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Featured Application: The presented active control system aims to suppress the swing vibrations
of suspended structures.

Abstract: The Active Rotary Inertia Driver (ARID) system is a novel vibration control system that can
effectively mitigate the swing vibration of suspended structures. Parametric analysis is carried out
using Simulink based on the mathematical model and the effectiveness is further validated by a series
of experiments. Firstly, the active controller is designed based on the system mathematical model and
the LQR (linear quadratic regulator) algorithm. Next, the parametric analysis is carried out using
Simulink to study the key parameters such as the coefficient of the control algorithm, the rotary inertia
ratio. Lastly, the ARID system control effectiveness and the parametric analysis results are further
validated by the shaking table experiments. The effectiveness and robustness of the ARID system are
well verified. The dynamic characteristics of this system are further studied, and the conclusions of
this paper provide a theoretical basis for further development of such unique control system.

Keywords: suspended structures; swing vibration control; active control; Active Rotary Inertia
Driver; shaking table experiment

1. Introduction

The pendular vibration of the suspended structures is a common form of motion. The swing of the
crane hook belongs to this kind of motion. Generally, pendular vibration keeps for a long time because
of small damping. Sometimes, the pendular angle will be very large if external excitation is close to
the structural natural frequency, which poses a great threat to structures. Therefore, it is necessary to
apply effective vibration control techniques to control the pendular vibration of suspended structures.
Pendular vibration mainly includes three basic modes according to the relationship between the lifting
point and moving direction of structures: swing motion mode, sway motion mode, swing and sway
coupling motion mode [1].

Structural vibration control devices have been widely used in civil engineering, mechanical
engineering, ocean engineering and aerospace over the past few decades [2–14]. The structural
vibration problems are complex and diverse. Correspondingly, vibration control devices and theories
for different problems were developed. Control techniques mainly include passive, active and
semi-active control. Many studies and practices show that common passive control devices, such as the
Tuned Mass Damper (TMD), have been commonly adopted due to their design simplicity, good control
effectiveness and low cost [15–20]. The Particle Dampers (PDs) [21], Frictional Tuned Mass Damper
(FTMD) [22,23] and Tuned Liquid Damper (TLD) [24,25] are also the most commonly used passive
control techniques in earthquake engineering. Active Mass Dampers (AMDs) [26] were widely studied
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in civil engineering for their superior effectiveness and larger spectral bandwidth. The feasibility of
AMD application on the civil structures and ocean engineering structures has been studied [27–32].
Semi-active systems have been developed over the past decades. They can alternate their parameters
in real time to ensure a superior, low-energy and stale control performance [33–35].

Although these passive, active and semi-active dampers are reliable and efficient, and they can
effectively reduce the responses of the civil structures under external excitations in many conditions,
they are almost ineffective in the swing motion control of suspended structures. Some researchers
concentrated on solving the similar problems of pendulum motions control [36,37]. They designed
controllers [38], linear and nonlinear control algorithms [39], an optimal performance control scheme [40]
and an adaptive output-based command shaping (AOCS) technique [41] for the vibrations of cranes.
But the hanging points of these crane structures were not fixed, the control technologies that reduced
the vibrations relied on the moving of the hanging points. The control technologies need enough
moving space in the structural hanging point. However, the hanging points of many suspended
structures are fixed, such as ship cranes. Their hanging points are fixed in the determined position.
The suspended control technologies above are not suitable for the swing motion control of these
structures. Then, the Tuned Rotary Inertia Damper (TRID) system was proposed. In the TRID system,
the rotary mass inertia is attached to the suspended structure. The torsional spring element embedded
with a damping mechanism is installed between the mass inertia and the structure. The mass inertia
rotation can apply control torque/moment to structures. The effectiveness of the TRID system for swing
motion control was verified by a series of theoretical analyses and experiments. However, the TRID
system has some defects. It cannot work normally when the swing angle is very small. Furthermore,
it has time lag effect and low robustness.

To solve this problem, the Active Rotary Inertia Driver (ARID) system is proposed in this paper,
based on the TRID system. Compared with the common control devices that can apply control force to
the structures, the ARID system can apply control torque to structures by the rotation of mass inertia.
The mass inertia is driven by a motor according to the structural response in real time. The ARID
system can work installed in the suspended structures, compared to the control technologies that work
relying on the movement of hanging points. The ARID system can be used for suspended structures in
which hanging points are fixed in determined positions. Moreover, the ARID system can work without
relying on the structural responses, and it has better control effectiveness and robustness compared to
the TRID system. To verify the effectiveness of the ARID system, a series of parametric analyses [42]
and shaking table experiments are carried out.

