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Abstract: Fused filament fabrication (FFF) is commonly employed in multiple domains to realize
inexpensive and flexible material extrusion systems with thermoplastic materials. Among the
several types of thermoplastic materials, polylactic acid (PLA), an environment-friendly bio-plastic,
is commonly used for FFF for the sake of the safety of the manufacturing process. However, thermal
degradation of three-dimensionally (3D)-printed PLA products is inevitable, and it is one of the
failure mechanisms of thermoplastic products. The present study focuses on the thermal degradation
of 3D-printed PLA specimens. A classification methodology using artificial neural networks (ANNs)
based on Fourier transform infrared (FTIR) and was developed. Under the given experimental
conditions, the ANN model could classify four levels of thermal degradation. Among the FTIR
spectra recorded from 650 cm−1 to 4000 cm−1, the ANN model could suggest the best wavenumber
ranges for classification.

Keywords: material extrusion; polylactic acid (PLA); thermal degradation; Fourier transform infrared
(FTIR); artificial neural networks (ANNs)

1. Introduction

Additive manufacturing or three-dimensional (3D) printing is widely used in several industrial
areas such as automotive, aerospace, mechanical, medicine, biological systems, and food supply
chains [1]. Based on 3D CAD data, additive manufacturing can be used to fabricate complex geometries
economically with a wide variety of materials. Polymers are the most commonly used materials
in the 3D printing industry owing to their diversity and ease of adaptation to different 3D printing
processes [2]. Typically, polymers are available in the following forms: thermoplastic filaments,
reactive monomers, resin, and powder [3]. However, a major disadvantage associated with polymers
is the generation of toxic materials, such as volatile organic compounds and ultrafine particles,
during 3D printing. Wojtyla et al. [4] studied the toxicity of 3D printing. They investigated four
thermoplastics, namely, acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA), polyethylene
terephthalate (PET), and nylon. They reported that PLA is considerably less toxic than ABS. Polylactic
acid is a bioplastic that is environment-friendly, bio-based, and biodegradable. Owing to environmental
concerns, Copinet et al. [5] tried to estimate the biodegradation of a co-extruded starch/poly (lactic
acid) polymeric material. Lanzotti et al. [6] studied the mechanical properties of virgin and recycled
PLA. Currently, fused filament fabrication (FFF) using PLA is commonly used by the public [7].

However, PLA is characterized by poor toughness, brittleness, and low elongation at break in
commercial applications. Tymrak et al. [8] measured the mechanical properties of 3D-printed PLA
specimens in realistic environmental conditions. Kumar et al. [9] suggested a methodology to improve
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the mechanical, thermal, and degradation properties of PLA by blending it with lignin. Wittbrodt and
Pearce [10] investigated the effects of the color of PLA on its material properties. To broaden the scope
of application of PLA, the thermal degradation or aging of PLA must be understood because it is one
of the failure mechanisms of polymer products [11].

Analysis of Fourier-transform infrared (FTIR) spectra is one of the best methods for understanding
the degradation of PLA. FTIR spectroscopy is a non-destructive and quick technique to access
molecular-level change of materials, so it is easy to generate big data. In order to observe
changes in the molecular level, there are several other technologies such as Raman spectroscopy,
mass spectrometry, nuclear magnetic resonance spectroscopy (NMR), and X-ray photoelectron
spectroscopy [12]. Kumar et al. [9] used FTIR and differential scanning calorimetry (DSC) to verify the
formation of PLA–TAIC–Lignin cross-linked structures. Liu et al. [13] employed thermogravimetry
(TG)-FTIR to investigate the effects of PLA degradation with two additives, namely, starch and
wood flour. Gonzalez et al. [14] studied PLA/TiO2 nanocomposites by using FT-NIR spectra.
Leroy et al. [15] used FTIR to monitor PLA degradation in implantable medical devices. However,
interpreting FTIR spectra is difficult. Therefore, this study uses artificial neural networks (ANNs), a
deep-learning technique, in this study. Zhang [16] reported that the thermal degradation of 3D-printed
ABS and PLA could be classified using ANNs based on FTIR. He found that the FTIR spectra of PLA
are harder to distinguish than those of ABS. The present study focuses on the thermal degradation of
3D-printed PLA and classifies it by using ANNs based on FTIR. In addition, this study determines the
best wavenumber range among the FTIR spectra for classifying the degree of PLA degradation.

2. Methodology

2.1. 3D Printed Specimen

A 3D printer (DP201, Shindoh) was used to fabricate the PLA specimens based on 3D CAD data,
as shown in Figure 1. The specimen shape is based on ASTM D638 Type IV.
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FTIR spectroscopy are marked. Fifty FTIR spectra were recorded at each measurement location. 

Figure 1. ASTM D638 Type IV.

