
applied
sciences

Article

Temporal Label Walk for Community Detection and
Tracking in Temporal Network

Zheliang Liu, Hongxia Wang *, Lizhi Cheng, Wei Peng and Xiang Li

Department of Mathematics, National University of Defense Technology, Changsha 410073, China
* Correspondence: wanghongxia@nudt.edu.cn

Received: 5 July 2019; Accepted: 2 August 2019; Published: 6 August 2019
����������
�������

Abstract: The problem of temporal community detection is discussed in this paper. Main existing
methods are either structure-based or incremental analysis. The difficulty of the former is to
select a suitable time window. The latter needs to know the initial structure of networks and
the changing of networks should be stable. For most real data sets, these conditions hardly
prevail. A streaming method called Temporal Label Walk (TLW) is proposed in this paper, where
the aforementioned restrictions are eliminated. Modularity of the snapshots is used to evaluate
our method. Experiments reveal the effectiveness of TLW on temporal community detection.
Compared with other static methods in real data sets, our method keeps a higher modularity with
the increase of window size.

Keywords: temporal networks; community detection; data streams; label propagation

1. Introduction

The concept of community defined by Newman and Girvan is widely accepted and used [1].
Community detection is a significant task and of great value in practical applications. For sales
websites, discovering consumers of different products can help website managers purchase selectively;
for social networks, it will be easier to recommend friends to users if we can detect communities
sharing common interests.

Research on community detection falls into two categories: static methods and temporal methods.
Some classic methods such as Kernighan–Lin [2] based on graph cut and Label Propagation Algorithm
(LPA) are static methods [3]. The famous Girvan and Newman (GN) algorithm [1] is also a static
method. The static methods divide a network into different communities based on static graph where
the relationship between nodes and edges will not change. However, increasing numbers of real data
sets cannot be denoted by a static graph since edges and nodes are changing constantly. These data sets
are called temporal data and the networks consisting of temporal data are called temporal networks.
Temporal approaches are proposed to deal with temporal networks.

Structure-based methods and incremental analysis are the two most common methods used for
community detection in a temporal network. Structure-based methods mix temporal data in the time
window ∆t to a graph snapshot Gi and the temporal networks can be viewed as a sequence G1, G2, ..., Gs

where each Gi corresponds to the configuration of the graph in the ith time window [4]. For any
Gi, it is a static network and the traditional static algorithms can be used for community detection.
Meanwhile, the validation measurements used in static networks are making for temporal networks
as well. If the ground-truth communities are known, Normalized Mutual Information(NMI) [5] is
often used. In addition, Modularity [1] is often used while ground-truth is unknown. Determining the
size of window is a problem here. If ∆t is too small, few nodes and edges are included in a snapshot.
As a result, it is hard to find any community structure. On the contrary, the evolution of communities
cannot be tracked if ∆t is too large.

Appl. Sci. 2019, 9, 3199; doi:10.3390/app9153199 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/15/3199?type=check_update&version=1
http://dx.doi.org/10.3390/app9153199
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 3199 2 of 13

To avoid selecting appropriate ∆t, incremental analysis adds vertexes or edges to the network
one by one with the transmission of temporal data stream. Much research has used incremental
analysis for community detection in temporal networks. Li et al. divide communities according to
permanence index [6]. Agarwal et al. maximize permanence to detect communities [7]. Guo et al.
focus on local interact for community detection [8]. Ditursi et al. also use local information to find seed
nodes [9]. Several pieces of incremental analysis detecting communities detection are based on label
propagation [10,11]. Incremental analysis requires that community structure should be known in the
beginning and the structure of networks change stably. However, community structure is unknown in
most real data sets, and stability of evolution cannot be guaranteed either.

We show the form of temporal data of two methods, and the real graph sequence in Figure 1.
Real data set Students [12] consists of communications in a student organization. The community
structure at certain nodes can obviously be observed by compressing one day’s interactions together
in Figure 2.