The outline of this paper is as follows. First, the active controller is designed based on the
system mathematical model and the LQR (linear quadratic regulator) algorithm. Second, the system
parametric analyses are carried out using Simulink based on the mathematical model and the LQR
controller. Finally, to verify the effectiveness of the system and results of the parametric analysis,
a series of experiments are carried out using the Quanser Shake Table II. Furthermore, the numerical
analyses of the experiments are also correspondingly carried out using Simulink.

2. Mathematical Model and Controller Design

2.1. Mathematical Model

In order to carry out the parametric analysis, the simplified analytical model of the suspended
structure with the ARID system was developed, which is shown in Figure 1. The model consists
of two degrees of freedom used as generalized coordinators, which are the structural swing angle
θ and the mass inertia relative rotation angle φ with respect to the ground base. The length of the
suspended structure is l. The suspended particle mass is m, and the structural damping coefficient is c.
The ARID system rotary inertia mass is ma, the rotary inertia is Ja, the rotational stiffness coefficient is
ka and the damping coefficient is ca. The acceleration at the suspended structure lifting point is ax0(t),
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and the control torque is Ma(t). The motion equations of the model were deduced based on Lagrangian
principle as:

(m + ma)l2
..
θ+ c

.
θ+ (m + ma)gl sinθ
= −(m + ma)l cosθax0(t) + ct

( .
∅−

.
θ
)
+ kt(∅− θ) −Ma(t)

(1)

Ja
..
∅+ ct

( .
∅−

.
θ
)
+ kt(∅− θ) = Ma(t) (2)

where Ja = mar2, c = 2
[
m + mal2

]
ωξ, ω =

√
g/l, ca = 2mar2ωaξa and ωa =

√
ka/Ja are the needed

parameters. r is the radius of the mass inertia, ξ is the structural damping ratio and ξa is the ARID
damping ratio. Generally, its damping force and torsion resistance are very small compared with
control torques, which can be neglected (ca and ka are 0).
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Peak reflects the control effect of the ARID system on a peak swing angle. The RMS (root-mean-square) 
reflects the control effect of the ARID system on swing angle dispersion. 

2.3. LQR Controller Design 
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Figure 1. Simplified analysis model of the suspended structure with the ARID system.

2.2. Parameter Identification

There are two parameters reflecting control effectiveness, defined as:

Peak =
maxθ1 −maxθ2

maxθ1
(3)

RMS =
s1 − s2

s1
(4)

where s is root-mean-square, s =
(

1
n

n∑
i=1

(
θi − θ

)2
) 1

2

and θ is angle mean, θ = 1
n

n∑
i=1

θi, θi is the angle of i

moment. θ1 is the swing angle without control. θ2 is the swing angle with the ARID control. s1 is the
root-mean-square without control. s2 is the root-mean-square with the ARID control. The Peak reflects
the control effect of the ARID system on a peak swing angle. The RMS (root-mean-square) reflects the
control effect of the ARID system on swing angle dispersion.

2.3. LQR Controller Design

For the purpose of engaging the linear quadratic regulator (LQR) control algorithm, the motion
equations were linearized. Generally, the clockwise swing angle is set as a positive value. In this
paper, the swing angle θ was supposed to be very small. It was supposed that sinθ ≈ θ, cosθ ≈ 1.
Thus, the original nonlinear motion equations can be linearized and expressed into matrix form as:

[
(m + ma)l2 0

0 Ja

] ..
θ
..
∅

+ [
c 0
0 0

] .
θ
.
∅

+ [
(m + ma)gl 0

0 0

][
θ
∅

]
=

[
−1
1

]
Ma(t) −

[
(m + ma)l

0

]
ax0 (5)
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Set M =

[
(m + ma)l2 0

0 Ja

]
, C =

[
c 0
0 0

]
, K =

[
(m + ma)gl 0

0 0

]
, A =

[
02×2 I2

−M−1K −M−1C

]
,

B =

[
02×1

M−1Bs

]
, Dg =

[
02×1

M−1Ds

]
, Bs =

[
−1
1

]
, Ds =

[
(m + ma)l

0

]

Z(t) = (θ(t),∅(t),
.
θ(t),

.
∅(t))

T
(6)

Thus, the motion equation can be written as follows:

.
Z(t) = AZ(t) + BMa(t) + Dgax0(t) (7)

When:

Q = α

[
K 02×2

02×2 M

]
, R = βI, G = lqr(A, B, Q, R)

Therefore, based on the LQR algorithm, the active control torque is defined as follows:

Ma(t) = −GZ(t) (8)

Furthermore, the influence of LQR control algorithm parameters to control effectiveness curves are
shown in Figure 2. When β is constant, the control effectiveness becomes better as α increases. The value
of the weighting matrix Q increases as α increases. In the reasonable value range of α, the larger the Q,
the better the control effect will be. However, when α is constant, the control effectiveness becomes
worse as β increases.
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Figure 2. Effect of LQR parameters: (a) curves of α; (b) curves of β.

