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Abstract: The rolling bearings in moment wheel assemblies (MWAs) or control moment gyros (CMGs)
are not only the core components in spacecrafts but also prone to failure. Therefore, a high reliability
is the critical characteristic for spacecraft bearings, and long-life testing on the ground is one of the
main means for bearing reliability assessment. In practical applications, a convenient and reliable
method is required for monitoring the health status of abnormal bearings in MWAs during the
long-life test. In this paper, a monitoring method based on the clustering fusion of normal operation
acoustic parameters is proposed for the identification of abnormal bearings. Firstly, the characteristics
of MWA’s acoustic signal and its feasibility as a monitoring medium are clarified based on tests
and modal analysis. Then statistical parameters and sound quality parameters are introduced
to characterize the changes caused by bearing faults, and the root mean square (RMS), kurtosis,
and sharpness parameters are selected to construct the feature vectors. The K-medoids clustering
technology is used to fuse the characteristic parameters, and the safety distance for normal bearing
operation can be obtained by a suitable method. Finally, the abnormal index is presented based on
the excess rate and excess distance to judge the abnormal states of several types of bearings through
tests. The research results indicate that the presented monitoring method based on the clustering
of the normal operation acoustic parameters can not only identify various faults of the spacecraft
bearing (ball defects, outer ring defects, cage instability, etc.) effectively but also give a quantitative
evaluation of the severity of the abnormality.

Keywords: spacecraft bearing; modal analysis; characteristic parameter; health monitoring; fault

1. Introduction

Moment wheel assemblies (MWAs) and control moment gyros (CMGs) have been widely used in
spacecraft attitude control and large angle slewing maneuvers over the years. High-speed rotating
systems use a pair of angular contact ball bearings of different sizes and capacities. Because reliability
is of paramount importance, precision class bearings are selected. As one of the critical components,
failure of these bearings leads to partial and total mission failure or performance degradation of the
spacecraft [1,2]. In fact, lubrication problems and retainer instability are the major causes of failure in
ball bearings used in spacecraft rotating systems [3,4]. Therefore, long-life experiments of ball bearings
on the ground become an essential and effective solution, and effective methods for monitoring the
operating conditions of abnormal bearings in MWAs are required [4].

A number of techniques for the detection of abnormal conditions of rolling element bearings
are currently available, which include vibration and acoustics [5,6], acoustic emission [7], lubricating

Appl. Sci. 2019, 9, 3246; doi:10.3390/app9163246 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app9163246
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/16/3246?type=check_update&version=2


Appl. Sci. 2019, 9, 3246 2 of 19

oil monitoring [8], and temperature [9]. As a sensitive and effective method, vibration and acoustic
measurements are widely used to detect the defects in bearings [10]. Numerous pieces of information
on the bearings can be derived from the acoustic signals [11]; thus, the health condition or faults of
bearings can be obtained by analyzing the change of acoustic properties. Acoustic signals can be easily
captured through non-contact measurement without additional sensor weight. Therefore, acoustic
signals can be used as an early prediction and can be monitored online, and it is widely applied in the
tests where vibration signals cannot be obtained [12].

Many researchers have focused on the fault diagnosis of bearings based on the acoustic
measurement and analysis. Tandon and Nakra [13] studied the detectability of defects in ball
bearings by the acoustic measurement method and confirmed that the acoustic measurements can
detect the faults under a high rotating speed. Heng and Nor [14] researched the application of
acoustic and vibration signals to detect defects in rolling element bearings using a statistical parameter
estimation method, and the results revealed that kurtosis and crest factor from both sound and vibration
signals provide better diagnostic information than the beta function parameters. Shibata et al. [15]
presented a symmetrical dot pattern (SDP) method to diagnose bearing faults using sound signals
and concluded that the SDP method is effective in detecting abnormality in bearings. Amarnath and
Sugumaran [16] extracted the descriptive statistical features from sound signals acquired from the
near field area of bearings and used a decision tree to select features to diagnose faults of bearings
through the machine learning approach. Jena and Panigrahi [17] proposed the system of filters method
to localize various degrees of gear and bearing faults using acoustic and vibration signals. Wang
et al. [18] proposed a synthetic detection technique for track side acoustic identification by overcoming
the difficulties such as modulation of acoustic signals, Doppler effect, and weak defect frequency.