Figure 1. Several different forms of data. (a) is the data used in structure-based methods, temporal data
in a time window of size ∆t is mixed to snapshot G0. Incremental analysis in (b) knows the structure of
network at the beginning and addition of nodes and edges (or delete) to change local structure so that
the new communities grow. (c) is a real data set called Students where it is hard finding community
structure at any ti and the information flow is spare when edges appear.

This paper proposes a streaming method to detect and track communities without any fixed ∆t.
Our main contribution is two-fold:

• Propose a new method called Temporal Label Walk (TLW) to detect community structure in
temporal networks without time window. Our approach transforms the community detection in
network into a clustering analysis in vector space where no prior about the community structure is
required. TLW can also maintain modularity at a reasonable level by combining time information.

• We reveal that simply mixing temporal data to snapshots and then measuring community
structure is less effective with the course of time.

Appl. Sci. 2019, 9, 3199 3 of 13

Figure 2. Mixing all 113 edges appear on 87 nodes on 27 June 2014. It is easy to find that nodes 1713
and 3 interact more frequently with other nodes.

2. Our Method: Temporal Label Walk (TLW)

In this section, we describe our method in three parts:

• Introduce the basic idea of our method including premise, feasibility, and process.
• Give mathematical definition of TLW.
• Measure the validation of community detection.

2.1. Basic Idea

In temporal networks, new nodes and edges are added in turn. If we use static method for
community detection, we must mix the data streams in a time window to a snapshot so that each
snapshot can be regarded as a static graph. In fact, there are two problems. First, how to select the
time window. Snapshots in different time windows consist of different information. Second, how to
mix data streams. To simply stack all edges or the weighted edges both can make result dissimilar.
In fact, the intensity of interactions between two nodes depends on time in temporal networks.
The result is stronger now than the past. The importance of nodes is also different due to different
intensity of interactions. A natural idea is to divide communities according to the importance of nodes.
Temporal walk defined by Rozenshtein and Gionis in 2016 is a good tool to measure importance of
nodes in temporal networks. They use temporal walk to make an extension of static PageRank [13].

A sequence of edges v1
t0−→ v2

t1−→ v3
t2−→ · · ·

tj−2−→ vj denotes a temporal walk from v1 to vj where
ti ≤ ti+1. Béres et al. also use temporal walk to extend static Katz centrality to temporal networks [14].
The effectiveness of temporal walks is verified in measuring the importance of nodes in temporal
networks. In real networks, interactions within communities are dense but between communities
they are sparse [1]. It is possible for temporal walks used to divide community structure in temporal
network. However, there are some special cases that make it difficult to divide communities only
by measuring the importance of nodes. Meanwhile, time is an important factor in temporal data.
The information received by a node recently may be more crucial than the past. We give an example in
Figure 3a,b, respectively.

The importance of nodes from different communities may be the same. Our solution is to give
each node a label value then compute it by temporal walks. In this way, label values between two
communities are different and thus can be divided. As to how to divide communities according to
label values, we use clustering methods because each node is represented by a vector. Please note that
using clustering analysis for community detection has been already considered by many researchers
and it is proved to be an effective approach. Pons et al. propose a measure of similarities based on
random walks to find the dense subgraphs of communities [15]. Cai et al. evaluate the performance
of repeated random walks in community detection of social networks [16]. De Meo et al. add a
pre-processing step in which edges are weighted according to their centrality regarding the network

Appl. Sci. 2019, 9, 3199 4 of 13

topology and raise the accuracy of existing algorithms on real-life data sets [17]. In addition, they
combine advantages of global approaches and local methods to propose a new clustering method [18].
Rémy et al. use clustering analysis to re-identify multiple addresses belonging to a same user for
bitcoin user activity [19]. We apply this idea to temporal networks and more detail is described in
Section 2.2.