3. Parametric Analysis

3.1. Control Algorithm Parameter α

The parametric analyses were carried out by Simulink software. The influences of control algorithm
parameter α, rotary inertia ratio, mass ratio, suspended structural length ratio and excitation frequency
are discussed in this part. The parameters mass ratio and rotary inertia ratio are determined as:

rm =
ma

m + ma
, rJ =

mar2

(m + ma)l2

The parametric analysis curves of the LQR control algorithm parameter α, rotary inertia ratio
and mass ratio are shown in Figure 3. In the figures above, it can be found that: (a) When the rotary
inertia ratio and mass ratio are different, the control effect curves are like steps. (b) When the α value
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is less than 10−8, the control effect is very bad. As the α value continues to decrease, the system
loses the control effect. (c) When the value is greater than 10−8, the control effect becomes better as
it increases. When the α value reaches 10−2, the control effect remains unchanged as it continues to
increase. Figure 3a shows that when α is within the value range, the control effect becomes better as
the rotary inertia ratio increases. Figure 3b shows that when α is between the 10−8 and 10−2 interval,
the control effect is more sensitive to α. The control effect becomes better as the mass ratio decreases.
When α is greater than 10−2, the optimal control effect is no longer related to the mass ratio. The system
with a different mass ratio has the same control effect.

 

increase. Figure 3a shows that when α is within the value range, the control effect becomes better as 
the rotary inertia ratio increases. Figure 3b shows that when α is between the 10−8 and 10−2 interval, 
the control effect is more sensitive to α. The control effect becomes better as the mass ratio decreases. 
When α is greater than 10−2, the optimal control effect is no longer related to the mass ratio. The 
system with a different mass ratio has the same control effect. 
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Figure 3. Effect of α on control effectiveness: curves of RMS. 

3.2. Rotary Inertia Ratio 

The influences of rm and rJ to the control effectiveness are analyzed in this part. The results are 
shown in Figure 4. It can be concluded from the figure above that for the same rotary inertia ratio, 
the control effect becomes better as the mass ratio decreases. Furthermore, when the mass ratio is 
constant, the quantitative result changes monotonously. When the rotary inertia ratio is greater than 
0.5, the control effect increases slowly. The sensitivity of the rotary inertia ratio to the control effect 
decreases. 
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Figure 3. Effect of α on control effectiveness: curves of RMS.

3.2. Rotary Inertia Ratio

The influences of rm and rJ to the control effectiveness are analyzed in this part. The results
are shown in Figure 4. It can be concluded from the figure above that for the same rotary inertia
ratio, the control effect becomes better as the mass ratio decreases. Furthermore, when the mass ratio
is constant, the quantitative result changes monotonously. When the rotary inertia ratio is greater
than 0.5, the control effect increases slowly. The sensitivity of the rotary inertia ratio to the control
effect decreases.
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3.3. Mass Ratio

The parameter radius ratio is defined as rr = r/l. The parametric analysis curves of the mass ratio
and the radius ratio are shown in Figure 5. It can be observed that when the mass ratio is constant,
the control effect becomes better as the radius ratio increases. There is a coupling effect between the
mass ratio and the radius ratio on the control effect. The variation of the fixed quantitative results
is not monotonous. For the radius ratio of 40%, 60% and 80%, when the mass ratio is less than 0.6,
the control effect increases with the mass ratio. When the mass ratio is greater than 0.6, the control
effect begins to decrease as the mass ratio increases. However, when the mass ratio is less than 0.8,
the control effect increases as the mass ratio increases for the radius ratio of 20%. When it exceeds 0.8,
it decreases as the mass ratio increases. For different radius ratios, when the mass ratio is greater than
0.9, as the mass ratio continues to increase, the control effect decays faster. Therefore, the reasonable
interval of the mass ratio parameter is between 0.4 and 0.9.