From References [13–18], it is evident that acoustic analysis is an effective method to detect
the faults of bearings used in general rotor systems. However, few literatures have focused on the
fault diagnosis of spacecraft bearings based on the acoustic analysis. Due to the different structural
parameters and working environments, such as the composite material retainer, the light preload, and
the long-life lubrication, etc., there are significant differences on the fault modes between the spacecraft
bearings and the bearings used in the general rotating systems. In general bearings, the inner ring
pitting, the outer ring pitting, and the ball pitting are recognized as common fault modes. However,
the failure modes and mechanisms of spacecraft bearings are significantly different from those of
ground bearings and have not been fully revealed. Therefore, it is necessary to be able to monitor
various types of faults that may occur in spacecraft bearings, including unknown mode faults. So
far, there is an approach which is effective in the defection of faulty bearings through comparing the
response properties between normal bearings and faulty bearings with simulated defects in bearing
elements [19]. However, limited to the complicated fault modes that are not clear, not all the fault
modes could be simulated. In view of the complexity and uncertainty of satellite bearing failure modes,
this paper aims to propose a non-contact monitoring method based on normal noise samples which
can realize fault monitoring of flywheel bearings without complete fault samples. The idea is shown
in Figure 1. Based on the normal sample data of the spacecraft bearing operation, the appropriate
feature parameters are calculated, and the normal boundary of the operation under normal conditions
is determined by the clustering method. This boundary is then used to judge the deviation of the
subsequent monitoring samples. Thus, the bearing’s abnormal states can be evaluated by exceeding
the boundary. The so-called abnormal states in this paper are performance changes or failure that may
cause the flywheel to fail in achieving a long life.
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Figure 1. The block diagram of the proposed method.

In the following parts, a modal test of an MWA’s shell is carried out in Section 2, which will provide
the resonant frequencies for the acoustic analysis. Then in Section 3, fault properties of an MWA were
captured through acoustic analysis, which verifies the effectiveness of fault information accompanied
with acoustic signals from MWA. In Section 4, a health monitoring approach is presented based on the
fusion of multi-acoustic parameter clustering, and the approach is verified by experiments.

2. Acoustic Properties Analysis of an MWA’s

As the acoustic signal of an MWA is transmitted through its shell, it is essential to capture the
acoustic properties before carrying out the fault diagnosis. A shell of an MWA is shown in Figure 2a,
which is the core component for acoustic radiation. Therefore, the modal test of the shell can be a basis
for the acoustic analysis as well as the health monitoring and evaluation of MWAs. Due to the light
weight and small damping of the shell itself, the hammering method with multiple input single output
(MISO) was used to obtain the modals of the shell, as illustrated in Figure 2b, and 367 nodes were
selected to construct the shell structure during the modal test, as shown in Figure 3.

Figure 2. The modal test of a moment wheel assembly’s (MWA’s) shell: (a) an MWA shell with grid; (b)
modal test of an MWA.

Figure 3. Measurement points.
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The modal analysis was performed by a modal test system by the China Orient Institute of
Noise and Vibration. The exciting force was input by an force hammer. The data was collected
by an acquisition instrument of the type INV306G(H), and the modal analysis was performed by
the DASP-AutoModal modal analysis system. Figure 4a shows the lumped display of the transfer
functions with all the frequency response function curves for the reference of modal determination.
Since a high number of frequency response function curves make the information unclear, this paper
averaged all the frequency response functions to obtain an averaged curve to determine the modal
orders, which is shown in Figure 4b. Finally, the reliability of the experimental results was verified by
the vibration mode correlation matrix by the DASP AutoModal analysis system. The row number and
column number of the mode correlation matrix element represent two orders of mode, respectively.
The extent of orthogonality of the two orders of mode shape represented by the value of element which
is calculated by the normalizing scalar product of two orders of mode. The smaller the value, the
better the extent of orthogonality. Ideally, the matrix is symmetric about the main diagonal, and the
elements of the main diagonal are all “1”. In practice, in addition to the main diagonal elements, the
modal analysis results of the mode correlation matrix with very small values of other elements are
usually more reliable. In this paper, the first nine modes are selected to verify the mode correlation
matrix which is shown in Figure 5, in which the Z-axis value represents the correlation coefficient of
two modes. It can be seen from Figure 5 that the values of diagonal elements in the matrix are much
larger than others, indicating that the modal orthogonality obtained by the test is correct, and the test
result is effective.
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Table 1 provides the first 20th order resonant frequencies and damping ratios based on the DASP
AutoModal analysis system with a frequency domain global modal parameter identification estimator.
It can be seen from Table 1 that numerous resonance frequencies of the shell are mainly around the
range of 600 Hz~4000 Hz. The vibration sensor at the shaft end was used to reveal the excitation
signal when the bearing was running, and the waterfall diagram shown in Figure 6 was obtained.
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It can be seen that there are more excitation components at the range of 600 Hz~4000 Hz, including
the resonance frequency components that do not change with the rotation speed and the harmonic
components that change with the rotation speed. Moreover, these resonant frequencies are not only in
the range of resonant frequencies of the bearings but also in the range of frequencies that the human
hearing is sensitive to [20]. This is why some faults in MWAs and CMGs can be detected by engineers
with experience. Therefore, acoustic information produced by faulty bearings can be enhanced and
radiated by the shell, which indicates that it is feasible to detect the fault of bearings by the acoustic
radiation from the shell.