Figure 3. Two different situations in temporal networks. (a) shows that two communities A and B share
the same information exchange within community, the corresponding nodes are of the same importance
but belong to different communities. (b) shows that nodes u and v are in different communities in the
beginning and v sends a message to u at time ti. If v sends a message to u again at ti+1, as shown in (c),
u will have a higher probability of belonging to B at ti+2 than those nodes inside A send a message to u
at ti+1, which is illustrated in (d).

To summarize, we propose a streaming method for community detection in temporal networks.
Label value is defined for each node and computed by temporal walk. The division of nodes is
obtained by the clustering analysis of label values. The result of clustering division is the division of
communities in networks.

2.2. Mathematical Definition

According to the description in Section 2.1, our method is based on two assumptions:

• Data sets are in the form of data streams,
• Interactions within communities are more frequent than those between communities.

Consider a directed graph Gt = (V, Et) where V is the set of all the nodes and Et is the set of
edges at time t. We denote T = {t0, t1, · · · , ti, · · · } the set of time sequence when new edges appear in
the data streams. Let Xu(t) ∈ R|V| denote the label value of node u at time t. If edge v→ u appears at
time ti+1 ∈ T, now we describe how to compute Xu(ti+1).

The variations of label value of u is two-fold:

• All temporal walks that end in v at ti, a new temporal walk starts from v and ends in u appears at
ti+1. The variation of this new temporal walk is:

∆1 = Xv(ti) · ϕ(ti+1 − ti), (1)

where ϕ(τ) = β · e−cτ is an exponential decay function, β is a constant and τ = ti+1 − ti. We use
ϕ to represent that interactions at ti+1 are more important than those at ti.

Appl. Sci. 2019, 9, 3199 5 of 13

• To maintain the timeliness of information, we define an enhancement function as another variation:

Ev = α · ev, (2)

where α ∈ R and ev is a unit vector with the vth element 1 and the rests 0. Note here v is the index
of node v in set Vt. Label value variation of u is:

∆ = Ev + ∆1. (3)

∆ is the variation that u only interacts with v. Denoting Su by the set of all nodes that send
messages to u at ti+1, variations of u is:

∆ = Ev + ∑
s∈Su

(Es + Xs(ti) · ϕ(ti+1 − ti)). (4)

At ti+1, the label value of u is also affected by ϕ(τ). We can compute Xu(ti+1) by:

Xu(ti+1) = Xu(ti) · ϕ(ti+1 − ti) + ∑
s∈Su

(Es + Xs(ti) · ϕ(ti+1 − ti)). (5)

Set the label value Xu(t0) = eu. Then take the normalized vector Xu(ti+1)
‖Xu(ti+1)‖2

of Xu(ti+1) for the
next iteration if Ss 6= ∅ to avoid the rapid growth of label value. To update label value of u at ti+1,
the complete algorithm is described as follows:

Step1 : Xu(t0) = eu,

Step2 : Xu(ti+1) = Xu(ti) · β · e−c(ti+1−ti) + ∑
v∈Su

(α · ev + Xv(ti) · β · e−c(ti+1−ti)),

Step3 : Xu(ti+1) :=
Xu(ti+1)

‖Xu(ti+1)‖2
,

i := i + 1,

Goto Step2. (6)

Computing label value can be regarded as a mapping f : Gi → R|V|×|V|, where Gi is a snapshot
at ti and f (Gi) = (X1(ti), X2(ti), · · · , X|V|(ti)) ∈ R|V|×|V|. Community detection problem in
temporal network Gt can therefore be transformed to clustering analysis in high-dimensional
vector space R|V|×|V|.

We choose several widely used clustering methods for TLW. Affinity Propagation(AP) [20],
Density-Based Spatial Clustering of Applications with Noise(DBSCAN) [21] and Mini Batch K-means
are compared in the following tests. AP and DBSCAN are used when that the number of communities
is unknown. If the number of clusters is known, Mini Batch K-means is adopted instead since it is
much simpler [22].