 

 

 
Figure 5. Effect of mass ratio on control effectiveness: curves of RMS. 

3.4. Suspended Structural Length Ratio 

The parametric analysis curves of the mass ratio and the suspended structural length ratio are 
shown in Figure 6. The length ratio is defined as 𝑟 = 𝐿/𝑙. l is the suspended structure origin design 
length, and L is an optimized design length. In Figure 6, it can be found that: (a) When the length 
ratio is constant, the control effect changes but not monotonously. The control effects at 40% and 
60% are better than at 20% and 80%. (b) When the mass ratio is constant, the influence of the length 
ratio has an optimal value point. The optimal length ratio value is about 0.9. When the length ratio is 
greater than this value, the control effect gradually decreases as the length ratio increases. 
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3.4. Suspended Structural Length Ratio

The parametric analysis curves of the mass ratio and the suspended structural length ratio are
shown in Figure 6. The length ratio is defined as rl = L/l. l is the suspended structure origin design
length, and L is an optimized design length. In Figure 6, it can be found that: (a) When the length ratio
is constant, the control effect changes but not monotonously. The control effects at 40% and 60% are
better than at 20% and 80%. (b) When the mass ratio is constant, the influence of the length ratio has an
optimal value point. The optimal length ratio value is about 0.9. When the length ratio is greater than
this value, the control effect gradually decreases as the length ratio increases.



Appl. Sci. 2019, 9, 3144 7 of 15
 

 

 

Figure 6. Effect of length on control effectiveness: curves of RMS. 
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The structural natural frequency can be obtained by 𝜔 = 𝑔/𝑙. λ is defined as 𝜆 = 𝜔/𝜔 . ω is 
the excitation frequency. The sinusoidal excitation frequency applied to the structure is defined as 
the excitation frequency. The influence of the excitation frequency on the control effect is analyzed as 
shown in Figure 7. It can be found that the control effect achieves peak value at an excitation 
frequency. The frequency is close to the structural natural frequency. When the excitation frequency 
is higher than the optimal frequency point, the control effect decreases as the excitation frequency 
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0 0.5 1 1.5 220

40

60

80

100

rl

RM
S(

%
)

 

 

rm20%
rm40%
rm60%
rm80%

Figure 6. Effect of length on control effectiveness: curves of RMS.

3.5. Excitation Frequency

The structural natural frequency can be obtained by ωm =
√

g/l. λ is defined as λ = ω/ωm. ω is
the excitation frequency. The sinusoidal excitation frequency applied to the structure is defined as
the excitation frequency. The influence of the excitation frequency on the control effect is analyzed as
shown in Figure 7. It can be found that the control effect achieves peak value at an excitation frequency.
The frequency is close to the structural natural frequency. When the excitation frequency is higher than
the optimal frequency point, the control effect decreases as the excitation frequency increases.

 

 

 

Figure 7. Effect of excitation frequency on control effectiveness: curves of RMS. 

4. Shaking Table Experiment 

The performance of the ARID system was evaluated by the shaking table experiments. The 
ARID system experimental device was designed as shown in Figures 8 and 9. The length of the 
suspended structure was 650 mm. The natural frequency was around 0.64 Hz. The shaking table can 
apply different frequency excitation to the suspended structure, and the swing angle was recorded 
by an encoder installed at the suspension point. 
  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

20

40

60

80

100

RM
S(

%
)

 

 

λ(ω/ωm)

rJ20%
rJ40%
rJ60%
rJ80%
rJ100%

Figure 7. Effect of excitation frequency on control effectiveness: curves of RMS.

4. Shaking Table Experiment

The performance of the ARID system was evaluated by the shaking table experiments. The ARID
system experimental device was designed as shown in Figures 8 and 9. The length of the suspended
structure was 650 mm. The natural frequency was around 0.64 Hz. The shaking table can apply
different frequency excitation to the suspended structure, and the swing angle was recorded by an
encoder installed at the suspension point.
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4.1. Forced Sinusoidal Vibration 

We carried out 11 sets of experiments at different frequencies and the excitation magnitude was 
10 mm. Moreover, the numerical analyses were correspondingly carried out using Simulink. The 
swing angle time history curves are shown in Figure 10. λ is defined as before. β is defined by 𝛽 =𝜔 /𝜔 . 𝜔  is the peak frequency obtained by frequency domain analysis. 