Table 1. The first 20th resonant frequencies and damping ratios.

Order Frequency (Hz) Damping Ratio Order Frequency (Hz) Damping Ratio

1 607.2 0.26 11 1616.1 0.37
2 730.7 0.45 12 1780.6 0.33
3 817.2 0.20 13 1965.5 0.32
4 863.7 0.45 14 2331.7 0.33
5 935.2 0.12 15 2615.5 0.21
6 1062.6 0.49 16 2776.2 0.26
7 1164.1 0.34 17 2989.9 0.30
8 1244.2 0.10 18 3083.9 0.37
9 1293.5 0.38 19 3347.6 0.19

10 1483.0 0.44 20 3740.2 0.16

Figure 6. The vibration waterfall diagram.

3. Diagnosis and Verification Analysis of Fault Signal Based on Acoustic Testing of MWA

In order to verify the effectiveness of the acoustic measurement and analysis, an experiment was
performed by the use of a normal MWA and an MWA with a wear retainer. Two sound microphones
were positioned at a distance of 90 cm in front of the MWA with 0 degrees and 45 degrees of the rotor’s
axis separately, as illustrated in Figure 7. The experiment was executed three times for each MWA with
a sampling frequency of 102.4 kHz and a sampling time of 60 s.
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Figure 7. Acoustic and vibrational experiments of an MWA.

Cage failure is most common in spacecraft bearing failures [21]. However, the rolling elements,
and internal and external raceway pitting faults cannot be ignored either [22]. When there is a local
fault in the inner ring, the outer ring, or the rolling element of the rolling bearing, an impact of a certain
characteristic frequency is generated, causing periodic pulsating vibration of the bearing element [23].
This periodic pulse has a short acting time and a steep shape, and its impact frequency is determined
by factors such as the geometry of the bearing, the fault location, and the rotational speed of the shaft.
For a particular bearing, the unique fault characteristic frequency produced by each component is
determined under known steady speed. Therefore, these characteristic frequencies are usually used to
diagnose and isolate the fault component of rolling bearing [24]. Here, the characteristic frequencies
are used to check whether the noise signal contains the pulse vibration information raised by defects.

The theoretical calculation formulas are listed as follows for the characteristic frequency of the
cage fc, the characteristic frequency of the outer ring for, the characteristic frequency of the inner ring
fir, and the characteristic frequency of the rolling elements fb [25]:
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where fi and fo represent the rotation frequency of the inner and outer rings of the bearing, respectively.
Z is the number of rolling elements, which is equal to 9 in this paper. Dm is the diameter of the bearing
pitch and Dm = 31 mm. Db is the diameter of rolling elements and Db = 6 mm. α is the contact
angle and α = 15◦. If the characteristic frequency is found in the test signal, it indicates that the
corresponding component of the bearing has a fault.

