI-CNN after incremental training.

The comparison showed that the proposed model achieved a high recognition rate under
the interference of high-intensity noise, which was better compared with the other two models.
The recognition accuracy of the proposed model was further improved by the incremental training,
which verified that the fault diagnosis model based on the MIL-CNN had high robustness and
generalization ability.
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5.2. Experiment 2

In Experiment 1, the validity and robustness of the proposed model were verified by using the
open database data. In order to verify the stability of the MDI-CNN, in Experiment 2, the experimental
platform for fault diagnosis of rotating machinery was selected to conduct the bearing failure experiment.

5.2.1. Description of Experimental Data

Figure 11 shows a schematic diagram of the experimental platform, where the motor is denoted
as O, and A and B denote two deep groove ball bearings of type 63,701 × 3. The sampling frequency
of the system was 15.3 kHz, and the measuring point was in the vertical direction of B. The bearing
was artificially machined into seven faults, including outer race damage, inner race damage, rolling
element damage, inner and outer race damage, outer race and rolling element damage, inner race and
rolling element damage, inner and outer race and rolling element damage; the time-domain signal for
all the fault types is shown in Figure 12.

Figure 11. Schematic diagram of the experimental platform.

Figure 12. The time-domain signal for different fault types.

The dataset was expanded by the data augment algorithm with the step length of 300. In the end,
there were 2000 samples for each fault type, of which 1750 samples were randomly selected as training
samples, and the rest were used as test samples. In addition, the robustness of the model was tested by
adding the noise of different intensity to the original vibration signal.
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5.2.2. Performance Comparison and Discussion

Figure 13 shows the recognition accuracy for different test sets for different CNN models.
In Figure 13, it can be seen that the accuracy of the three models had hardly changed under the
interference of a low-intensity noise. When the noise intensity increased to −10 dB, the MDI-CNN
still had a high recognition accuracy of 95.5%, but the accuracy of the other two models decreased,
and it was up to about 50%. Thus, it can be concluded that the MDI-CNN model had great advantages
regarding the recognition rate and robustness compared with the other two models.

Figure 13. Testing diagnosis results of different models under different noise intensity.

In order to explain the result clearly, the feature visualization of the sample was carried out.
In Figure 14, the FFT samples and ESA samples, which were obtained by signal processing of the
noisy samples, are presented. Compared with the original samples, the features of the noisy samples
were more confusing; thus, the recognition rate of the three models for the noisy test set was reduced.
Because of the good clustering of FFT samples and ESA samples, the accuracy of the MDI-CNN model
was better than of the other two models. Therefore, it can be concluded that the MDI-CNN model has
good robustness because of a good inhibitory effect of spectrum analysis on noise.

Figure 14. Feature visualization of different samples. (a) Feature visualization of raw samples; (b)
Feature visualization of noisy samples; (c) Feature visualization of FFT samples; (d) Feature visualization
of ESA samples.
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In order to prove the performance advantage of the MDI-CNN model more accurately, a
comparison was carried out between the proposed method and another model, using the raw data,
the FFT data, and the ESA data as input data of the 2D-CNN and 1D-CNN, respectively. Table 5 shows
the comparison results, where it can be seen that the proposed model had certain advantages, both
regarding the recognition rate and the robustness.

Table 5. Diagnosis results of different models.

Model Training Set Number of Epochs SNR of Noise in
Test Set Accuracy (%)

2D-CNN

Two-dimensional
raw data

20
None 93.85
−10 dB 48.35

Two-dimensional
FFT data

10
None 99.00
−10 dB 75.40

Two-dimensional
ESA data

10
None 97.50
−10 dB 59.85

1D-CNN

One-dimensional
raw data

20
None 96.15
−10 dB 54.35

One-dimensional
FFT data

10
None 99.85
−10 dB 94.10

One-dimensional
ESA data

10
None 96.50
−10 dB 57.55

MDI-CNN Raw data, FFT data,
ESA data

5
None 99.95
−10 dB 95.50

Hence, the following conclusions can be drawn: (1) The accuracy and robustness of the 2D-CNN
and 1D-CNN models were improved by using the FFT data and ESA data as input data; (2) compared
with the ESA data, the FFT data was less sensitive to the noise; and (3) the improvement effect of the
ESA data on the recognition accuracy and robustness was less obvious than of the FFT data; in other
words, differently processed data had different effects on model performance.

The MDI-CNN achieves better stability and generalization performance by using multiple input
layers to achieve effective fusion of multidimensional data.

6. Conclusions and Future Work

In this paper, a novel method named the MDI-CNN that fuses the multidimensional input data is
proposed for fault diagnosis. The main advantage of the proposed model is the feature learning of
multidimensional data by introducing a fusion model into the traditional CNN. Due to using multiple
input layers, the proposed model can extract the features directly from the original vibration signal and
avoid information loss. However, it can also automatically and effectively learn complementary and
rich fault features of different data types directly from a signal using the multiple input layers, which
greatly enhances the ability of feature extraction and fault recognition. In this paper, two experiments
with rolling bearings are presented to verify the performance of the proposed model. Based on the
experimental results, the following conclusions can be drawn:

• Compared with the traditional CNN model, the proposed model converges more quickly, has
shorter training time, and achieves very good results in mixed fault identification;

• The environmental noise seriously affects the recognition accuracy of the intelligent diagnostic
model, and the proposed model can reduce the influence of noise on the recognition results.
By using the noise data for incremental training, the fault recognition accuracy of the model is
obviously improved;
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• Different data processing methods have different effects on diagnosis results of the traditional CNN
models. The proposed model can fuse a variety of data and has high fault recognition accuracy,
convergence, robustness, and generalization ability, providing a new method for real-time fault
monitoring of mechanical equipment.

However, two issues need to be addressed in our future work. (1) In the experiments, the weight
coefficient of the fusion model was artificially set to a constant value of one, and the other cases
were not discussed. (2) The experimental data were collected in a stable environment, and then the
Gaussian white noise was added artificially to the original signal to test the model sensitivity to the
environmental noise. However, in the actual machining, the environmental noise is complex and
changeable, which is very different from the Gaussian white noise.

Accordingly, in our future work, we will consider using an optimization algorithm to select the
parameters for weight coefficients of the fusion model; also, we will collect the fault data in the actual
machining environment to evaluate further the accuracy and robustness of the proposed model.
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