Figure10a,c show that the swing angle of the structure with ARID control was smaller. The 
control effect is obvious. And the numerical analysis results agree well with the experimental results, 
which can further prove the good control effect of the ARID system. Figure 10b,d show that there 
were two peaks in the frequency domain without a control case, while in the ARID control case, 
there was only one peak. The results of the numerical analysis also agree well with the experimental 
results. The 11 sets of frequency domain analysis results are shown in Figure 11. 
  

Acceleromete

Encoder 

Encoder 

Shaking table acceleration  

ARID rotating angle φ 

Structure swing angle θ 

AMPAQ-PWM 

VoltPAQ-X1 

Control signal 

Control signal 

Driving the shaking table motor 

Driving the ARID motor 

Figure 9. Schematic of the experiment system.

The shaking table was the Quanser single-axis Shaking Table II. The actuator was the Maxon DC
motor and planetary gearbox. The motor-rated voltage was 24 V. The data acquisition devices were the
US Digital encoder and Maxon encoder. They were used to collect the swing angle and motor rotation
angle, respectively. And the sampling resolutions of the encoders were 0.0879◦ and 0.18◦, respectively.

4.1. Forced Sinusoidal Vibration

We carried out 11 sets of experiments at different frequencies and the excitation magnitude was
10 mm. Moreover, the numerical analyses were correspondingly carried out using Simulink. The swing
angle time history curves are shown in Figure 10. λ is defined as before. β is defined by β = ωa/ωm.
ωa is the peak frequency obtained by frequency domain analysis.
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Figure 10. Comparison of experiment and numerical analysis results: (a) Experiment swing angle time
history of λ = 0.7; (b) Experiment swing angle time history of λ = 1; (c) Numerical analysis swing angle
time history ofλ= 0.7; (d) Numerical analysis swing angle time history ofλ= 1; (e) Amplitude-frequency
curve of λ = 0.7; (f) Amplitude-frequency curve of λ = 1.

Figure 10a,c show that the swing angle of the structure with ARID control was smaller. The control
effect is obvious. And the numerical analysis results agree well with the experimental results, which can
further prove the good control effect of the ARID system. Figure 10b,d show that there were two peaks
in the frequency domain without a control case, while in the ARID control case, there was only one
peak. The results of the numerical analysis also agree well with the experimental results. The 11 sets of
frequency domain analysis results are shown in Figure 11.



Appl. Sci. 2019, 9, 3144 10 of 15

 

the excitation frequency. (b) In the ARID controlled case, there is only one peak in the frequency 
domain. The peak frequency is closed to the excitation frequency. This result indicates that the ARID 
system completely suppresses the structural response at the natural structural frequency. 
Furthermore, it can be found that the structural spectral energy is significantly reduced at the 
excitation frequency. It can be inferred that the ARID system consumes the natural structural 
frequency energy as well as the external excitation energy. 

Furthermore, it can be found from Figure 10a that the ARID system has good control effect even 
though the swing angle is very small. It can be verified that the ARID system has better robustness 
and effectiveness than the TRID system. 

 
Figure 11. Frequency domain analysis diagram of the experiment and numerical analysis. 

Figure 12 shows the peak swing angle curves of structures with ARID control and without 
control. The peak swing angle of structures with ARID control is smaller. There is a good agreement 
between the experimental results and numerical analysis results. It can be proved that the ARID 
system can reduce the maximum response of the structure. Moreover, when the external excitation is 
close to the structural natural frequency, the peak swing angle is larger. In this case, the peak swing 
angle of structures with ARID control is much smaller. It can be proved that the control system can 
effectively reduce the structural response under the most unfavorable excitation conditions. 
  

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

λ(ω/ωm)

β(
ω

a/ω
m

)

 

 

Without control 1st peak(Expeirment)
Without control 1st peak(Numerical analysis)
Without control 2nd peak(Expeirment)
Without control 2nd peak(Numerical analysis)
With ARID control(Expeirment)

Figure 11. Frequency domain analysis diagram of the experiment and numerical analysis.

In Figure 10, it can be found that: (a) The two peaks in the frequency domain are the excitation
frequency and the natural structural frequency of the structure without control. When the excitation
frequency is smaller than the natural structural frequency, the first peak frequency is closed to the
excitation frequency, and the second peak frequency is closed to the natural structural frequency. When
the excitation frequency is greater than the natural structural frequency, the first peak frequency is
closed to the natural structural frequency, and the second peak frequency is closed to the excitation
frequency. (b) In the ARID controlled case, there is only one peak in the frequency domain. The peak
frequency is closed to the excitation frequency. This result indicates that the ARID system completely
suppresses the structural response at the natural structural frequency. Furthermore, it can be found
that the structural spectral energy is significantly reduced at the excitation frequency. It can be
inferred that the ARID system consumes the natural structural frequency energy as well as the external
excitation energy.