Empirical modal decomposition (EMD) might be considered as the most common approach for the
faulty feature extraction. EMD is an adaptive signal processing method which was first put forward by
Huang in 1998 [26]. The EMD method can decompose the complicated signal into a set of complete and
almost orthogonal component intrinsic mode functions (IMFs). The EMD has numerous advantages,
such as the automatic production of basic function, adaptive filter, adaptive multi-resolution, etc.,
which is suitable for processing nonlinear, non-steady signals and has been widely applied in the fault
diagnosis of rolling bearings recently [27]. Therefore, this paper introduces the ensemble empirical
mode decomposition method (EEMD), which is an improved EMD method [28], to analyze the bearing
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fault acoustic signal. EEMD defines the true IMF components as the mean of an ensemble of trials,
each of which consists of the signal plus a white noise of finite amplitude, and the algorithm is defined
as follows:

Step (1): Adding random Gaussian white noise series nm(t) to the target signal x(t),

xm(t) = x(t) + knm(t) (5)

here, k is the amplitude coefficient of the inserted white noise;
Step (2): The signal with the white noise is decomposed into a set of IMFs by EMD;
Step (1) and step (2) are repeated, and different white noise series are added every time.
Calculating the mean (ensemble) of the IMFs that have been obtained as the final result:

ci =
N∑

m=1

ci,m/N (6)

where N is the ensemble times of EMD, and ci,m is the ith IMF caused by the mth EMD.
This EEMD method for diagnosing bearing approach can be summarized as follows [21]:

i. A set of IMF components is obtained from the test vibration signal from the EEMD.
ii. The kurtosis of each IMF component is calculated, and all the IMFs which kurtosis values are

greater than 3 are selected to reconstruct the signal.
iii. The envelope signal is obtained for the reconstructed signal by Hilbert transform.
iv. The envelope spectrum is calculated from the envelope signal by Fourier transform.
v. The envelope spectrum is analyzed to estimate the fault type of the rolling bearing based on

the fault characteristic frequencies.

In the light of the above approach, the envelope spectrum of the two MWAs can be achieved.
Figures 8 and 9 show the time domain waveform and the corresponding envelope spectrum of the
acoustic signal obtained from the normal MWA and the MWA with a wear retainer separately. It can
be seen from Figures 8a and 9a that the time domain waveform of the normal MWA is quite similar to
white Gaussian noise, while the MWA with a wear retainer displays an obvious fluctuation which
indicates an unsteady state. According to formulas (1)~(4), the characteristic frequencies of a bearing
with an outer ring’s rotating speed of 3000 r/min produced by a wear retainer, a spitted ball, an outer
ring, and an inner ring can be calculated as =30 Hz, =125 Hz, =244 Hz, =356 Hz, respectively. As can be
seen from Figures 8b and 9b, no characteristic frequencies can be found out in the envelope spectrum of
the normal MWA, but a characteristic frequency of a wear retainer (30.2 Hz) and its multiple frequencies
(60 Hz, 90.2 Hz) can be identified that are consistent with the predicted frequencies (30 Hz, 60 Hz, and
90 Hz), which indicates a wear fault of a retainer in the bearings. The above studies demonstrate that
the fault information is in good attachment with the acoustic signal which can be utilized to monitor
the state of an MWA.
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Figure 8. The signal of a normal MWA: (a) time domain waveform; (b) envelope spectrum.

Figure 9. The signal of the MWA with a cage fault: (a) time domain waveform; (b) envelope spectrum.
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4. Health Monitoring of the Rolling Bearings in MWAs Based on the Clustering Fusion of Normal
Acoustic Parameters

In the course of long-time operation of MWAs in the lab, the health status of MWAs was monitored
in order to predict the probability of failure, which might provide instructions for fault diagnosis and
precaution avoiding a severe failure. The study could guarantee the spacecraft operation performance
and its lifetime. Nevertheless, each MWA displays different health statuses during its operation.
In order to get the real-time status of each MWA, it is essential to monitor the various kinds of abnormal
states and even the unknown faults effectively.

Due to different parameters sensitive to different failures, faults might not be identified completely
by using a single parameter. As a result, a monitoring approach of the acoustic state is put forward
in the paper based on the clustering fusion of numerous acoustic parameters. In the light of every
acoustic parameter’s physical meaning, different parameters present a distinct sensitivity and stability
to different failure modes [29]. For example, root mean square (RMS) is sensitive to the failure of
wear [30], while kurtosis is sensitive to failure of impact [31]. Additionally, as studied earlier on,
the MWA might enhance the acoustic signal in the range of frequency that human ears are sensitive to.
Hence, the sharpness reflected in the sound quality of MWA is introduced as an acoustic parameter in
this paper, which can be used to characterize the sensitivity and stability for different kinds of faults.
In this paper, the acoustic parameters obtained from normal MWAs, including RMS, kurtosis, and
sharpness, are applied for health monitoring, and the threshold for the abnormal state is constructed
by information fusion.