2.3. Evaluation

Most real data sets are unlabeled. To evaluate the divisions of community, modularity is a mostly
used measurement. Modularity is proposed by Newman [1] and defined on undirected graph as

Q =
1

2|E| ∑
v,u∈V

(Avu −
kvku

2|E|)δ(v, u), (7)

where A is the adjacency matrix of undirected graph G = (V, E), kv(ku) is the degree of nodes v(u)
and δ is to record whether two nodes belong to the same community:

Appl. Sci. 2019, 9, 3199 6 of 13

δ(v, u) =

{
1, if v, u are in the same community,

0, otherwise.
(8)

Here Gt is a directed graph, (7) turns to

Q =
1
|E| ∑

v,u∈V
(Avu −

koutvkinu
|E|)δ(v, u), (9)

where koutv is the out-degree of v and kinu is the in-degree of u.
Now make a summary of our method. TLW first updates the label value Xu(t) by algorithm (6),

then chooses a suitable clustering method to divide vectors according to whether we know the number
of communities. Nodes are divided into different communities according to the clusters which nodes
belong to. Finally, we use modularity to evaluate the division.

3. Experiment and Analysis

We carry out experiments to show that our method is effective in temporal community detection.
Two real data sets are used: Students [12] and Facebook [23]. The four-month data set Students is a
student community at the University of California, Irvine. Nodes represent students and edges denote
message passing. The Facebook data set is a three-month subset of Facebook activity in a New Orleans
regional community. Codes and data sets are available online (https://github.com/Zhe-liangLiu/
Temporal-Label-Walk). The experiments consist of three parts:

• Explain the importance of normalization,
• Use TLW to detect and track communities in real data sets Students and Facebook, and the

modularity of several static methods including K-clique, label propagation, and asynchronous
label propagation is given.

• Discuss the effects of parameters in experiments. We put this part in Section 4.

3.1. Normalization

First, we explain the necessity of normalization by a simple example. Assuming that three nodes
send messages regularly, we first generate a simple data streams including three nodes to illustrate
normalization mentioned in Section 2.2, as shown in Figure 4.

Figure 4. Three nodes send messages to each other in 30 s. The order that three nodes periodically
send information at each time is 1→ 2, 2→ 3, 3→ 1.

Figure 5 is the label value of node 3 from t0 to t29 in the case of normalization and
non-normalization, respectively. It is more realistic that the label values should remain stable over a
certain period as the community evolution. For real data sets, the interactions between nodes are more
complex. Figure 5b illustrates that normalization can ensure the label values of the nodes keep stable.

https://github.com/Zhe-liangLiu/Temporal-Label-Walk
https://github.com/Zhe-liangLiu/Temporal-Label-Walk

Appl. Sci. 2019, 9, 3199 7 of 13

Figure 5. Label value of node 3 with non-normalization and normalization. The value increases
exponentially without normalization (see (a)), but tends to be stable after normalization (see (b)).

3.2. Community Detection and Tracking

This section we evaluate our method by real data sets. Firstly, different clustering methods are
tested on Students, and then the results of TLW and other static community detection algorithms are
given. Finally, we visualize our division result of Students and Facebook.

To evaluate results of different clustering methods based on (6), we use Students data set from
16:06:47 on 27 June 2014 to 23:58:51 on 27 June 2014 with 113 edges and 87 nodes. Figure 2 is the
snapshot of the associated temporal network by mixing all edges together. Some obvious clusters
can be observed around nodes 3 and 1713. Let the c = 1× 10−6 and β = 1, α = 1. Compute label
values of nodes at 23:58:51, and use clustering analysis methods to reveal nodes in same community.
Since the number of communities is unknown, we group the nodes by AP and DBSCAN, respectively.
According to the results of AP and DBSCAN, setting the number of clusters to be 21, we also use
Mini Batch K-means to cluster. Focusing on two key nodes 3 and 1713, Figure 6 shows the results
of community detection. According to the division of Xu(t), community structure is in accordance
with the actual situation and dependence on clustering algorithms is not strong. The modularity and
running time of three methods are listed in Table 1.