To print the specimens, layer thickness and infill density were set to 0.2 mm and 100%, respectively.
Temperatures of the nozzle and the bed were set to 200 ◦C and 60 ◦C, respectively. Figure 2 shows the
3D-printed PLA specimen, on which three random measurement locations for FTIR spectroscopy are
marked. Fifty FTIR spectra were recorded at each measurement location.
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Osaka, Japan). This study focuses on one control factor of the temperature. Eight temperature splits 
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case to evaluate the ANN models; the study used the other datasets for training. 

Figure 2. Measurement locations for the Fourier transform infrared (FTIR) spectroscopy.

2.2. High-Temperature Storage Test for PLA Thermal Degradation

In this study, we performed a high-temperature storage test for realizing PLA degradation.
A storage chamber with two control factors of time and temperature was employed (SH-662, ESPEC,
Osaka, Japan). This study focuses on one control factor of the temperature. Eight temperature splits
were defined: 20 ◦C, 40 ◦C, 60 ◦C, 80 ◦C, 100 ◦C, 120 ◦C, 140 ◦C, and 160 ◦C. For all temperature splits,
the degradation time was set to 24 h.

2.3. Fourier-Transform Infrared Spectroscopy

An FTIR spectrometer (Nicolet iS10, ThermoFisher Scientific) was used to obtain the spectra
of the PLA specimens. Each FTIR spectrum was obtained at the predefined measurement locations
on the specimen. The total number of data points generated in each FTIR measurement was 6948.
The number of repetitions was set to 150 per case. Figure 3 shows five repetitions per temperature split
for all degradation cases. The x- and the y-axes represent wavenumber and absorbance, respectively.
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Figure 3. Forty FTIR spectra for all degradation cases.

In total, 1200 FTIR datasets were input into the ANNs, as given in Table 1. Table 1 presents the
names and descriptions of these datasets. Among all the datasets, this study used ten datasets per case
to evaluate the ANN models; the study used the other datasets for training.
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Table 1. Description of Fourier transform infrared (FTIR) datasets.

Name of Dataset Description # of Training Sets # of Testing Sets

D01 PLA (24 h, 20 ◦C) 140 10
D02 PLA (24 h, 40 ◦C) 140 10
D03 PLA (24 h, 60 ◦C) 140 10
D04 PLA (24 h, 80 ◦C) 140 10
D05 PLA (24 h, 100 ◦C) 140 10
D06 PLA (24 h, 120 ◦C) 140 10
D07 PLA (24 h, 140 ◦C) 140 10
D08 PLA (24 h, 160 ◦C) 140 10

2.4. Training Strategy for Artificial Neural Networks

Multi-layer perception (MLP), as artificial neural networks (ANNs), was used to classify the
degree of thermal degradation of the PLA specimens used herein. The previous MLP model with nine
hidden layers [16] was found to be unsuitable for this problem. So a new ANN model and a training
strategy were required, as shown in Figures 4 and 5.
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Figure 4. An artificial neural networks (ANNs) model.

The ANN model comprises one input layer, two hidden layers, and one output layer. Each layer
includes several nodes called artificial neurons. The numbers of nodes for the input and output layers
represent data size and number of classifications. In this study, an activation function for the nodes was
the Rectified Linear Unit (ReLU) [17], which is currently known as the most successful and widely-used
activation function [18].

The initial values of the data size and the number of classifications were set to 6948 and 2,
respectively. The data size denotes the total data points per FTIR measurement. The number of
classifications refers to the number of thermal degradation degrees classified by an ANN model. After
training the ANN model, if its accuracy was 100%, the number of classification was increased by
one. Otherwise, the data size was reduced by half. The ANN model was generated according to the
following rules [19]:

• The number of hidden layers is fixed to two;
• The size of the hidden layers should be between the sizes of the input and the output layers;
• The number of hidden neurons should be half that, in case of the previous hidden layer.
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3. Results and Discussion

3.1. Input Datasets for ANNs

The high-temperature storage test was performed to thermally degrade the 3D-printed PLA
specimens, as shown in Figure 6. The color of the specimens changed according to the test conditions.
When the chamber temperature was set to 160 ◦C, the color of the PLA specimens changed from white
to brown. For the other temperature splits, the changes in specimen color were barely discernible.
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Figure 6. 3D printed polylactic acid (PLA) specimens according to the degree of thermal degradation.

The FTIR measurements were performed at the predefined locations. To precisely classify
the degree of degradation, the data size was changed, as shown in Figure 7. As the data size
decreased, the number of divisions in FTIR spectra increased. P1/2 refers to the wavenumber range of
650–2455 cm−1. P2/2 refers to the wavenumber range of 2456–4000 cm−1.
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3.2. Validation of ANN Models

This study trained and validated several ANN models with two hidden layers by using the
training and the test sets, respectively. The number of classifications output by the ANN models
depended on the input datasets. The maximum number of classifications was four under this study.
The ANN models could only classify D01, D02, D07, and D08, when the number of divisions in FTIR
spectra ranged between four and sixteen. More datasets and preprocessing of FTIR spectroscopy may
increase the number of classifications; this will require further work. For the four datasets D01, D02,
D07, and D08, the accuracy of the ANN models varied with data size and wavenumber range, as given
in Table 2. Table 2 lists the names of the divisions and the corresponding wavenumber range, as well
as the accuracy of the ANN model. The ANN model registered 100% accuracy for the seven divisions
of P2/4, P3/8, P7/8, P1/16, P2/16, P3/16, and P4/16.