Considering the lack of actual fault samples and the deviation of the operating parameters of
different flywheels, a flywheel condition assessment method based on normal sample clustering is
proposed in this paper. The method is to determine the normal boundary and the safety domain of
the parameter under normal conditions based on the sample data of the normal flywheel operation.
The boundary is then used to evaluate the deviation of the subsequent monitoring samples to obtain
information on the condition of the flywheel.

A single parameter has sensitivity to certain faults. Therefore, it is necessary to comprehensively
utilize multiple parameter fusions to monitor the flywheel anomalies. Information fusion includes
clustering, fuzzy theory, neural network, support vector machine, and so on. In this paper, the
clustering method with a high robustness and fast calculation speed is selected to fuse the flywheel
condition parameters. Among many clustering methods, K-Medoids clustering is widely used due
to its strong robustness, anti-noise ability, and its ability to handle abnormal values [30]. From the
perspective of engineering applications, K-Medoids clustering also has a good convergence and time
complexity, and the effect obtained in global searches is very good. In general, K-medoids is applicable
to small sample clustering analysis and is effective in reducing disturbance of noise and outliers [32].
Therefore, the K-medoids clustering idea was adopted here. This paper clusters the normal flywheel
data of the same model to obtain the safety domain of the flywheel operation, which is used as the
standard for fault identification. The calculation processes are as follows:

(1). Preprocessing of Noise Data

The distance between the microphone and the flywheel is 0.9 m in this paper. There is a certain
instability during the test due to the large wavelength of the low frequency noise. Therefore, the waves
with a half wavelength greater than 0.9 m are filtered out, and the signal is subjected to high-pass
filtering of 200 Hz.

(2). Normalization of Data
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In this paper, the condition of the flywheel is described by the root-mean-square value R, kurtosis
K, and sharpness S. However, the magnitudes of these three parameters are not consistent. Hence, the
data is normalized prior to clustering.

x′i =
xi −Xmin

Xmax −Xmin
(7)

where Xmax = max{xi}, Xmin = min{xi}.
It is worth noting that the parameters of the test sample that are used for evaluation also need to

be corrected according to Equation (7) by using the corresponding normal samples Xmax and Xmin.

(3). Determination of the Safety Domain

This paper uses the distance to determine the scope of the safety domain. The clustering center
O3(Ro, Ko, So) of the normal flywheel operating parameters is obtained by K-Medoids clustering
method, and then the distance di from each sample point to the center is obtained.

di =

√
(Ri −Ro)

2 + (Ki −Ko)
2 + (Si − So)

2 (8)

Without loss of generality, the distances from different points to the center are regarded as normally
distributed, and the 5σ rule is introduced to obtain the safety margin from the normal points to the
center. Finally, the safety domain do is constructed according to the cluster center and safety margin.

(4). Construction of Health Indicators

The N sets of noise data sequences are preprocessed and normalized according to steps (1)~(2).
Then the distances d j of each sample point y j

(
R j, K j, S j, j = 1, . . . , N

)
to the center O3 are calculated by:

d j =

√(
R j −Ro

)2
+

(
K j −Ko

)2
+

(
S j − So

)2
(9)

which are compared with the safety distance do. The statistical exceeding rate η and the average
exceeding distance dm are obtained by Equations (11) and (12), respectively.

η =

∑N
j=0 sig

(
d j − do

)
N

(10)

dm =

∑N
j=0 sig

(
d j − do

)
∗
(d j−do)

do∑N
j=0 sig

(
d j − do

) (11)

where

sig(x) =
{

0, i f x ≤ 0
1, i f x > 0

Anomalies are not only related to the probability of exceeding but also to the degree of deviation.
Therefore, these two parameters are integrated to establish an abnormal index for judgment as described
in Equation (12).

Ia = η ∗ dm (12)

The flow chart of the proposed method is shown in Figure 10.
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Figure 10. The state monitoring approach for the MWA’s bearings based on multi-acoustic
parameter fusion.