Figure 6. Results of community detection with AP, Mini Batch K-means, and DBSCAN. The blue
nodes and node 3 are in the same community. The orange nodes belong to community of node 1713.
The division is only different in a few points.

Appl. Sci. 2019, 9, 3199 8 of 13

Table 1. Running time of different clustering methods.

Method Mini Batch K-Means DBSCAN AP

1 day Modularity 0.773 0.684 0.674
1 day Running time(s) 0.049± 0.005 0.003± 0.001 0.330± 0.008

1 week Running time(s) 0.106± 0.008 0.095± 0.003 2.523± 0.013
2 months Running time(s) 0.193± 0.011 0.786± 0.002 13.592± 0.046

It is shown that modularity greater than about 0.3 appear to indicate significant community
structure in practice [24], and typically fall in the range from 0.3 to 0.7 [1]. According to Table 1, we find
that all three methods can get a good community structure with reasonable modularity, but AP is
obviously more computational expensive than Mini Batch K-means and DBSCAN, which may make
AP impractical in processing large-scale networks. Compared with other two methods, Mini Batch
K-means gets better community structure and runs faster with the increase of data. If the community
structure is stable in a certain period, DBSCAN method can be used firstly and then Mini Batch
K-means can be used to approximate it. Mini Bath K-means is used in subsequent experiments.
We choose node 525 (see Figure 6) to track the community evolution based on label value, the result is
shown in Figure 7. Node 525 joins the community halfway, and does not interact directly with 1713.

Figure 7. Label value of node 525 from 16:06:47 to 23:58:51. The horizontal axis denotes the sequence
of the interactions. This sequence starts from 0 and end at 97, indicating that there are 97 information
interactions between nodes in this day.

The number of communities in this experiment is set to 21 for a network with 87 nodes. It may
be too many for a real social network. One reason is that some nodes communicate little with other
nodes, which makes them become noise points in clustering analysis. In the case of large-scale data
sets, noise points are often categorized separately because of inadequate information of time.

To evaluate our method in community detection, we compare modularity with other static
community detection algorithms. We choose partial community detection methods that focus on static
graph: K-clique [25], asynchronous label propagation [26] and label propagation [3]. The dynamic
community detection algorithm of [6] called DABP is also included. Data streams on 27 June are mixed
to an undirected snapshot with 87 nodes and 85 edges. The result is shown in Table 2. All methods
have a good performance with high modularity on the first day. Please note that our method is to reveal
the community structure at 23:58:51. With the passing of time, Figure 8 shows the change of modularity
of all methods. Here modularity of all methods decreases with the increase of time. Modularity of
static methods decreases rapidly, while the modularity corresponding to TLW decreases much more
slowly, which means that TLW has distinct advantages over other methods in maintaining a significant

Appl. Sci. 2019, 9, 3199 9 of 13

community structure. Although nodes in many networks fall naturally into communities, the time
factor is very important. The community structure of the network is unstable. If only the snapshots are
used to divide networks by mixing data streams, some disappeared or changed community structures
are retained in snapshots which make community structure of snapshots vague. At this point, it is
difficult for static algorithms to get a high modularity.

Table 2. The modularity of community structure from different methods tested on Students with the
increase of ∆t.

Method K-Clique Asynchronous Label Propagation DABP TLW

1 day 0.780 0.780 0.780 0.587 0.773
1 week 0.088 0.057 0.528 0.393 0.408

1 month 0.051 0.045 0.205 0.276 0.311
2 months 0.036 0.035 0.063 0.103 0.213
3 months 0.038 0.032 0.088 0.069 0.225

Figure 8. Modularity of different methods from one day to three months.

We also compute the running time of TLW and several related static methods. The results are
listed in Table 3. TLW can get the division of community structure almost as fast as classical static
algorithms. Considering that DABP is an incremental algorithm, we compare the real-time running
time of TLW and DABP separately. Choose 20 subgraphs from G0, G1, · · · , Gn randomly and compute
the time of processing each subgraph Gi, the result is shown in Figure 9. The real-time running time of
TLW grows slowly and the running time of DABP depends on the scale of each subgraph. Our methods
can get a higher modularity than DABP without consuming too much time.