Furthermore, it can be found from Figure 10a that the ARID system has good control effect even
though the swing angle is very small. It can be verified that the ARID system has better robustness
and effectiveness than the TRID system.

Figure 12 shows the peak swing angle curves of structures with ARID control and without control.
The peak swing angle of structures with ARID control is smaller. There is a good agreement between
the experimental results and numerical analysis results. It can be proved that the ARID system can
reduce the maximum response of the structure. Moreover, when the external excitation is close to
the structural natural frequency, the peak swing angle is larger. In this case, the peak swing angle of
structures with ARID control is much smaller. It can be proved that the control system can effectively
reduce the structural response under the most unfavorable excitation conditions.
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Figure 13. Control effectiveness of experiment and numerical analysis.

4.2. Resonance Harmonic Excitation and Free Decay Vibration

In this section, the control effectiveness of different rotary inertia is studied. The total sampling
time was 40 s. The structures were under resonance harmonic excitation in the first 15 s and then
decayed freely. The excitation magnitude was 20 mm, and the frequency was closed to the natural
structural frequency. The parameters of rotary inertia are shown in Table 1.

Table 1. Parameters of rotary inertia.

No. Mass (g) Radius (mm) J (g·mm2) rJ (×10−3)

1 69 50 98,465 0.5
2 107 75 378,318 1.7
3 423 100 2,308,657 6.8
4 205 150 3,224,167 13
5 744 130 6,645,262 14
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Figure 14 shows the comparison of the experimental and numerical analysis results of No. 1
and No. 3. It can be seen that the effectiveness of No.3 is better than No.1. The response of the
structure with ARID control was completely controlled during the sampling time. Furthermore,
from the amplitude-frequency curves in Figure 14e,f, it can be seen that the ARID system can suppress
the spectral energy at a natural structural frequency effectively. The control effectiveness results
of structures with different rotary inertia are shown in Figure 15. It can be seen that the control
effectiveness becomes better as the rotary inertia ratio increases. And it agrees well with the conclusion
of the parameter analysis results as before.
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Figure 14. Comparison of experiment and numerical analysis results: (a) Experiment swing angle 
time history of No.1; (b) Experiment swing angle time history of No.3; (c) Numerical analysis swing 
angle time history of No.1; (d) Numerical analysis swing angle time history of No.3; (e) 
Amplitude-frequency curve of No.1; (f) Amplitude-frequency curve of No.3. 
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Figure 14. Comparison of experiment and numerical analysis results: (a) Experiment swing angle time
history of No.1; (b) Experiment swing angle time history of No.3; (c) Numerical analysis swing angle
time history of No.1; (d) Numerical analysis swing angle time history of No.3; (e) Amplitude-frequency
curve of No.1; (f) Amplitude-frequency curve of No.3.
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5. Conclusions 

In this paper, the proposed ARID system was studied. The parametric analyses were carried 
out using Simulink and a series of shaking table experiments were performed to verify the control 
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energy. Moreover, the system can effectively reduce the structural response under the most 
unfavorable excitation. 

(4) The feasibility of the ARID system for torsional swing vibration control, such as the flutter of 
long-span bridges and the torsion of high-speed railway trains, is meaningful to further 
research. Furthermore, it is necessary to study the control cost of the ARID system by 
optimizing the control algorithms. 
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5. Conclusions

In this paper, the proposed ARID system was studied. The parametric analyses were carried
out using Simulink and a series of shaking table experiments were performed to verify the control
effectiveness and parametric analysis results. According to the experiments and numerical analysis
results, the following conclusions can be achieved:

(1) The effectiveness and feasibility of the proposed ARID system for the swing vibration control are
verified. It has better control effectiveness and robustness as compared with the TRID system.
It can effectively reduce the vibration of suspended structures when positions of the hanging
points are determined.

(2) The parametric analysis and experimental verification of the ARID system can provide theoretical
foundations for the designs of the system.

(3) The ARID system consumes the natural structural frequency energy and external excitation
energy. Moreover, the system can effectively reduce the structural response under the most
unfavorable excitation.

(4) The feasibility of the ARID system for torsional swing vibration control, such as the flutter of
long-span bridges and the torsion of high-speed railway trains, is meaningful to further research.
Furthermore, it is necessary to study the control cost of the ARID system by optimizing the
control algorithms.
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