5. Experimental Verification

The safety domain was determined by the data of two normally operating flywheels. Firstly, the
noise data was collected for a time period of 60 s under the working conditions of 3000 r/min and
4600 r/min, respectively. Secondly, the root-mean-square value R, kurtosis K, and sharpness S were
calculated and the clustering fusion of them was performed on the signals under the two working
conditions according to the proposed method. The clustering center points of the normalized samples
were (0.6246, 0.3988, 0.3667) and (0.4032, 0.2270, 0.4479) for the two different conditions. Finally, the
scopes of the safety domain obtained by applying the 5σ rule are 0.7790 and 0.8826, respectively.
Taking the centers as the origin and the safety scopes as the radius, the schematic diagrams of the
established safety domain are shown in Figure 11. The method established in this paper was used to
evaluate the condition of other flywheels (#1~#7). The seven flywheels were tested products for long
life experiments. In order to verify the effectiveness of the monitoring method, these flywheels were
noise tested several times separately.

Figure 11. The security domain under normal operating conditions: (a) 3000 r/min; (b) 4600 r/min.

The parameters distribution of test flywheels #1~#7 is shown in Figures 12–18 (each red star in the
figure represents a sample), and the monitoring results can be found in Table 2.
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Figure 12. Flywheel #1 test noise sample point and security domain: (a) 3000 r/min; (b) 4600 r/min.

Figure 13. Flywheel #2 test noise sample point and security domain; (a) 3000 r/min; (b)4600 r/min.

Figure 14. Flywheel #3 test noise sample point and security domain: (a) 3000 r/min; (b) 4600 r/min.

Figure 15. Flywheel #4 test noise sample point and security domain: (a) 3000 r/min; (b) 4600 r/min.
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Figure 16. Flywheel #5 test noise sample point and security domain: (a) 3000 r/min; (b) 4600 r/min.

Figure 17. Flywheel #6 test noise sample point and security domain: (a) 3000 r/min; (b) 4600 r/min.

Figure 18. Flywheel #7 test noise sample point and security domain: (a) 3000 r/min; (b) 4600 r/min.

Table 2. Excess rates of seven tested MWAs with the same structural parameters at a rotating speed of
3000 r/min.

MWA
Number

Excess Rate (%) Excess Distance (%) Abnormal Index Ia

3000 r/min 4600 r/min 3000 r/min 4600 r/min 3000 r/min 4600 r/min

#1 100 43.3 2.717 1.160 2.717 0.502
#2 50 13.3 1.772 0.430 0.886 0.057
#3 20 0 1.843 0 0.369 0
#4 16.7 0 0.991 0 0.165 0
#5 100 83.3 1.812 2.052 1.182 1.710
#6 20 56.7 0.256 0.115 0.051 0.065
#7 66.7 100 5.298 33.91 3.532 33.91

It can be found out from Table 2 that the excess rates of #3 and #4 were equal or less than 20% under
the speed of 3000 r/min, while both were 0 under the speed of 4600 r/min. Moreover, the abnormal
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index was small at both speeds, so it can be considered that the two flywheels were basically normal.
Flywheel #6 had a higher excess rate, but the excess distance was not large, and the abnormal index
under both conditions was also small. A careful analysis of Figure 17 shows that the main excess
reason is due to the small root mean square value. We know that the mean square value represents
energy, and the low energy indicates that the bearing worked under normal condition; hence, flywheel
#6 is a normal flywheel, too. Due to the original differences among MWAs, these three MWAs were
recognized as in a normal state. Nevertheless, the excess rates of #1, #5, and #7 were larger than 50%,
and the abnormal index under both conditions was also bigger; they were therefore considered to have
been in fault states. Moreover, the excess rate of #2 exceeded 50% under the speed of 3000 r/min, but
the abnormal index was small in the case of 4600 r/min, which indicates a performance degeneration.

In order to further verify the proposed method, the data of flywheel #6 (diagnosed as a normal
flywheel), together with the previous two normal flywheels, was used to construct the safety domain
for monitoring and evaluating other flywheels. According to the above method, R, K, and S were
calculated and clustering fusion was performed under the two working conditions. The clustering
center points of the normalized samples were (0.4726, 0.1553, 0.3361) and (0.4724, 0.4021, 0.3937).
The scopes of the safety domain obtained by applying the 5σ rule are 0.7424 and 0.8468, respectively.
The condition of the other flywheels was evaluated by the proposed method, and the obtained results
are shown in Table 3. A consistent conclusion can be drawn by comparing with the monitoring results
in Table 2.

Table 3. Excess rates of seven tested MWAs with the same structural parameters at a rotating speed of
4600 r/min.