Figure 9. Real-time running time of TLW and DABP.

Appl. Sci. 2019, 9, 3199 10 of 13

Table 3. The running time with the increase of ∆t about different methods.

Method K-Clique Asynchronous Label Propagation TLW

1 day (s) 0.021± 0.001 0.030± 0.021 0.024± 0.002 0.049± 0.005
1 week (s) 0.036± 0.008 0.077± 0.017 0.041± 0.012 0.106± 0.008

1 month (s) 0.098± 0.006 0.108± 0.009 0.097± 0.007 0.121± 0.007
2 months (s) 0.127± 0.312 0.156± 0.013 0.134± 0.011 0.193± 0.011
3 months(s) 0.264± 0.008 0.284± 0.075 0.340± 0.132 0.421± 0.013
4 months (s) 0.455± 0.059 0.665± 0.072 0.551± 0.072 0.879± 0.022

We also visualize the community structure of Students and Facebook in three periods in Figure 10.
Several communities with the high number of nodes are shown. More and more nodes become the
members of community as time goes on, while accords with the facts in most social networks.

Figure 10. Community structure of Students and Facebook in one day, one week, and one month,
respectively. Nodes in black denote that they do not belong to any community obviously yet.

4. The Effects of Parameters

Three parameters, c, β and α should be set manually in TLW, where α uses to control information
intensity. A larger α means that information received recently is more important. Using artificial data
set generated in Section 3.1, label value corresponding to different α is shown in Figure 11.

Figure 11. The effect of α on the label value of node 3. The larger α makes node 2 have more influence
on node 3 than the others.

Appl. Sci. 2019, 9, 3199 11 of 13

β and c are time decay parameters which control the speed of exponential decay of information.
c depends on time interval τ of data streams. We generate a new data streams to illustrate the effect of
different β and c. Similar to the artificial data streams generated in Section 3.1, at each ti, now only one
message passes in turn, we show this data streams in Figure 12.

Figure 12. Three nodes send messages in turn. The order is 2
t3k−→ 1, 1

t3k+1−→ 3, 3
t3k+2−→ 2, k = 0, 1, · · · , n.

Let α = 0.1. Fix β and c respectively, the first component of X3(t) for different c and β is given
in Figure 13a,b. Variation of label value from peak to trough is not violently with β = 1, c = 0.25 or
β = 1, c = 0.1, here τ = ti+1 − ti is 1 s. c is more important than β because τ range from 1 s to 1000 s or
more in real data sets, it is suitable to consider c and τ together so that ecτ can be a number between 0
and 1.

Figure 13. Fix β and c respectively, and calculate the first component of X3(t). Two parameters are set
to 0.25, 0.5, 0.75 and 1. Smaller c and larger β both have smaller peak value and larger valley value.

To make a further analysis of influence of different parameters on community detection, we choose
Students data set of the first day and fixing β = 1. Using Mini Batch K-means methods and setting
the number of clusters n = 14, we show the effect of different c and α on modularity with Mini Bath

Appl. Sci. 2019, 9, 3199 12 of 13

K-means in Table 4. Please note that modularity does not change linearly with c and α, but depend on
the data sets.

Table 4. The change of modularity with the increase of ∆t about different methods.