Table 2. Accuracy of the artificial neural network (ANN) model according to the range of wavenumber.

Name of Division Range of Wavenumber
(cm−1)

Accuracy of the ANN
Model (%)

Characteristic Peaks
(cm−1)

P1/4 650–1487 75%
757 cm−1

870 cm−1

956 cm−1

P2/4 1487–2324 100% 1184 cm−1

1757 cm−1

P3/4 2324–3160 60% 2946–2998 cm−1

P4/4 3160–4000 75% 3501 cm−1

3656 cm−1

P1/8 650–1068 75%
757 cm−1

870 cm−1

956 cm−1

P2/8 1068–1487 50% 1184 cm−1

P3/8 1487–1905 100% 1757 cm−1

P4/8 1905–2324 55%
P5/8 2324–2724 30%
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Table 2. Cont.

Name of Division Range of Wavenumber
(cm−1)

Accuracy of the ANN
Model (%)

Characteristic Peaks
(cm−1)

P6/8 2724–3160 45% 2946–2998 cm−1

P7/8 3160–3579 100% 3501 cm−1

P8/8 3579–4000 65% 3656 cm−1

P1/16 650–859 100% 757 cm−1

P2/16 859–1068 100% 870 cm−1

956 cm−1

P3/16 1068–1277 100% 1184 cm−1

P4/16 1277–1487 100%
P5/16 1487–1696 70%
P6/16 1696–1905 95% 1757 cm−1

P7/16 1905–2115 50%
P8/16 2115–2324 25%
P9/16 2324–2533 35%
P10/16 2533–2724 45%
P11/16 2724–2951 45%
P12/16 2951–3160 75% 2946–2998 cm−1

P13/16 3160–3370 50%
P14/16 3370–3579 50% 3501 cm−1

P15/16 3579–3788 65% 3656 cm−1

P16/16 3788–4000 65%

Moreover, the last column presents several characteristic peaks of neat PLA, which are described
in Table 3. When the number of divisions of the FTIR spectra is four or eight, the accuracies of the
ANN models for the divisions P2/4, P3/8, and P7/8 are consistent with the characteristic peaks of
1184 cm−1, 1757 cm−1, and 3501 cm−1, respectively. When the number of divisions of the FTIR spectra
is 16, the accuracies of the ANN models for the divisions P1/16, P2/16, and P3/16 correspond to the
characteristic peaks of 757 cm−1, 870 cm−1, 956 cm−1, and 1184 cm−1. Therefore, (-C-C-) stretching
in the crystalline and the amorphous phases, (C-CH3) stretching, (C-O-C) asymmetric stretching,
carbonyl group (C=O) stretching, and stretching of the carboxylic acid terminal group appear to be
good classifiers for the ANN models used in this study.

Table 3. Description of diverse characteristic peaks for the neat PLA [9,20,21].

Characteristic Peaks Description

757 cm−1 -C-C- crystalline phase
870 cm−1 -C-C- amorphous phase
956 cm−1 C-CH3 group

1184 cm−1 C-O-C group
1757 cm−1 Carbonyl Group (C=O)

2946–2998 cm−1 CH3 group
3501 cm−1 The carboxylic acid terminal group
3656 cm−1 Hydroxyl group (O-H)

4. Conclusions

By using experimental data, this study demonstrated herein that thermal degradation of 3D-printed
PLA could be classified using ANNs based on FTIR. Among the eight types of FTIR datasets, the ANN
model could classify four levels of thermal degradation. As the wavenumber range varied, the accuracy
of the ANN model changed. The ANN model could suggest the best wavenumber ranges. The ANN
model was 100% accurate for the seven wavenumber divisions of P2/4, P3/8, P7/8, P1/16, P2/16, P3/16,
and P4/16. The wavenumber ranges, including the characteristic peaks of 757 cm−1, 870 cm−1, 956 cm−1,
1184 cm−1, 1757 cm−1, and 3501 cm−1, correspond to a higher accuracy of the ANN model. In this
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study, the following classifiers for the thermal degradation of 3D-printed PLA were identified: (-C-C-)
stretching in the crystalline and the amorphous phases, (C-CH3) stretching, (C-O-C) asymmetric
stretching, carbonyl group (C=O) stretching, and stretching of the carboxylic acid terminal group.

Currently, this methodology has used FTIR datasets without any preprocessing such as
normalization. This study assumed ANNs could classfy raw FTIR spectra. However, the preprecessing
of the datasets may give better performance to ANNs so that it could be futher work.
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