MWA
Number

Excess Rate (%) Excess Distance (%) Abnormal Index Ia

3000 r/min 4600 r/min 3000 r/min 4600 r/min 3000 r/min 4600 r/min

#1 100 43.3 2.444 0.724 2.444 0.314
#2 53.3 10 1.489 0.249 0.794 0.025
#3 13.3 0 1.812 0 0.242 0
#4 36.7 0 0.404 0 0.148 0
#5 100 83.3 1.671 1.246 1.671 1.038
#7 56.7 100 5.297 21.85 3.001 21.848

For further verification of this health monitoring approach, an accelerometer was installed at the
top of the bearings to detect the vibration signal, and the improved EEMD method introduced by the
literature [23] was applied to perform a detail analysis. The time domain waveform and the envelope
spectrum from the vibration signals of #1, #5, and #7 are displayed in Figures 19–21. The characteristic
frequency (125 Hz) and its orders of a ball fault can be seen clearly in Figure 19; hence, there was a
ball fault in MWA#1. Similarly, the characteristic frequency of an outer ring (356 Hz) can be found in
Figure 19, which suggests an outer ring fault in MWA #5, while a characteristic frequency of a retainer
(15 Hz) can be found in Figure 21, which suggests a retainer fault in MWA #7.
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Figure 19. The vibration signal of MWA #1: (a) time domain waveform; (b) envelope spectrum.
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Figure 20. The vibration signal of MWA #5: (a) time domain waveform; (b) envelope spectrum.

Figure 21. The vibration signal from MWA #7: (a) time domain waveform; (b) envelope spectrum.
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Based on the above analysis and the current operation in the long-life laboratory, the state of
flywheels #1–#7 can be obtained as shown in Table 4. It can be concluded from Table 4 that the anomaly
monitoring method proposed in this paper was well verified.

Table 4. The conditions of flywheels #1–#7.

Test Sample The Results by the
Presented Method

The Results by
EEMD Method

The Actual
Condition Conclusions

#1 abnormal ball fault ball fault Verified
#2 normal / in operation Verified
#3 normal / in operation Verified
#4 normal / in operation Verified
#5 abnormal outer ring fault outer ring fault Verified
#6 normal / in operation Verified
#7 abnormal retainer fault retainer fault Verified

6. Conclusions

A health monitoring approach of MWAs based on the acoustic analysis is proposed in the paper.
Conclusions can be derived upon the comparison and analysis though experiments as follows:

(1). The shell of an MWA includes rich resonant frequencies, which are in the range of vibration
frequencies of bearings. Therefore, it is feasible to perform monitoring and identification by the
utilization of the acoustic radiation of a shell.

(2). On the basis of normal specimens, the K-medoid clustering fusion method is used to establish
the excess rate and distance and further construct the abnormal index, which can identify the
different states of the flywheel and give a quantitative evaluation.

(3). The results show that the presented method has a high sensitivity to several typical abnormal
states, especially for the most common cage failure of spacecraft bearings.

(4). By comparing the abnormal index of different flywheel states and the verification results based
on a vibration analysis, the method can effectively monitor the different anomalies of MWAs and
has a good application prospect in the long-term testing of laboratory flywheels.
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Nomenclature

Aacc amplitude of acceleration N the ensemble times of EMD
ci,m the ith IMF caused by the mth EMD O3 clustering center
d0 safety distance R root-mean-square value
di the distance from ith sample point to the center S sharpness
Db the diameter of rolling elements x(t) simulation signal
Dm the diameter of the bearing pitch X coordinate axis X
dm average exceeding distance xi ith sample point
fb the characteristic frequency of the rolling elements x′i normalized sample points
fc the characteristic frequency of the cage Xmax maximum sample point
fi rotation frequency of the inner ring Xmin minimum sample point
fir the characteristic frequency of the inner ring y j jth sample point to be evaluated
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fo rotation frequency of the outer ring Y coordinate axis Y
for the characteristic frequency of the outer ring Z the number of rolling elements
Ia abnormal index Z coordinate axis Z
k the amplitude coefficient α the contact angle
K kurtosis η exceeding rate
nm(t) Gaussian white noise series

Abbreviations

CMG control moment gyro
EEMD ensemble empirical mode decomposition
EMD empirical mode decomposition
IMF intrinsic mode function
MISO multiple input single output
MWA moment wheel assembly
RMS root mean square
SDP symmetrical dot pattern
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