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

c = 1× 10−5 0.643 0.642 0.660 0.650 0.685
c = 2× 10−5 0.620 0.637 0.622 0.619 0.623
c = 4× 10−5 0.569 0.560 0.553 0.544 0.508
c = 6× 10−5 0.510 0.521 0.513 0.503 0.499
c = 8× 10−5 0.406 0.478 0.365 0.301 0.216
c = 1× 10−4 0.388 0.343 0.280 0.277 0.210

5. Conclusions

In this paper, we propose a community detection method TLW in temporal networks based
on the label value Xu(t) of each node u. TLW transfers community detection problem to clustering
analysis in high-dimensional vector space. We validate the effectiveness of our algorithm. TLW can
ensure that modularity of community divisions remains relatively reasonable high with the passing
of time. We also show that it is hard for static community detection algorithms to divide community
structure well in real data sets if only mix temporal data streams to snapshots. As an important
part of community detection, only several simple clustering algorithms are discussed in this paper.
Meanwhile, many dynamic community analysis algorithms have been integrated into a package [27]
and it is convenient for user to compare their methods with classical dynamic community detection
approaches. TLW is quite different from these methods and division of community is influenced
by different evaluation criteria and data sets. A comprehensive comparison will be given in the
future work.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L. and H.W.; software, Z.L.; validation,
X.L.; formal analysis, W.P.; investigation, Z.L.; resources, X.L.; data curation, Z.L.; writing—original
draft preparation, Z.L.; writing—review and editing, H.W. and W.P.; visualization, Z.L.; supervision, L.C.;
project administration, H.W.

Funding: This research is supported by National Science Foundation of China No. 61571008.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Newman, M.E.J. Finding and Evaluating Community Structure in Networks. Phys. Rev. E 2004, 69, 026113.
[CrossRef] [PubMed]

2. Kernighan, B.W.; Lin, S. An Efficient Heuristic Procedure for Partitioning Graphs. Bell Syst. Tech. J. 1970, 49,
291–307. [CrossRef]

3. Cordasco, G.; Gargano, L. Community detection via semi-synchronous label propagation algorithms.
In Proceedings of the 2010 IEEE International Workshop on Business Applications of Social Network
Analysis (BASNA), Bangalore, India, 15 December 2010; pp. 1–8.

4. Rosval, M.; Bergstrom, C.T. Mapping change in large networks. PLoS ONE 2010, 5, e8694. [CrossRef]
[PubMed]

5. Studholme, C.; Hill, D.L.G.; Hawkes, D.J. An overlap invariant entropy measure of 3D medical image
alignment. Pattern Recognit. 1999, 32, 71–86. [CrossRef]

6. Li, X.; Wu, B.; Guo, Q.; Zeng, X.; Shi, C. Dynamic community detection algorithm based on incremental
identification. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW),
Atlantic City, NJ, USA, 14–17 November 2015; pp. 900–907.

7. Agarwal, P.; Verma, R.; Agarwal, A.; Chakraborty, T. DyPerm: Maximizing Permanence for Dynamic
Community Detection. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Melbourne, VIC, Australia, 3–6 June 2018; pp. 437–449.

http://dx.doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.1371/journal.pone.0008694
http://www.ncbi.nlm.nih.gov/pubmed/20111700
http://dx.doi.org/10.1016/S0031-3203(98)00091-0

Appl. Sci. 2019, 9, 3199 13 of 13

8. Guo, Q.; Zhang, L.; Wu, B.; Zeng, X. Dynamic community detection based on distance dynamics.
In Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM), San Francisco, CA, USA, 18–21 August 2016; pp. 329–336.

9. DiTursi, D.J.; Ghosh, G.; Bogdanov, P. Local community detection in dynamic networks. In Proceedings of
the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November
2017; pp. 847–852.

10. Xie, J.; Chen, M.; Szymanski, B.K. LabelrankT: Incremental community detection in dynamic networks via
label propagation. In Proceedings of the Proceedings of the Workshop on Dynamic Networks Management
and Mining, New York, NY, USA, 22–27 June 2013; pp. 25–32.

11. Sattari, M.; Zamanifar, K. A cascade information diffusion based label propagation algorithm for community
detection in dynamic social networks. J. Comput. Sci. 2018, 25, 122–133. [CrossRef]

12. Panzarasa, P.; Opsahl, T.; Carley, K.M. Patterns and dynamics of users’ behavior and interaction: Network
analysis of an online community. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 911–932. [CrossRef]

13. Rozenshtein, P.; Gionis, A. Temporal pagerank. In Proceedings of the Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Riva del Garda, Italy, 19–23 September 2016; pp. 674–689.

14. Béres, F.; Pálovics, R.; Oláh, A.; Benczúr, A.A. Temporal walk based centrality metric for graph streams.
Appl. Netw. Sci. 2018, 3, 32. [CrossRef] [PubMed]

15. Pons, P.; Latapy, M. Computing communities in large networks using random walks. J. Graph Algorithms
Appl. 2006, 10, 191–218. [CrossRef]

16. Cai, B.; Wang, H.; Zeng, H.; Wang, H. Evaluation repeated random walks in community detection of social
networks. In Proceedings of the 2010 International Conference on Machine Learning and Cybernetics,
Qingdao, China, 11–14 July 2010; pp. 1849–1854.

17. De Meo, P.; Ferrara, E.; Fiumara, G.; Provetti, A. Enhancing community detection using a network weighting
strategy. Inf. Sci. 2013, 222, 648–668. [CrossRef]

18. De Meo, P.; Ferrara, E.; Fiumara, G.; Provetti, A. Mixing local and global information for community
detection in large networks. J. Comput. Syst. Sci. 2014, 80, 72–87. [CrossRef]

19. Rémy, C.; Rym, B.; Matthieu, L. Tracking bitcoin users activity using community detection on a network of
weak signals. In Proceedings of the International Conference on Complex Networks and Their Applications,
Lyon, France, 29 November–1 December 2017; pp. 166–177.

20. Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976.
[CrossRef] [PubMed]

21. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, Portland, OQ, USA, 2–4 August 1996; pp. 226–231.

22. Sculley, D. Web-scale k-means clustering. In Proceedings of the 19th International Conference on World
Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 1177–1178.

23. Viswanath, B.; Mislove, A.; Cha, M.; Gummadi, K.P. On the evolution of user interaction in facebook.
In Proceedings of the 2nd ACM Workshop on Online Social Networks, Barcelona, Spain, 17 August 2009;
pp. 37–42.

24. Newman, M.E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133.
[CrossRef] [PubMed]

25. Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T. Uncovering the overlapping community structure of complex
networks in nature and society. Nature 2005, 435, 814. [CrossRef] [PubMed]

26. Raghavan, U.N.; Albert, R.; Kumara, S. Near linear time algorithm to detect community structures in
large-scale networks. Phys. Rev. E 2007, 76, 036106. [CrossRef] [PubMed]

27. Sarmento, R.P.; Lemos, L.; Cordeiro, M.; Rossetti, G.; Cardoso, D. DynComm R Package–Dynamic
Community Detection for Evolving Networks. arXiv 2019, arXiv:1905.01498.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jocs.2018.01.004
http://dx.doi.org/10.1002/asi.21015
http://dx.doi.org/10.1007/s41109-018-0080-5
http://www.ncbi.nlm.nih.gov/pubmed/30839791
http://dx.doi.org/10.7155/jgaa.00124
http://dx.doi.org/10.1016/j.ins.2012.08.001
http://dx.doi.org/10.1016/j.jcss.2013.03.012
http://dx.doi.org/10.1126/science.1136800
http://www.ncbi.nlm.nih.gov/pubmed/17218491
http://dx.doi.org/10.1103/PhysRevE.69.066133
http://www.ncbi.nlm.nih.gov/pubmed/15244693
http://dx.doi.org/10.1038/nature03607
http://www.ncbi.nlm.nih.gov/pubmed/15944704
http://dx.doi.org/10.1103/PhysRevE.76.036106
http://www.ncbi.nlm.nih.gov/pubmed/17930305
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Our Method: Temporal Label Walk (TLW)
	Basic Idea
	Mathematical Definition
	Evaluation

	Experiment and Analysis
	Normalization
	Community Detection and Tracking

	The Effects of Parameters
	Conclusions
	References

